Dichotomies in the Complexity of Query Answering over Probabilistic Databases

Open Problems in Database Theory, ICDT 2017

Benny Kimelfeld ${ }^{1}$

Tuple-Independent Probabilistic Databases

- A tuple-independent probabilistic database [DS04], or TID for short, is a pair (D, p) where:
- D is an ordinary relational database, viewed as a set of facts
- $p: D \rightarrow[0,1]$ associates a probability with each fact

Tuple-Independent Probabilistic Databases

- A tuple-independent probabilistic database [DS04], or TID for short, is a pair (D, p) where:
- D is an ordinary relational database, viewed as a set of facts
- $p: D \rightarrow[0,1]$ associates a probability with each fact
- Semantics: probability distribution over the subinstances $E \subseteq D$:

$$
\operatorname{Pr}(E \mid D, p) \xlongequal{\text { def }}\left(\prod_{f \in E} p(f)\right) \times\left(\prod_{f \in D \backslash E}(1-p(f))\right)
$$

Tuple-Independent Probabilistic Databases

- A tuple-independent probabilistic database [DS04], or TID for short, is a pair (D, p) where:
- D is an ordinary relational database, viewed as a set of facts
- $p: D \rightarrow[0,1]$ associates a probability with each fact
- Semantics: probability distribution over the subinstances $E \subseteq D$:

$$
\operatorname{Pr}(E \mid D, p) \xlongequal{\text { def }}\left(\prod_{f \in E} p(f)\right) \times\left(\prod_{f \in D \backslash E}(1-p(f))\right)
$$

- Can simulate and facilitate common models in Statistical Relational Learning (SRL), such as Markov Logic Networks, if expressive classes of queries can be evaluated efficiently [JS12]

Problem 1: Query Evaluation

The Query Evaluation Problem
Let Q be a boolean query. Evaluation of Q over TIDs is the following problem. Given (D, p), compute the probability $\pi_{Q}(D, p)$ that Q is satisfied by a random database of (D, p).

Problem 1: Query Evaluation

The Query Evaluation Problem
Let Q be a boolean query. Evaluation of Q over TIDs is the following problem. Given (D, p), compute the probability $\pi_{Q}(D, p)$ that Q is satisfied by a random database of (D, p). That is:

$$
\pi_{Q}(D, p) \stackrel{\text { def }}{=} \sum_{E \subseteq D, E \models Q} \operatorname{Pr}(E \mid D, p)
$$

Dichotomies in Complexity: Known and Unknown

Evaluating Q : given (D, p), compute $\pi_{Q}(D, p)$

Dichotomies in Complexity: Known and Unknown

Evaluating Q : given (D, p), compute $\pi_{Q}(D, p)$

- Dichotomy for UCQs, or $\operatorname{RA}\left(\sigma_{=}, \pi, \bowtie, \rho, \cup\right)$: for every Q, evaluation is either in PTime or \#P-hard [DS12]

Dichotomies in Complexity: Known and Unknown

Evaluating Q : given (D, p), compute $\pi_{Q}(D, p)$

- Dichotomy for UCQs, or $\operatorname{RA}\left(\sigma_{=}, \pi, \bowtie, \rho, \cup\right)$: for every Q, evaluation is either in PTime or \#P-hard [DS12]
- Dichotomy for $\mathbf{R A}(\sigma, \pi, \bowtie, \rho,-)$, each relation occurs once [FO16]
- We can efficiently recognize the tractable queries

Dichotomies in Complexity: Known and Unknown

Evaluating Q : given (D, p), compute $\pi_{Q}(D, p)$

- Dichotomy for UCQs, or $\operatorname{RA}\left(\sigma_{=}, \pi, \bowtie, \rho, \cup\right)$: for every Q, evaluation is either in PTime or \#P-hard [DS12]
- Dichotomy for $\mathbf{R A}(\sigma, \pi, \bowtie, \rho,-)$, each relation occurs once [FO16]
- We can efficiently recognize the tractable queries
- Open: Dichotomy for full RA (FO)?

Dichotomies in Complexity: Known and Unknown

Evaluating Q : given (D, p), compute $\pi_{Q}(D, p)$

- Dichotomy for UCQs, or $\operatorname{RA}\left(\sigma_{=}, \pi, \bowtie, \rho, \cup\right)$: for every Q, evaluation is either in PTime or \#P-hard [DS12]
- Dichotomy for $\mathbf{R A}(\sigma, \pi, \bowtie, \rho,-)$, each relation occurs once [FO16]
- We can efficiently recognize the tractable queries
- Open: Dichotomy for full RA (FO)?
- Open: Dichotomy for natural restricted fragments?
- e.g., semijoin algebra (guarded FO) RA $(\sigma, \pi, \ltimes, \rho, \cup,-)$?

Dichotomies in Complexity: Known and Unknown

Evaluating Q : given (D, p), compute $\pi_{Q}(D, p)$

- Dichotomy for UCQs, or $\operatorname{RA}\left(\sigma_{=}, \pi, \bowtie, \rho, \cup\right)$: for every Q, evaluation is either in PTime or \#P-hard [DS12]
- Dichotomy for $\mathrm{RA}(\sigma, \pi, \bowtie, \rho,-)$, each relation occurs once [FO16]
- We can efficiently recognize the tractable queries
- Open: Dichotomy for full RA (FO)?
- Open: Dichotomy for natural restricted fragments?
- e.g., semijoin algebra (guarded FO) RA $(\sigma, \pi, \ltimes, \rho, \cup,-)$?
- Open: Dichotomy for (U)CQs on Block-Independent DBs (BID)?
- BID: randomly select ≤ 1 tuples from each block of tuples

Dichotomies in Complexity: Known and Unknown

Evaluating Q : given (D, p), compute $\pi_{Q}(D, p)$

- Dichotomy for UCQs, or $\operatorname{RA}\left(\sigma_{=}, \pi, \bowtie, \rho, \cup\right)$: for every Q, evaluation is either in PTime or \#P-hard [DS12]
- Dichotomy for RA $(\sigma, \pi, \bowtie, \rho,-)$, each relation occurs once [FO16]
- We can efficiently recognize the tractable queries
- Open: Dichotomy for full RA (FO)?
- Open: Dichotomy for natural restricted fragments?
- e.g., semijoin algebra (guarded FO) RA $(\sigma, \pi, \ltimes, \rho, \cup,-)$?
- Open: Dichotomy for (U)CQs on Block-Independent DBs (BID)?
- BID: randomly select ≤ 1 tuples from each block of tuples
- Open: Dichotomies in the presence of FDs?

Problem 2: Approximate Query Evaluation

$$
\text { Evaluating } Q \text { : given }(D, p) \text {, compute } \pi_{Q}(D, p)
$$

Problem 2: Approximate Query Evaluation

Evaluating Q : given (D, p), compute $\pi_{Q}(D, p)$

- FPAS for Q : Numerical algorithm $A(D, p, \epsilon)$ such that:

$$
\frac{\pi_{Q}(D, p)}{(1+\epsilon)}<A(D, p, \epsilon)<(1+\epsilon) \pi_{Q}(D, p)
$$

- Terminates in polynomial time in the size of (D, p) and in $\frac{1}{\epsilon}$

Problem 2: Approximate Query Evaluation

Evaluating Q : given (D, p), compute $\pi_{Q}(D, p)$

- FPAS for Q : Numerical algorithm $A(D, p, \epsilon)$ such that:

$$
\frac{\pi_{Q}(D, p)}{(1+\epsilon)}<A(D, p, \epsilon)<(1+\epsilon) \pi_{Q}(D, p)
$$

- Terminates in polynomial time in the size of (D, p) and in $\frac{1}{\epsilon}$
- FPRAS for Q : Randomized $A(D, p, \epsilon)$ such that:

$$
\operatorname{Pr}_{A}\left[\frac{\pi_{Q}(D, p)}{(1+\epsilon)}<A(D, p, \epsilon)<(1+\epsilon) \pi_{Q}(D, p)\right]>0.99
$$

Approximate Evaluation: Known and Unknown

- Every UCQ has an FPRAS
- Via the Karp-Luby estimator [KL83]

Approximate Evaluation: Known and Unknown

- Every UCQ has an FPRAS
- Via the Karp-Luby estimator [KL83]
- Some fragments of UCQ-minus-UCQ have FPRAS, while some are hard to approximate [KRT11]

Approximate Evaluation: Known and Unknown

- Every UCQ has an FPRAS
- Via the Karp-Luby estimator [KL83]
- Some fragments of UCQ-minus-UCQ have FPRAS, while some are hard to approximate [KRT11]
- Open: Dichotomies for approximation in RA, or popular fragments with negation
- Important special cases (arise in translation from SRL, e.g., MLN): universal FO, full dependencies (e.g., full TGDs, EDGs)

Problem 3: Most Probable Database (MPD)

- Let Q be a boolean query (now viewed as a constraint)
- The MPD problem for Q :

Given (D, p), compute $\operatorname{argmax}_{E}\{\operatorname{Pr}(E \mid D, p) \mid E \models Q\}$

Problem 3: Most Probable Database (MPD)

- Let Q be a boolean query (now viewed as a constraint)
- The MPD problem for Q :

Given (D, p), compute $\operatorname{argmax}_{E}\{\operatorname{Pr}(E \mid D, p) \mid E \models Q\}$

- Also known as: Maximum A-Posteriori (MAP), Most-Probable Explanation (MPE)
- Again, arises in translation from SRL

Problem 3: Most Probable Database (MPD)

- Let Q be a boolean query (now viewed as a constraint)
- The MPD problem for Q :

Given (D, p), compute $\operatorname{argmax}_{E}\{\operatorname{Pr}(E \mid D, p) \mid E \models Q\}$

- Also known as: Maximum A-Posteriori (MAP), Most-Probable Explanation (MPE)
- Again, arises in translation from SRL
- A dichotomy (PTime/NP-hard) is known for the class of unary FDs [GVdBS14]

Problem 3: Most Probable Database (MPD)

- Let Q be a boolean query (now viewed as a constraint)
- The MPD problem for Q :

Given (D, p), compute $\operatorname{argmax}_{E}\{\operatorname{Pr}(E \mid D, p) \mid E \models Q\}$

- Also known as: Maximum A-Posteriori (MAP), Most-Probable Explanation (MPE)
- Again, arises in translation from SRL
- A dichotomy (PTime/NP-hard) is known for the class of unary FDs [GVdBS14]
- Open: Other / more expressive classes of constraints (e.g., universal FO, full dependencies)?

Questions?

References I

(Nilesh N. Dalvi and Dan Suciu, Efficient query evaluation on probabilistic databases, VLDB, Morgan Kaufmann, 2004, pp. 864-875.
囯 , The dichotomy of probabilistic inference for unions of conjunctive queries, J. ACM 59 (2012), no. 6, 30.
Robert Fink and Dan Olteanu, Dichotomies for queries with negation in probabilistic databases, ACM Trans. Database Syst. 41 (2016), no. 1, 4:1-4:47.

Eric Gribkoff, Guy Van den Broeck, and Dan Suciu, The most probable database problem, Proceedings of the First International Workshop on Big Uncertain Data (BUDA), 2014.

目 Abhay Kumar Jha and Dan Suciu, Probabilistic databases with markoviews, PVLDB 5 (2012), no. 11, 1160-1171.

References II

R Richard M. Karp and Michael Luby, Monte-carlo algorithms for enumeration and reliability problems, 24th Annual Symposium on Foundations of Computer Science, Tucson, Arizona, USA, 7-9 November 1983, IEEE Computer Society, 1983, pp. 56-64.
Sanjeev Khanna, Sudeepa Roy, and Val Tannen, Queries with difference on probabilistic databases, PVLDB 4 (2011), no. 11, 1051-1062.

