Algorithmic Metatheorems for Second-Order Logic

Thomas Schwentick

Vienna, March 2018

Lehrstuhl Logik in der Informatik

Starting Point

Fagin's Theorem

- A set of finite structures is in **NP** if and only it can be described by a formula of the form $\exists X_1 \cdots \exists X_m \varphi$, where φ is a first-order formula ESO-logic
- Let us assume P + NP for the remainder of this talk
- Then NP looks like this: 🛛 🖾 Ladner's Theorem

- Therefore:
 - Some ESO-formulas describe NP-complete problems
 - Some ESO-formulas describe NPintermediate problems
 - Some ESO-formulas describe problems in P

₩.1 <

1

ESO: Example Formulas

•
$$\varphi_1 \stackrel{\text{\tiny def}}{=} \exists P \exists x_1 \exists x_2 \forall y_1 \forall y_2 (P(x_1) \land \neg P(x_2) \land (P(y_1) \land \neg P(y_2) \rightarrow (\neg E(y_1, y_2) \land \neg E(y_2, y_1)))$$

$$arphi_2 \stackrel{\scriptscriptstyle{ ext{def}}}{=} \exists P_1 \exists P_2 orall y_1 orall y_2 \ ig(E(y_1,y_2)
ightarrow igwedge_{i=0,1,2} (
egreen (heta_i(y_1) \land heta_i(y_2)) igg)$$

where

$$\begin{array}{l} \bullet \ \theta_0(x) \stackrel{\text{\tiny def}}{=} \neg P_1(x) \land \neg P_2(x) \\ \bullet \ \theta_1(x) \stackrel{\text{\tiny def}}{=} (P_1(x) \land \neg P_2(x)) \lor (\neg P_1(x) \land P_2(x)) \\ \bullet \ \theta_2(x) \stackrel{\text{\tiny def}}{=} P_1(x) \land P_2(x) \end{array}$$

•
$$\varphi_3 \stackrel{\text{\tiny def}}{=} \exists T \forall x \exists y \big((E(x, x) \land E(x, y) \land \neg E(y, y) \land T(y)) \lor (\neg E(x, x) \land E(x, y) \land \neg E(y, y) \land \neg (T(x) \leftrightarrow T(y)) \big)$$

•
$$\varphi_4 \stackrel{\text{\tiny def}}{=} \exists P_1 \exists P_2 \forall x \exists y (E(x, y) \land ((\theta_0(x) \land \theta_1(y)) \lor (\theta_1(x) \land \theta_2(y)) \lor (\theta_2(x) \land \theta_0(y)))))$$

$$\begin{array}{l} \bullet \ \varphi_5 \stackrel{\text{\tiny def}}{=} \exists R \forall x \exists y_1 \exists y_2 \forall z_1 \forall z_2 \forall z_3 \big(R(x,y_1) \land R(y_2,x) \land \\ (R(x,z_1) \rightarrow z_1 = y_1) \land (R(z_1,x) \rightarrow z_1 = y_2) \land \\ (((R(x,z_1) \land R(z_2,z_3)) \rightarrow (E(x,z_2) \leftrightarrow E(z_1,z_3))) \end{array}$$

Obvious Question

- Given an ESO-formula φ , can we judge automatically whether it describes
 - ► an **NP**-complete problem,
 - ► an **NP**-intermediate problem,
 - ► a problem in **P**?

Digression

• Georg has a passion for *Schüttlers*

Schüttler 1

A Schüttler consists of a rhyme with a twist

and should be more fun than a twine round the wrist

- ...can we judge automatically...?
- Of course, not! I undecidable
- If we cannot solve a problem exactly, we can go for approximate solutions
- Let us consider syntactically defined subclasses of ESO and classify them with respect to NPC, NPI, P
- Natural choice: formulas in prenex form with a quantifier prefix of a certain type
 - like for the classical Decision
 Problem

Obvious Answer

- Notation: We denote fragments by **prefix strings**, i.e., strings over $\{E, E_k, E^*, E_i^*, e, a \mid i \ge 1\}$, where
 - E_k, E : represent existential quantification of a k-ary (arbitrary) relation
 - E_k^*, E^* : represent existential quantification of an arbitrary number of k-ary (arbitrary) relations
 - e: represents existential first-order quantification
 - a: represents universal first-order quantification
- $\varphi_1 = \exists P \exists x_1 \exists x_2 \forall y_1 \forall y_2 (P(x_1) \land \neg P(x_2) \land (P(y_1) \land \neg P(y_2) \rightarrow (\neg E(y_1, y_2) \land \neg E(y_2, y_1)))$ is of the form
 - $E_1 eeaa$, but also $E_1 e^*a$ and Ee^*a^*

$$egin{aligned} arphi_2 = \exists P_1 \exists P_2 orall y_1 orall y_2 \ ig(E(y_1,y_2) &
ightarrow igwedge_{i=0,1,2} (
eg(heta_i(y_1) \wedge heta_i(y_2))) \end{aligned}$$

is of the form

- ▶ E_1E_1aa , but also E_1^*aa
- Thus we want to know what kinds of problems can be expressed in fragments like $E_1 e^st a$ or $E^st a e$

Immediate Insight

- For each signature there is a **finite set** S of prefix strings such that for each prefix string s it holds
 - ► $s \leqslant S \Rightarrow$ ESO(s) can describe NP-complete problems $\stackrel{\text{def}}{=}$ all ESO formulas with prefix string s
 - ► $s \leqslant S \Rightarrow$ ESO(s) can **not** describe **NP**-complete problems

ullet $s \leqslant S \stackrel{\scriptscriptstyle{\mathsf{def}}}{\Leftrightarrow} s$ is a subprefix string of a string $t \in S$

- For the classical Decision Problem this is known as Gurevich's Classification Theorem
 - relies on well-quasi-orders
- Questions:
 - ► Can we compute S?
 - ullet Can we say more in case " $s\leqslant S$ "?

"New" Result (General Form)

- For each of strings, directed graphs, undirected graphs there is a finite set S of prefix strings such that for each prefix string s it holds
 - ► $s \leqslant S \Rightarrow \mathsf{ESO}(s)$ can describe NP-complete problems
 - ▶ s ≤ S ⇒ ESO(s) only describes problems in P
 (and even only regular sets in the case of strings)
 Image End of story for NPI-problems!
- Furthermore: we do know S

Contents

Intro

▷ Strings

Graphs

Wrap up

ESO on Strings: Results

- The "critical set" S for strings was determined in [Eiter, Gottlob, Gurevich 2000]
- Furthermore the landscape was clarified as follows:

• Note: Strings have successor relation but not a linear order!

ESO on Strings: Lower Bounds

- The NP-hardness results are by reduction from 3SAT
- Propositional variables are encoded by 0-1-strings
- A propositional formula

 $m{\chi} = (p_0 \lor p_1 \lor \neg p_2) \land (\neg p_0 \lor \neg p_1 \lor p_2)$ is encoded as [(00) + (01) + (10) -][(00) - (01) - (10) +]

[(00) + (01) + (10) -][(00) - (01) - (10) +

- A formula of the form $\exists V \exists G \exists R \exists R' \forall y_1 \forall y_2 \forall y_3 \psi$ can check whether χ is satisfiable:
 - V (unary) represents a truth value for each occurrence of a variable
 - \blacktriangleright G (unary) checks that each clause is satisfied by V
 - R (binary) checks that V is consistent (with the help of binary R')
 - *R* connects all pairs of identical prefixes of variable numbers...
- Then V, G, R' are eliminated...

ESO on Strings: Upper Bounds

- E^*e^*aa is regular
- In a nutshell...
- Whether $m{\psi}(m{u},m{v})$ and $m{\psi}(m{v},m{u})$ hold for positions $m{u} \neq m{v}$ depends on
 - $\blacktriangleright R(u, u)$
 - $\blacktriangleright {\pmb R}({\pmb v},{\pmb v})$
 - ullet the symbols at u and v
 - \blacktriangleright whether $oldsymbol{u}$ and $oldsymbol{v}$ are neighbours
 - $\blacktriangleright R(u, v)$
 - $\boldsymbol{R}(\boldsymbol{v}, \boldsymbol{u})$
- The choice of $m{R}(m{u},m{v})$ and $m{R}(m{v},m{u})$ does not affect any other pairs
- Atoms $oldsymbol{R}(oldsymbol{u},oldsymbol{v})$ and $oldsymbol{R}(oldsymbol{v},oldsymbol{u})$ can be eliminated
- $\blacktriangleright E_1^*e^*aa$
- regular

- $E^*e^*ae^*$ is regular
- This is a 23 page proof using concepts such as
 - hypergraph traversals
 - transducers and
 - four normal forms
- In a nutshell, it is shown that only a constant number of *remote witnesses* is needed

Schüttler 2

If the sentence at hand obeys a formal norm Just bring it into normal form

 $t \cup \checkmark \checkmark \land \lor$

11

Second-Order Logic on Strings: Results

• Second-order logic on strings has been considered in [Eiter, Gottlob, Schwentick 2001]

- Here, the boundary between regular and non-regular fragments is determined
- But there is no complete complexity classification of the non-regular fragments

Contents

Intro

Strings

⊳ Graphs

Wrap up

ESO on Graphs: Results

- The "critical set" S is the same for "arbitrary structures", directed graphs and undirected graphs
- It was determined in [Gottlob, Kolaitis, Schwentick, 2004]
- The following dichotomy was shown:

ESO on Graphs: Upper Bounds

- E^*e^*a : can only express **FO**-properties \square not too hard to see
- $E_1 e^* aa$: Reduces to 2-CNF and is thus solvable in NL
- In particular: formula $arphi_1=$

 $\begin{array}{ll} \exists P \exists x_1 \exists x_2 \forall y_1 \forall y_2 \big(P(x_1) \land \neg P(x_2) \land \\ & (P(y_1) \land \neg P(y_2) \rightarrow (\neg E(y_1, y_2) \land \neg E(y_2, y_1)) \big) \\ \text{expresses a LOGSPACE problem} & & & & & & & \\ \end{array}$

- Eaa: Just as in the case of strings guessing binary (or higher arity) relations is not really helpful
- Thus Eaa reduces to E_1aa which in turn is covered by E_1e^*aa

ESO on Graphs: Lower Bounds (1/2)

- E_1E_1aa :
 - Consider $\varphi_2 =$

$$\exists P_1 \exists P_2 \forall y_1 \forall y_2 \\ \left(E(y_1, y_2) \rightarrow \bigwedge_{i=0,1,2} (\neg(\theta_i(y_1) \land \theta_i(y_2)) \right)$$

- It expresses that a given undirected graph is 3-colourable
- E_2eaa :

$$\begin{array}{l} \bullet \mbox{ Consider } \varphi_2' = \\ \exists R \exists x \forall y_1 \forall y_2 \\ (E(y_1, y_2) \rightarrow \bigwedge_{\substack{i=0,1,2 \\ i=0,1,2}} (\neg(\theta_i'(y_1, x) \land \theta_i'(y_2, x)))), \\ \mbox{ where, e.g., } \theta_0'(z_1, z_2) \stackrel{\text{\tiny def}}{=} \neg R(z_1, z_2) \land \neg R(z_2, z_1) \end{array}$$

• E_1aaa : Reduction from POSITIVE-ONE-IN-THREE-SAT

ESO on Graphs: Lower Bounds (2/2)

- $E_1 ae$: Reduction from SAT
 - Encode $(p_1 \lor p_2 \lor \neg p_3) \land (\neg p_1 \lor \neg p_2 \lor \neg p_3) \land (\neg p_1 \lor p_3)$ by the graph

- A propositional formula χ is satisfiable if and only if $\varphi_3 = \exists T \forall x \exists y ((E(x, x) \land E(x, y) \land \neg E(y, y) \land T(y)) \lor$ $(\neg E(x, x) \land E(x, y) \land \neg E(y, y) \land \neg (T(x) \leftrightarrow T(y)))$ holds in its graph
- Observation: This reduction seems to rely on the ability to distinguish two kinds of nodes: nodes with and nodes without self-loop
- What changes if we consider only **basic graphs**:

undirected graphs without self-loops?

Real Name after Tantau

• All proofs for fragments other than $E_1 a e$ survive

$E^{st}ae$ on Basic Graphs (1/3)

- $\varphi_4 = \exists P_1 \exists P_2 \forall x \exists y (E(x, y) \land (\theta_0(x) \land \theta_1(y)) \lor (\theta_1(x) \land \theta_2(y)) \lor (\theta_2(x) \land \theta_0(y))))$ is an E^*ae formula which can use of self-loops \boxtimes always: $x \neq y$
- φ_4 expresses that each connected component of a graph has a cycle whose length is a multiple of three
- Whether this property can be tested in polynomial time had been open for some time
- In 1988, Thomassen showed that it is indeed in P by a very nice argument
- He proved that for every m there is a k such that each graph of tree width $\geqslant k$ has a cycle whose length is a multiple of m
- This yields a nice algorithm:
 - ▶ If G has tree width $\geqslant k$, answer "yes"
 - ullet Otherwise check $G\models arphi_4$ in linear time

thanks to Courcelle's Theorem

Schüttler 3

If the structures you deal with resemble a tree Courcelle has a tool that lets tremble the sea

Thomas Schwentick

SO-Logic

$E^{st}ae$ on Basic Graphs (2/3)

- It turns out that on basic graphs, all E^*ae formulas can be evaluated in **P** [Gottlob, Kolaitis, Schwentick 2004]
- First step in proof: Reduce E^*ae to E_1^*ae \blacksquare similar as for Eaa
- Second step: Evaluation of E_1^*ae formulas can be reduced to a *Pattern Saturation Problem* for some pattern graph P:

- This problem asks whether the nodes of G can be "coloured" by the colours (vertices) of the pattern such that for each node u of colour i there is a node v of colour j such that
 - u and v are neighbours and occurs in P
 - u and v are non-neighbours and occurs in P

- The proof that the *Pattern Saturation Problem* is in **P** uses tree width as a catalyst similarly as for multiple-of-m-cycles
- The most complicated step is to show (basically) that if G can be saturated by a mixed cycle C of P then G has a small "cycle" that is saturated by C
- Some further important tools for the proof:

Thomas Schwentick

E^*ae on Basic Graphs (3/3)

- [Tantau 2014] nailed down the exact complexity of all tractable fragments
- On basic graphs,
 - E^*ae is actually complete for LOGSPACE
 - E^*a is also complete for LOGSPACE
 - $E_1 e^* a a$ is complete for NL
 - $E_1 ae$ is even in FO
- On directed and undirected graphs
 - $E_1 e^* a a$ and $E^* a$ are complete for NL

ESO on Basic Graphs: Summary

• Graphs:

• Basic graphs:

Contents

Intro

Strings

Graphs

⊳ Wrap up

Summary

- Together with Tantau's work, the classification of quantifier-prefix based classes of ESO is rather complete
- For SO it remains incomplete on strings and to be done on graphs
- Future directions:
 - More fine-grained syntactical analysis
 - Other than quantifier-prefix based fragments
 - Take into account other syntactic concept like separation

Regional Voigt et al.

- ► A system?
- Is there anything between strings and graphs?

Bonus Result: ESO on structures with unary functions

- [Barbanchon, Grandjean 2004] studied ESO over structures consisting of unary functions
 Think: list structures
- They show that the formula $\varphi_6 \stackrel{\text{\tiny def}}{=} \exists U \forall x (U(x) \lor U(f(x)) \land (\neg U(x) \lor \neg U(f(x)) \lor \neg U(g(x))))$ over structures with unary functions f and g expresses an NP-complete problem
- Furthermore, they prove that this is the *unique minimal* NP-complete problem with respect to expressibility in ESO and
 - number of functions
 - number and arity of quantified relations
 - number of first-order variables
 - number of clauses as CNF
 - multiset of CNF-clause sizes (2 & 3)
 - number of clauses as DNF (3)
 - multiset of DNF-clause sizes (2 & 2 & 2)

References

- Thomas Eiter, Yuri Gurevich, and Georg Gottlob. Existential second-order logic over strings. *J. ACM*, 47(1):77–131, 2000
- Thomas Eiter, Georg Gottlob, and Thomas Schwentick. Second-order logic over strings: Regular and non-regular fragments. In *Developments in Language Theory*, pages 37–56, 2001
- Georg Gottlob, Phokion G. Kolaitis, and Thomas Schwentick. Existential second-order logic over graphs: Charting the tractability frontier. *Journal of the ACM*, 51(2):312–362, 2004
- Thomas Eiter, Georg Gottlob, and Thomas Schwentick. The model checking problem for prefix classes of second-order logic: A survey. In *Fields of Logic and Computation*, pages 227–250, 2010

Background References

- Carsten Thomassen. On the presence of disjoint subgraphs of a specified type. *Journal of Graph Theory*, 12(1):101–111, 1988
- E. Börger, E. Grädel, and Y. Gurevich. *The classical decision problem*. Springer, 1997
- Régis Barbanchon and Etienne Grandjean. The minimal logicallydefined np-complete problem. In *STACS 2004, 21st Annual Symposium on Theoretical Aspects of Computer Science, Montpellier, France, March 25-27, 2004, Proceedings*, pages 338–349, 2004
- Till Tantau. Existential second-order logic over graphs: A complete complexity-theoretic classification. In *32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany*, pages 703–715, 2015
- Till Tantau. A gentle introduction to applications of algorithmic metatheorems for space and circuit classes. *Algorithms*, 9(3):44, 2016
- Thomas Sturm, Marco Voigt, and Christoph Weidenbach. Deciding first-order satisfiability when universal and existential variables are separated. In *Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '16, New York, NY, USA, July 5-8, 2016*, pages 86–95, 2016
- schuettelreime.at
- emerald.tufts.edu/~bhasselb/shuttlesamp.html

One more...

Schüttler 4

Isn't this Theorem Shot Lab gorgeous? The spirit behind it is Gottlob Schorschus

[Lindner-Schwentick, Schwentick 2018]

Let us go on

Schüttler 5

After all this fuzz about binary words Let us go and eat in the winery birds