OPEN PROBLEMS IN MASSIVELY PARALLEL QUERY PROCESSING

Paris Koutris
Venice, ICDT 2017

University of Wisconsin-Madison
What is the parallel complexity of computing a join query q with a massively parallel cluster of p machines?
MPC = **Massively Parallel Communication** [BKS - PODS’13]

- The data of size M is distributed evenly among the p machines
- The computation proceeds in rounds: each round performs **local computation** followed by **synchronized communication**
- In the end the output is the union of the output of the p machines

We measure the complexity using two parameters

- r: the number of rounds
- L: the maximum amount of data received by any machine at any round

\[
\frac{M}{p} \leq L \leq M
\]

In general, $L = M/p^{1-\varepsilon}$ for some parameter $0 \leq \varepsilon < 1$
The MPC Model

MPC = Massively Parallel Communication [BKS - PODS’13]

- The data of size M is distributed evenly among the p machines
- The computation proceeds in rounds: each round performs local computation followed by synchronized communication
- In the end the output is the union of the output of the p machines

We measure the complexity using two parameters

- r: the number of rounds
- L: the maximum amount of data received by any machine at any round

\[
\frac{M}{p} \leq L \leq M
\]

In general, $L = M/p^{1-\varepsilon}$ for some parameter $0 \leq \varepsilon < 1$
A fractional edge packing u for a CQ q assigns a weight u_j to each relation R_j, such that for every variable x, the sum of the weights of the relations that contain x is ≤ 1.

Theorem (BKS - PODS'14)

Any MPC algorithm that computes a full CQ q in one round must have load

$$L \geq \max_u \left(\frac{\prod_{j=1}^{\ell} M_j^{u_j}}{p} \right)^{1/\sum_j u_j}$$

For data without skew, the HyperCube algorithm can achieve the above optimal load.

When all sizes are at most M, the bound becomes $L \geq M/p^{1/\tau^*}$, where τ^* is the maximum edge packing.
A **matching database** is a database where each value of the domain appears exactly once (degree \(d = 1\))

Theorem (BKS - PODS'13)

The query \(L_k = R_1(x_1, x_2), R_2(x_2, x_3), \ldots, R_k(x_k, x_{k+1})\) can be computed on matching databases in \(r\) rounds with load

\[
L = O\left(\frac{M}{p^{1/\lceil k^1/r/2\rceil}}\right)
\]

The algorithm is (almost) optimal

OPEN PROBLEM #1: What is the optimal load for a full CQ \(q\) in \(r > 1\) rounds on data without skew?

Not even known for matching databases!
A **matching database** is a database where each value of the domain appears exactly once (degree $d = 1$)

Theorem (BKS - PODS’13)

The query $L_k = R_1(x_1, x_2), R_2(x_2, x_3), \ldots, R_k(x_k, x_{k+1})$ can be computed on matching databases in r rounds with load

$$L = O\left(\frac{M}{p^{1/\left\lceil k^{1/r}/2\right\rceil}}\right)$$

The algorithm is (almost) optimal

OPEN PROBLEM #1: What is the optimal load for a full CQ q in $r > 1$ rounds on data without skew?

Not even known for matching databases!
A fractional edge cover of a CQ q assigns a weight v_j to each relation R_j such that for every variable x, the sum of the weights of the relations that contain x is ≥ 1

- $\rho^*(q) =$ minimum edge cover
- AGM Bound: If each relation has size $\leq M$, the maximum output can be at most $M\rho^*(q)$ [AGM - FOCS’08]

Theorem (KBS - ICDT’16)

For any full CQ q, there exists a family of instances of size at most M such that every MPC algorithm that computes q with p machines using a constant number of rounds requires load $\Omega(M/p^{1/\rho^(q)})$*

OPEN PROBLEM #2: What is the lower bound when we restrict the relations to have different sizes M_j?
A fractional edge cover of a CQ q assigns a weight v_j to each relation R_j such that for every variable x, the sum of the weights of the relations that contain x is ≥ 1

- $\rho^*(q) = \text{minimum edge cover}$
- AGM Bound: If each relation has size $\leq M$, the maximum output can be at most $M^{\rho^*(q)}$ [AGM - FOCS'08]

Theorem (KBS - ICDT'16)

For any full CQ q, there exists a family of instances of size at most M such that every MPC algorithm that computes q with p machines using a constant number of rounds requires load $\Omega(M/p^{1/\rho^(q)})$*

OPEN PROBLEM #2: What is the lower bound when we restrict the relations to have different sizes M_j?
The $\Omega(M/p^{1/p^*(q)})$ lower bound is optimal for:

- CQs with binary signature [KS - PODS’17]
- Loomis-Whitney joins, Star joins [KBS - ICDT’16]

OPEN PROBLEM #3: Is it possible to compute any full CQ using a constant number of rounds with load $O(M/p^{1/p^*(q)})$?

OPEN PROBLEM #4: How many rounds are actually necessary to achieve the optimal load?
The $\Omega(M/p^{1/p^*(q)})$ lower bound is optimal for:

- CQs with binary signature [KS - PODS’17]
- Loomis-Whitney joins, Star joins [KBS - ICDT’16]

OPEN PROBLEM #3: Is it possible to compute any full CQ using a constant number of rounds with load $O(M/p^{1/p^*(q)})$?

OPEN PROBLEM #4: How many rounds are actually necessary to achieve the optimal load?
The $\Omega(M/p^{1/p^*(q)})$ lower bound is optimal for:

- CQs with binary signature [KS - PODS’17]
- Loomis-Whitney joins, Star joins [KBS - ICDT’16]

OPEN PROBLEM #3: Is it possible to compute any full CQ using a constant number of rounds with load $O(M/p^{1/p^*(q)})$?

OPEN PROBLEM #4: How many rounds are actually necessary to achieve the optimal load?
Consider the join query

\[Q = R(x,z), S(y,z) \]

- **No Skew**: the 1-round load is \(O(M/p) \)
- **Worst-case**: the 1-round load is \(O(M/p^{1/2}) \)
- If we know that the degrees of a \(z \)-value \(h \) are \(m_R(h) \) and \(m_S(h) \), we can design an 1-round algorithm with load

\[
\max \left(\frac{M}{p}, \sqrt{\sum_h m_R(h) \cdot m_S(h)} \right)
\]

OPEN PROBLEM #5: What are the upper and lower bounds for the load when the degrees of values are known?
Consider the join query

\[Q = R(x, z), S(y, z) \]

- **No Skew**: the 1-round load is \(O(M/p) \)
- **Worst-case**: the 1-round load is \(O(M/p^{1/2}) \)
- If we know that the degrees of a \(z \)-value \(h \) are \(m_R(h) \) and \(m_S(h) \), we can design an 1-round algorithm with load

\[
\max \left(\frac{M}{p}, \sqrt{\frac{\sum_h m_R(h) \cdot m_S(h)}{p}} \right)
\]

OPEN PROBLEM #5: What are the upper and lower bounds for the load when the degrees of values are known?
Connections With the External Memory Model

The External Memory Model:

- **internal** memory of W words + **external** memory of unbounded size
- data can move between the memories in **blocks** of consecutive B words
- the **I/O complexity** of an algorithm is the number of blocks that are moved in and out of the internal memory

We can simulate an MPC algorithm that computes a full CQ q to obtain an EM algorithm that: this gives I/O optimal algorithms for certain CQs

OPEN PROBLEM #6: Does every simulation of an optimal MPC algorithm lead to an I/O worst-case optimal algorithm?
The External Memory Model:

- **internal** memory of W words + **external** memory of unbounded size
- data can move between the memories in **blocks** of consecutive B words
- the **I/O complexity** of an algorithm is the number of blocks that are moved in and out of the internal memory

We can simulate an MPC algorithm that computes a full CQ q to obtain an EM algorithm that: this gives I/O optimal algorithms for certain CQs

OPEN PROBLEM #6: Does every simulation of an optimal MPC algorithm lead to an I/O worst-case optimal algorithm?