Open Problems in Consistent Query Answering
Open Problems in Database Theory, ICDT 2017

Benny Kimelfeld Paris Koutris
Database Repairs [ABC99]

- **Inconsistent database**: database D, violates set Σ of constraints
Database Repairs [ABC99]

- **Inconsistent database**: database D, violates set Σ of constraints
- **Repair** of D: database D' that
 - satisfies Σ
 - obtained from D via a *minimal* set of tuple deletions/additions
 - (minimal w.r.t. set inclusion)
Database Repairs [ABC99]

- **Inconsistent database**: database D, violates set Σ of constraints
- **Repair of D**: database D' that
 - satisfies Σ
 - obtained from D via a *minimal* set of tuple deletions/additions
 - (minimal w.r.t. set inclusion)
- Special case: Σ is a set of *primary-key constraints*
 - Then, a repair selects one tuple for each key value
Consistent Query Answering (CQA)

Let Σ be a finite set of constraints, and Q a boolean query. CQA is the following decision problem:

Given an inconsistent D, is $Q(D')$ true for every repair D'?
Consistent Query Answering

Consistent Query Answering (CQA)

Let Σ be a finite set of constraints, and Q a boolean query. CQA is the following decision problem:

Given an inconsistent D, is $Q(D')$ true for every repair D'?

- For common classes of Σ (e.g., GAV-tgds, egds) and Q (e.g., UCQs), CQA is in coNP
Consistent Query Answering

Consistent Query Answering (CQA)

Let Σ be a finite set of constraints, and Q a boolean query. **CQA** is the following decision problem:

Given an inconsistent D, is $Q(D')$ true for every repair D'?

- For common classes of Σ (e.g., GAV-tgds, egds) and Q (e.g., UCQs), CQA is in coNP
- **Dichotomy** for such classes of Σ and Q refers to the conjecture that for every Σ and Q, **CQA is either in PTime or coNP-complete**
 - Ideally, we would also like to have an algorithm that determines the complexity of CQA for given Σ and Q
Consistent Query Answering

Consistent Query Answering (CQA)

Let Σ be a finite set of constraints, and Q a boolean query. **CQA** is the following decision problem:

Given an inconsistent D, is $Q(D')$ true for every repair D'?

- For common classes of Σ (e.g., GAV-tgds, egds) and Q (e.g., UCQs), CQA is in coNP
- **Dichotomy** for such classes of Σ and Q refers to the conjecture that for every Σ and Q, CQA is either in PTime or coNP-complete
 - Ideally, we would also like to have an algorithm that determines the complexity of CQA for given Σ and Q
- **FO rewritability**: Can CQA for Q and Σ be expressed as an ordinary query Q' in FO (hence, PTime)?
History on CQA Research for Primary-Key Constraints

- **2005**: First attempt to establish a dichotomy for *acyclic simple CQs* [FM05]
 - *simple* = no self joins
History on CQA Research for Primary-Key Constraints

- **2005**: First attempt to establish a dichotomy for *acyclic simple CQs* [FM05]
 - *simple* = no self joins
- **2010**: Dichotomy in FO rewritability for *acyclic simple CQs* [Wij10]
History on CQA Research for Primary-Key Constraints

- **2005**: First attempt to establish a dichotomy for *acyclic simple CQs* [FM05]
 - *simple* = no self joins
- **2010**: Dichotomy in FO rewritability for *acyclic simple CQs* [Wij10]
- **2012**: Dichotomy (PTime vs coNP-complete) for *simple CQs with two atoms* [KP12]
History on CQA Research for Primary-Key Constraints

- **2005**: First attempt to establish a dichotomy for *acyclic simple CQs* [FM05]
 - *simple* = no self joins
- **2010**: Dichotomy in FO rewritability for *acyclic simple CQs* [Wij10]
- **2012**: Dichotomy (PTime vs coNP-complete) for *simple CQs with two atoms* [KP12]
- **2014**: Dichotomy for *simple CQs over binary relations* [KS14]
History on CQA Research for Primary-Key Constraints

- **2005**: First attempt to establish a dichotomy for *acyclic simple CQs* [FM05]
 - *simple* = no self joins

- **2010**: Dichotomy in FO rewritability for *acyclic simple CQs* [Wij10]

- **2012**: Dichotomy (PTime vs coNP-complete) for *simple CQs with two atoms* [KP12]

- **2014**: Dichotomy for *simple CQs over binary relations* [KS14]

- **2015**: Dichotomy for *all simple CQs* [KW15]
 - In fact, a more refined classification: FO, PTime\FO, coNP-complete
Open Problems

Are there dichotomies/trichotomies for broader classes of Q and Σ?

<table>
<thead>
<tr>
<th>Σ</th>
<th>Q</th>
<th>simple CQs</th>
<th>key constraints</th>
<th>✓</th>
</tr>
</thead>
</table>
Are there dichotomies/trichotomies for broader classes of Q and $Σ$?

<table>
<thead>
<tr>
<th>$Σ$</th>
<th>Q</th>
<th>key constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>simple CQs</th>
<th>CQs</th>
</tr>
</thead>
</table>

Are there dichotomies/trichotomies for broader classes of Q and Σ?

<table>
<thead>
<tr>
<th></th>
<th>Σ</th>
<th>Q</th>
<th>simple CQs</th>
<th>CQs</th>
<th>CQ\neg</th>
</tr>
</thead>
<tbody>
<tr>
<td>key constraints</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Are there dichotomies/trichotomies for broader classes of Q and Σ?

<table>
<thead>
<tr>
<th>Σ</th>
<th>Q</th>
<th>simple CQs</th>
<th>CQs</th>
<th>CQ^-</th>
<th>UCQs</th>
</tr>
</thead>
<tbody>
<tr>
<td>key constraints</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Open Problems

Are there dichotomies/trichotomies for broader classes of Q and Σ?

<table>
<thead>
<tr>
<th>Σ</th>
<th>Q</th>
<th>simple CQs</th>
<th>CQs</th>
<th>CQ$^-$</th>
<th>UCQs</th>
</tr>
</thead>
<tbody>
<tr>
<td>key constraints</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Benny Kimelfeld, Paris Koutris
ICDT 2017 Open Problems
Open Problems

Are there dichotomies/trichotomies for broader classes of Q and Σ?

<table>
<thead>
<tr>
<th>Σ \ Q</th>
<th>simple CQs</th>
<th>CQs</th>
<th>CQ^-</th>
<th>UCQs</th>
</tr>
</thead>
<tbody>
<tr>
<td>key constraints</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Are there dichotomies/trichotomies for broader classes of Q and Σ?

<table>
<thead>
<tr>
<th>Σ</th>
<th>Q</th>
<th>simple CQs</th>
<th>CQs</th>
<th>CQ^\neg</th>
<th>UCQs</th>
</tr>
</thead>
<tbody>
<tr>
<td>key constraints</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Open Problems

Are there dichotomies/trichotomies for broader classes of Q and Σ?

<table>
<thead>
<tr>
<th>Σ</th>
<th>Q</th>
<th>simple CQs</th>
<th>CQs</th>
<th>CQ$^-$</th>
<th>UCQs</th>
</tr>
</thead>
<tbody>
<tr>
<td>key constraints</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>
CSP vs. CQA

- The *Constraint Satisfaction Problem* (CSP) dichotomy conjecture: Every CSP instance (set of allowed constraints) is either in PTime or NP-complete.
- Posed by Feder and Vardi in 1993 [FV93], generalizes Schaefer’s 1978 dichotomy theorem [Sch78].
- Officially, still open!

Twist: very recently announced that CSP conjecture has been proved valid by Rafiey, Kinne and Feder [RKF17]. Does it imply CQA dichotomy? Unknown [Fon13].
CSP vs. CQA

- The *Constraint Satisfaction Problem* (CSP) dichotomy conjecture: Every CSP instance (set of allowed constraints) is either in PTime or NP-complete.
- Posed by Feder and Vardi in 1993 [FV93], generalizes Schaefer’s 1978 dichotomy theorem [Sch78].
- Officially, still open!

Theorem [Fon13]

Dichotomy for CQA with GAV constraints and UCQs
⇒ Dichotomy for CSP
CSP vs. CQA

- The *Constraint Satisfaction Problem* (CSP) dichotomy conjecture: Every CSP instance (set of allowed constraints) is either in PTime or NP-complete.
- Posed by Feder and Vardi in 1993 [FV93], generalizes Schaefer’s 1978 dichotomy theorem [Sch78].
- Officially, *still open!*

Theorem [Fon13]

Dichotomy for CQA with GAV constraints and UCQs

\[\Rightarrow \] Dichotomy for CSP

- Twist: very recently announced that CSP conjecture has been **proved valid** by Rafiey, Kinne and Feder [RKF17].
- Does it imply CQA dichotomy? Unknown [Fon13].
Counting Repairs

Let \(\Sigma \) be a finite set of constraints.
- how many repairs does \(D \) have?
- how many repairs of \(D \) satisfy a given query \(Q \)?

Closely connected to query evaluation over BID probabilistic databases:
- set the probability of a tuple in a block of size \(k \) to \(\frac{1}{k} \)
- difference: in BIDs, tuples in the same block (a) can have non-uniform probabilities (b) their probabilities may not sum to 1
Counting Repairs

Let Σ be a finite set of constraints.
- how many repairs does D have?
- how many repairs of D satisfy a given query Q?

Closely connected to query evaluation over BID probabilistic databases:
- set the probability of a tuple in a block of size k to $1/k$
- **difference**: in BIDs, tuples in the same block (a) can have non-uniform probabilities (b) their probabilities may not sum to 1
Counting Repairs: Dichotomies

Dichotomy here refers to that for every Σ and Q, counting is either in PTime (FP) or #P-complete

Known:

- a dichotomy for counting the number of repairs for FDs [LK17]
- a dichotomy for counting repairs that satisfy CQs with primary keys [MW14]
Counting Repairs: Dichotomies

Dichotomy here refers to that *for every Σ and Q, counting is either in PTime (FP) or $\#P$-complete*

Known:
- a dichotomy for counting the number of repairs for FDs [LK17]
- a dichotomy for counting repairs that satisfy CQs with primary keys [MW14]

Unknown: Everything else: e.g., CQs and FDs

References II

