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Starting Point

Fagin's Theorem e Let us assume P = NP for the remainder of

e A set of finite structures is in NP if and only this talk
it can be described by a formula of the form e Then NP looks like this: 1= Ladner's Theorem
31X - - - 31X, ¢, where  is a first-order for-

NPI

S
- /

e Therefore:

» Some ESO-formulas describe NP-complete
problems

» Some ESO-formulas describe NP-
intermediate problems

» Some ESO-formulas describe problems in P
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ESO: Example Formulas
® (V1 = HPﬂleI:L'szVyg (P(iBl) AN —'P(wg)/\
(P(y1) n ~P(y2) — (—E(y1,y2) A ~E(y2,¥1)))

® P2 = 1P 3PVy1Vy2

(E(y1,y2) = /\ (—(0:(y1) A 0i(y2))).

where o
> 00(:1:) = P (:13) AN _'Pz(CL‘)
> 01 (x) = d= (Pi(x) A =Py(x)) v (—P1(x) A Pa(x))

(z)
> 02(x) () A Pa(x)
o 3 = EITV:BEIy( (x,x) A E(x,y) A ~E(y,y) A T(y))v
)

(—E(xz,z) A E(x,y) A ~E(y,y) A =(T(x) < T(y)))

P,

o 4 =IPIPYxIy(E(z, y) A
((Bo(z) A 01(y)) v (81() A O2(y)) v (B2(x) A Bo(y))))

o o5 = IRVxIy1IY2V21V22V23(R(z, y1) A R(y2, ) A
(R(x, z1) = 21 = y1) A (R(z1,%) = 21 = y2)A
((R(xy 2z1) A R(22,23)) = (E(x, 22) < E(z1,23))))
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Obvious Question

e Given an ESO-formula ¢, can we judge automatically
whether it describes

» an NP-complete problem,
» an NP-intermediate problem,
» a problem in P?
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Digression

e Georg has a passion for Schudittlers

Schuttler 1

A Schuttler consists of a rhyme with a twist

and should be more fun than a twine round the wrist
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Obvious Answer

...can we judge automatically...? e Notation: We denote fragments by prefix strings, i.e., strings
over {E, Ey, E*,EY,e,a | © > 1}, where

f ! Sy idabl e
CIi LIS, 781 undecidable » F., E: represent existential quantification of a k-ary (ar-
If we cannot solve a problem ex- bitrary) relation
actly, we can go for approximate > E;:, FE*: represent existential quantification of an arbi-
solutions trary number of k-ary (arbitrary) relations
» e: represents existential first-order quantification
Let us consider syntactically » a: represents universal first-order quantification
defined subclasses of ESO and
classify them with respect to o 1 = APdx1dx2Vy1Vy- (P(acl) A = P(xg)A
NPC, NPI, P (P(y1) A —~P(y2) — (—E(y1,y2) A ~E(y2, yl)))
Natural choice: formulas in CRR ) . . s
prenex form with a quantifier > Ereeaa, butalso Eye*aand Ee*a
refix of a certain type
p» like for the class):EaI Decision * p2 =33V VY
Broblam (E(y1,y2) = /\ (—(0i(y1) A 05(y2)))

©=0,1,2
is of the form

» E1FEqaa,butalso Efaa

e Thus we want to know what kinds of problems can be ex-
pressed in fragments like F1e*a or E*ae
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Immediate Insight
For each signature there is a finite set .S of prefix
strings such that for each prefix string s it holds

»s<S=>
ESO(s) can describe NP-complete problems

def

= ESO(s) = all ESO formulas with prefix string s
r»rs<S=
ESO(s) can not describe NP-complete problems

def

s < S < sis a subprefix string of a stringt € .S

For the classical Decision Problem this is known as
Gurevich’s Classification Theorem

» relies on well-quasi-orders

Questions:
» Can we compute S?
» Can we say more in case “s < S”?
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“New” Result (General Form)

e For each of strings, directed graphs, undirected graphs
there is a finite set .S of prefix strings such that for each
prefix string s it holds

» s < S = ESO(s) can describe NP-complete prob-
lems

» s < S = ESO(s) only describes problems in P
(and even only regular sets in the case of strings)
15" End of story for NPI-problems!

e Furthermore: we do know S
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Intro

> Strings
Graphs
Wrap up

Contents
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ESO on Strings: Results
e The “critical set” S for strings was determined in [Eiter, Gottlob, Gurevich 2000]

e Furthermore the landscape was clarified as follows:

NP-tailored

E*a*

e Note: Strings have successor relation but not a linear order!
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ESO on Strings: Lower Bounds
The NP-hardness results are by reduction from 3SAT

Propositional variables are encoded by 0-1-strings

A propositional formula

X = (Po vV p1V ﬁp2) A (ﬁpo v 7Pp1 VvV Pz)
IS encoded as

[(00) + (01) + (10)—][(00) — (01) — (10)+]

A formula of the form 3VIGIRIR'Vy1Vy2Vys 1)
can check whether x is satisfiable:

» V' (unary) represents a truth value for each occur-
rence of a variable

» G (unary) checks that each clause is satisfied by V'

» R (binary) checks that V' is consistent (with the help
of binary R/)

m R connects all pairs of identical prefixes of variable
numbers...

Then V, G, R’ are eliminated...

SO-Logic
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ESO on Strings: Upper Bounds
e E*e*aa is regular o F*e*ae™ isregular
e In a nutshell... e This is a 23 page proof using concepts such as
» hypergraph traversals

» transducers and
» four normal forms

o Let ARVYy1Vy21 be aformula = R binary

e Whether ¢(u, v) and 1 (v, ) hold for posi-
tions u = v depends on

» R(u,u) e In anutshell, it is shgwn that gnly a constant
number of remote witnesses is needed
» R(v,v)
» the symbols at w and v 12
» whether w and v are neighbours 8 Ry
> R(u, v) f;;’f-*/rlm\s\ S
£ a T Bt g
» R(v,u) W= basbababbaaababaababbbabaa

e The choice of R(u,v) and R(v, u) does not

affect any other pairs Schuttler 2

» Atoms R(u,v) and R(v, u) can be elimi- If the sentence at hand obeys a formal norm
nated Just bring it into normal form

¥

Ei“e*aa

’

regular
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e Second-order logic on strings has been considered in [Eiter, Gottlob, Schwentick 2001]

Second-Order Logic on Strings: Results

Non-regular classes

Regular classes

FAFae

FAFaa FAee Faaa Faae Faea FAea
(EA)*aVE* A*aaVE*e*ae™ E*e*aa YE*A*aeY (EA)*e

e Here, the boundary between regular and non-regular fragments is determined

e But there is no complete complexity classification of the non-regular fragments

Thomas Schwentick
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Intro

Strings
> Graphs

Wrap up

Contents
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ESO on Graphs: Results

e The “critical set” S is the same for “arbitrary structures”, directed graphs and undirected
graphs

e |t was determined in [Gottlob, Kolaitis, Schwentick, 2004]

e The following dichotomy was shown:

NP-complete classes

Fseaa Fiae FiFiaa Fiaaa
E*e* Eaa E.e*faa

e a

PTIME classes

Thomas Schwentick SO-Logic ﬂ' <>



Thomas Schwentick

ESO on Graphs: Upper Bounds

FE*e*a: can only express FO-properties 1= not too hard to see

FE,e*aa: Reduces to 2-CNF and is thus solvable in NL

In particular: formula o1 =

IP3x13x2Vy1 Vy2 (P(z1) A —P(22) A

(P(y1) A =P(y2) — (—E(y1,y2) A ~E(y2, yl)))
expresses a LOGSPACE problem 15" DISCONNECTIVITY

FEaa: Just as in the case of strings guessing binary (or higher arity)
relations is not really helpful

Thus Faa reduces to F71 aa which in turn is covered by F7e*aa

SO-Logic
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ESO on Graphs: Lower Bounds (1/2)

® ElElaa:
» Consider g =
1P dP>Vy1Vy2
(B(y1,y2) —  /\ (~(6i(y1) A 6:(y2)))
i=0,1,2

» It expresses that a given undirected graph is 3-colourable

o Fseaa:

» Consider ¢, =
1R a:Vyl Vyz

(E(ylayZ) — /\ (_'(Og,(ylaw) A 0;(y29$))>’

i=0,1,2
where, e.g., 0} (21, 22) = —R(21, 22) A ~R(22, 21)

e Iy aaa: Reduction from POSITIVE-ONE-IN-THREE-SAT

Thomas Schwentick SO-Logic
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ESO on Graphs: Lower Bounds (2/2)

e I/; ae: Reduction from SAT

» Encode (p1 V P2 V ﬂp3) A (ﬂp1 vV P2V ﬁp3) A (ﬁpl vp3)
by the graph

» A propositional formula ‘x is satisfiable if and only if
p3 =3TVzIY((E(z, ) A E(z,y) A ~E(y,y) A T(y))v
(—E(z,z) n E(z,y) n ~E(y,y) n ~(T(x) < T(y))
holds in its graph

e Observation: This reduction seems to rely on the ability to distinguish
two kinds of nodes: nodes with and nodes without self-loop

e What changes if we consider only basic graphs:
undirected graphs without self-loops?
=" Name after Tantau

e All proofs for fragments other than /1 ae survive
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E*ae on Basic Graphs (1/3)
® 4 =E|P1§IP2V:BEIy(E(33,y)/\
((Bo(x) A 01(y)) v (01(x) A B2(y)) v (B2(x) A Bo(y))))

is an Z* ae formula which can use of self-loops = glways: & = Y

® (p4 expresses that each connected component of a graph has a cycle
whose length is a multiple of three

e Whether this property can be tested in polynomial time had been open
for some time

e |In 1988, Thomassen showed that it is indeed in P by a very nice argu-
ment

e He proved that for every m there is a k such that each graph of tree
width > k has a cycle whose length is a multiple of m
e This yields a nice algorithm:
» If G has tree width > k, answer “yes”

» Otherwise check G = ¢4 in linear time
1" thanks to Courcelle’s Theorem

Schuttler 3

If the structures you deal with resemble a tree
Courcelle has a tool that lets tremble the sea
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E*ae on Basic Graphs (2/3)

It turns out that on basic graphs, all E*ae formulas e The proof that the Pattern Saturation

can be evaluated in P 1= [Gottlob, Kolaitis, Schwentick 2004] Problem is in P uses tree width as a cat-
alyst similarly as for multiple-of-1m-cycles

First step in proof: Reduce E*ae to ES ae
1= similar as for Eaa e The most complicated step is to show

(basically) that if G' can be saturated by a
Second step: Evaluation of Ei‘ae formulas can be mixed cycle C of P then G has a small

reduced to a Pattern Saturation Problem for some “cycle” that is saturated by C

pattern graph P:
e Some further important tools for the proof:

D S

s ()

This problem asks whether the nodes of G can be
“coloured” by the colours (vertices) of the pattern
such that for each node u of colour 2 there is a node
v of colour 7 such that

)
» u and v are neighbours and @ﬁ@ ° ..

occurs in P

( > ©
» u and v are non-neighbours and @

occurs in P
Thomas Schwentick SO-Logic ﬂ' 4> 19




E*ae on Basic Graphs (3/3)

® [Tantau 2014] nailed down the exact complexity of all
tractable fragments

e On basic graphs,
» E*ae is actually complete for LOGSPACE
» E*a is also complete for LOGSPACE
» F1e*aa is complete for NL
» Fiaeisevenin FO

e On directed and undirected graphs
» F1e*aa and E*a are complete for NL

Thomas Schwentick SO-Logic
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ESO on Basic Graphs: Summary

e Graphs:

e Basic graphs:

Thomas Schwentick

NP-complete classes

PTIME classes

FE-eaa

NP-complete classes

FiFiaa Fiaaa

E*e*a: E*ae - Eaa Eie*aa
PTIME classes
SO-Logic
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Intro
Strings
Graphs

> Wrap up
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Strings

Summary
Graphs

Basic Graphs

ESO

NP-complete classes

Eze Eae E1Eiaa Eyaaa

E*e*a Eaa Eie*aa

PTIME classes

NP-complete classes

PTIME classes

SO

e Together with Tantau’s work, the classification of quantifier-prefix based classes of ESO is
rather complete

e For SO it remains incomplete on strings and to be done on graphs

e Future directions:

» More fine-grained syntactical analysis
» Other than quantifier-prefix based fragments

» Take into account other syntactic concept like separation

» A system?

e [s there anything between strings and graphs?

Thomas Schwentick
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Bonus Result: ESO on structures with unary functions

Thomas Schwentick

>

>

>

® [Barbanchon, Grandjean 2004] studied ESO over structures
consisting of unary functions

e They show that the formula
¥e

= UV (U(z) v U(f(z))A

(=U(x) v ~U(f(x)) v ~U(g(x)))
over structures with unary functions f and g expresses
an NP-complete problem

e Furthermore, they prove that this is the unique minimal
NP-complete problem with respect to expressibility in
ESO and

number of functions

number and arity of quantified relations
number of first-order variables

number of clauses as CNF

multiset of CNF-clause sizes (2 & 3)
number of clauses as DNF (3)

multiset of DNF-clause sizes (2 & 2 & 2)

SO-Logic
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One more...

Database and Artificial -
Intelligence Group - : - -

Schuttler 4

Isn’t this Theorem Shot Lab gorgeous?
The spirit behind it is Gottlob Schorschus

I="[Lindner-Schwentick, Schwentick 2018]
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Let us go on

Schuttler 5

After all this fuzz about binary words
Let us go and eat in the winery birds

Thomas Schwentick SO-Logic

28



