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Starting Point

Fagin’s Theorem

‚ A set of finite structures is in NP if and only

it can be described by a formula of the form

DX1 ¨ ¨ ¨ DXmϕ, where ϕ is a first-order for-

mula ☞ ESO-logic

‚ Let us assume P “ NP for the remainder of

this talk

‚ Then NP looks like this: ☞ Ladner’s Theorem

NPC

NPI

P

‚ Therefore:

§ Some ESO-formulas describe NP-complete

problems

§ Some ESO-formulas describe NP-

intermediate problems

§ Some ESO-formulas describe problems in P
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ESO: Example Formulas

‚ ϕ1

def

“ DP Dx1Dx2@y1@y2
`

P px1q ^  P px2q^

pP py1q ^  P py2q Ñ p Epy1, y2q ^  Epy2, y1qq
˘

‚ ϕ2

def

“ DP1DP2@y1@y2
`

Epy1, y2q Ñ
ľ

i“0,1,2

p pθipy1q ^ θipy2qq
˘

,

where

§ θ0pxq
def

“  P1pxq ^  P2pxq

§ θ1pxq
def

“ pP1pxq ^  P2pxqq _ p P1pxq ^ P2pxqq

§ θ2pxq
def

“ P1pxq ^ P2pxq

‚ ϕ3

def

“ DT@xDy
`

pEpx, xq ^ Epx, yq ^  Epy, yq ^ T pyqq_

p Epx, xq ^ Epx, yq ^  Epy, yq ^  pT pxq Ø T pyqq
˘

‚ ϕ4

def

“ DP1DP2@xDy
`

Epx, yq^

ppθ0pxq ^ θ1pyqq _ pθ1pxq ^ θ2pyqq _ pθ2pxq ^ θ0pyqqq
˘

‚ ϕ5

def

“ DR@xDy1Dy2@z1@z2@z3
`

Rpx, y1q ^Rpy2, xq^

pRpx, z1q Ñ z1 “ y1q ^ pRpz1, xq Ñ z1 “ y2q^

pppRpx, z1q ^Rpz2, z3qq Ñ pEpx, z2q Ø Epz1, z3qqq
˘
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Obvious Question
‚ Given an ESO-formula ϕ, can we judge automatically

whether it describes

§ an NP-complete problem,

§ an NP-intermediate problem,

§ a problem in P?
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Digression

‚ Georg has a passion for Schüttlers

Schüttler 1

A Schüttler consists of a rhyme with a twist

and should be more fun than a twine round the wrist
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Obvious Answer
‚ ...can we judge automatically...?

‚ Of course, not! ☞ undecidable

‚ If we cannot solve a problem ex-

actly, we can go for approximate

solutions

‚ Let us consider syntactically

defined subclasses of ESO and

classify them with respect to

NPC, NPI, P

‚ Natural choice: formulas in

prenex form with a quantifier

prefix of a certain type

§ like for the classical Decision

Problem

‚ Notation: We denote fragments by prefix strings, i.e., strings

over tE,Ek, E
˚, E˚

i , e, a | i ě 1u, where

§ Ek, E: represent existential quantification of a k-ary (ar-

bitrary) relation

§ E˚

k , E
˚: represent existential quantification of an arbi-

trary number of k-ary (arbitrary) relations

§ e: represents existential first-order quantification

§ a: represents universal first-order quantification

‚ ϕ1 “ DP Dx1Dx2@y1@y2
`

P px1q ^  P px2q^

pP py1q ^  P py2q Ñ p Epy1, y2q ^  Epy2, y1qq
˘

is of the form

§ E1eeaa, but alsoE1e
˚a andEe˚a˚

‚ ϕ2 “ DP1DP2@y1@y2
`

Epy1, y2q Ñ
ľ

i“0,1,2

p pθipy1q ^ θipy2qq
˘

is of the form

§ E1E1aa, but alsoE˚

1
aa

‚ Thus we want to know what kinds of problems can be ex-

pressed in fragments likeE1e
˚a orE˚ae
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Immediate Insight

‚ For each signature there is a finite set S of prefix

strings such that for each prefix string s it holds

§ s ď Sñ
ESOpsq can describe NP-complete problems

☞ ESOpsq
def

“ all ESO formulas with prefix string s

§ s ď Sñ
ESOpsq can not describe NP-complete problems

‚ s ď S
def

ô s is a subprefix string of a string t P S

‚ For the classical Decision Problem this is known as

Gurevich’s Classification Theorem

§ relies on well-quasi-orders

‚ Questions:

§ Can we compute S?

§ Can we say more in case “s ď S”?
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“New” Result (General Form)
‚ For each of strings, directed graphs, undirected graphs

there is a finite set S of prefix strings such that for each

prefix string s it holds

§ s ď Sñ ESOpsq can describe NP-complete prob-

lems

§ s ď Sñ ESOpsq only describes problems in P

(and even only regular sets in the case of strings)

☞ End of story for NPI-problems!

‚ Furthermore: we do know S
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ESO on Strings: Results

‚ The “critical set” S for strings was determined in [Eiter, Gottlob, Gurevich 2000]

‚ Furthermore the landscape was clarified as follows:

E2aea

FO expressible: e˚a

E
˚
e

˚
ae

˚
E

˚
e

˚
aa E2aae

regular-tailored

NP-hard

E2aaa

NP-tailored

E
˚
e

˚
a

E
˚
a

˚

E
˚

1
ae E

˚

1
aa

‚ Note: Strings have successor relation but not a linear order!
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ESO on Strings: Lower Bounds
‚ The NP-hardness results are by reduction from 3SAT

‚ Propositional variables are encoded by 0-1-strings

‚ A propositional formula

χ “ pp0 _ p1 _  p2q ^ p p0 _  p1 _ p2q
is encoded as

rp00q ` p01q ` p10q´srp00q ´ p01q ´ p10q`s

‚ A formula of the form DV DGDRDR1@y1@y2@y3ψ
can check whether χ is satisfiable:

§ V (unary) represents a truth value for each occur-

rence of a variable

§ G (unary) checks that each clause is satisfied by V

§ R (binary) checks that V is consistent (with the help

of binaryR1)

� R connects all pairs of identical prefixes of variable

numbers...

‚ Then V,G,R1 are eliminated...
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ESO on Strings: Upper Bounds

‚ E˚e˚aa is regular

‚ In a nutshell...

‚ Let DR@y1@y2ψ be a formula ☞ R binary

‚ Whether ψpu, vq and ψpv, uq hold for posi-

tions u “ v depends on

§ Rpu, uq

§ Rpv, vq
§ the symbols at u and v

§ whether u and v are neighbours

§ Rpu, vq

§ Rpv, uq

‚ The choice ofRpu, vq andRpv, uq does not

affect any other pairs

➨ AtomsRpu, vq andRpv, uq can be elimi-

nated

➨ E˚

1
e˚aa

➨ regular

‚ E˚e˚ae˚ is regular

‚ This is a 23 page proof using concepts such as

§ hypergraph traversals

§ transducers and

§ four normal forms

‚ In a nutshell, it is shown that only a constant

number of remote witnesses is needed

Schüttler 2

If the sentence at hand obeys a formal norm

Just bring it into normal form
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Second-Order Logic on Strings: Results
‚ Second-order logic on strings has been considered in [Eiter, Gottlob, Schwentick 2001]

Non-regular classes

Regular classes

EAEaa EAee Eaaa Eaae Eaea EAea EAEae

pEAq˚a E˚A˚aa E˚e˚ae˚ E˚e˚aa E˚A˚ae pEAq˚e

‚ Here, the boundary between regular and non-regular fragments is determined

‚ But there is no complete complexity classification of the non-regular fragments
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ESO on Graphs: Results

‚ The “critical set” S is the same for “arbitrary structures”, directed graphs and undirected

graphs

‚ It was determined in [Gottlob, Kolaitis, Schwentick, 2004]

‚ The following dichotomy was shown:

NP-complete classes

PTIME classes

E2eaa E1ae E1aaaE1E1aa

E˚e˚a E1e
˚aaEaa
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ESO on Graphs: Upper Bounds

‚ E˚e˚a: can only express FO-properties ☞ not too hard to see

‚ E1e
˚aa: Reduces to 2-CNF and is thus solvable in NL

‚ In particular: formula ϕ1 “

DP Dx1Dx2@y1@y2
`

P px1q ^  P px2q^

pP py1q ^  P py2q Ñ p Epy1, y2q ^  Epy2, y1qq
˘

expresses a LOGSPACE problem ☞ DISCONNECTIVITY

‚ Eaa: Just as in the case of strings guessing binary (or higher arity)

relations is not really helpful

‚ ThusEaa reduces toE1aa which in turn is covered byE1e
˚aa
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ESO on Graphs: Lower Bounds (1/2)

‚ E1E1aa:

§ Consider ϕ2 “

DP1DP2@y1@y2
`

Epy1, y2q Ñ
ľ

i“0,1,2

p pθipy1q ^ θipy2qq
˘

§ It expresses that a given undirected graph is 3-colourable

‚ E2eaa:

§ Consider ϕ1

2
“

DRDx@y1@y2
`

Epy1, y2q Ñ
ľ

i“0,1,2

p pθ1

ipy1, xq ^ θ
1

ipy2, xqq
˘

,

where, e.g., θ1

0
pz1, z2q

def

“  Rpz1, z2q ^  Rpz2, z1q

‚ E1aaa: Reduction from POSITIVE-ONE-IN-THREE-SAT
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ESO on Graphs: Lower Bounds (2/2)

‚ E1ae: Reduction from SAT

§ Encode pp1_p2_ p3q^p p1_ p2_ p3q^p p1_p3q
by the graph

c1 c2 c3

p1  p1 p2  p2 p3  p3

§ A propositional formula χ is satisfiable if and only if

ϕ3 “DT@xDy
`

pEpx, xq ^ Epx, yq ^  Epy, yq ^ T pyqq_

p Epx, xq ^ Epx, yq ^  Epy, yq ^  pT pxq Ø T pyqq
˘

holds in its graph

‚ Observation: This reduction seems to rely on the ability to distinguish

two kinds of nodes: nodes with and nodes without self-loop

‚ What changes if we consider only basic graphs:

undirected graphs without self-loops?

☞ Name after Tantau

‚ All proofs for fragments other thanE1ae survive
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E˚ae on Basic Graphs (1/3)

‚ ϕ4 “DP1DP2@xDy
`

Epx, yq^

ppθ0pxq ^ θ1pyqq _ pθ1pxq ^ θ2pyqq _ pθ2pxq ^ θ0pyqqq
˘

is anE˚ae formula which can use of self-loops ☞ always: x “ y

‚ ϕ4 expresses that each connected component of a graph has a cycle

whose length is a multiple of three

‚ Whether this property can be tested in polynomial time had been open

for some time

‚ In 1988, Thomassen showed that it is indeed in P by a very nice argu-

ment

‚ He proved that for everym there is a k such that each graph of tree

widthě k has a cycle whose length is a multiple ofm

‚ This yields a nice algorithm:

§ IfG has tree widthě k, answer “yes”

§ Otherwise checkG |ù ϕ4 in linear time

☞ thanks to Courcelle’s Theorem

Schüttler 3

If the structures you deal with resemble a tree

Courcelle has a tool that lets tremble the sea
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E˚ae on Basic Graphs (2/3)

‚ It turns out that on basic graphs, allE˚ae formulas

can be evaluated in P ☞[Gottlob, Kolaitis, Schwentick 2004]

‚ First step in proof: ReduceE˚ae toE˚

1
ae

☞ similar as for Eaa

‚ Second step: Evaluation ofE˚

1
ae formulas can be

reduced to a Pattern Saturation Problem for some

pattern graph P :

0

1

2

‘ ‘

‘

‚ This problem asks whether the nodes ofG can be

“coloured” by the colours (vertices) of the pattern

such that for each node u of colour i there is a node

v of colour j such that

§ u and v are neighbours and
i j

‘

occurs in P

§ u and v are non-neighbours and
i j

a

occurs in P

‚ The proof that the Pattern Saturation

Problem is in P uses tree width as a cat-

alyst similarly as for multiple-of-m-cycles

‚ The most complicated step is to show

(basically) that ifG can be saturated by a

mixed cycleC of P thenG has a small

“cycle” that is saturated byC

‚ Some further important tools for the proof:

‚ ..
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E˚ae on Basic Graphs (3/3)
‚ [Tantau 2014] nailed down the exact complexity of all

tractable fragments

‚ On basic graphs,

§ E˚ae is actually complete for LOGSPACE

§ E˚a is also complete for LOGSPACE

§ E1e
˚aa is complete for NL

§ E1ae is even in FO

‚ On directed and undirected graphs

§ E1e
˚aa andE˚a are complete for NL
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ESO on Basic Graphs: Summary

‚ Graphs:

NP-complete classes

PTIME classes

E2eaa E1ae E1aaaE1E1aa

E˚e˚a E1e
˚aaEaa

‚ Basic graphs:

NP-complete classes

PTIME classes

E2eaa
E1aae

E1aea

E1aee

E1eae
E1aaaE1E1aa

E˚e˚a E˚ae E1e
˚aaEaa
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Summary

Strings Graphs Basic Graphs

ESO
E2aea

FO expressible: e˚a

E
˚
e

˚
ae

˚
E

˚
e

˚
aa E2aae

regular-tailored

NP-hard

E2aaa

NP-tailored

E
˚
e

˚
a

E
˚
a

˚

E
˚

1
ae E

˚

1
aa

NP-complete classes

PTIME classes

E2eaa E1ae E1aaaE1E1aa

E˚e˚a E1e
˚aaEaa

NP-complete classes

PTIME classes

E2eaa
E1aae

E1aea

E1aee

E1eae
E1aaaE1E1aa

E˚e˚a E˚ae E1e
˚aaEaa

SO

Non-regular classes

Regular classes

EAEaa EAee Eaaa Eaae Eaea EAea EAEae

pEAq˚a E˚A˚aa E˚e˚ae˚ E˚e˚aa E˚A˚ae pEAq˚e ??? ???

‚ Together with Tantau’s work, the classification of quantifier-prefix based classes of ESO is

rather complete

‚ For SO it remains incomplete on strings and to be done on graphs

‚ Future directions:

§ More fine-grained syntactical analysis

§ Other than quantifier-prefix based fragments

§ Take into account other syntactic concept like separation ☞ Voigt et al.

§ A system?

‚ Is there anything between strings and graphs?
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Bonus Result: ESO on structures with unary functions
‚ [Barbanchon, Grandjean 2004] studied ESO over structures

consisting of unary functions ☞ Think: list structures

‚ They show that the formula

ϕ6

def

“ DU@xpUpxq _ Upfpxqq^
p Upxq _  Upfpxqq _  Upgpxqqq

over structures with unary functions f and g expresses

an NP-complete problem

‚ Furthermore, they prove that this is the unique minimal

NP-complete problem with respect to expressibility in

ESO and

§ number of functions

§ number and arity of quantified relations

§ number of first-order variables

§ number of clauses as CNF

§ multiset of CNF-clause sizes (2 & 3)

§ number of clauses as DNF (3)

§ multiset of DNF-clause sizes (2 & 2 & 2)
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One more...

Schüttler 4

Isn’t this Theorem Shot Lab gorgeous?

The spirit behind it is Gottlob Schorschus

☞[Lindner-Schwentick, Schwentick 2018]
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Let us go on

Schüttler 5

After all this fuzz about binary words

Let us go and eat in the winery birds
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