Open Problems:
Semantic Optimization in Tractable Classes of CQs and CRPQs

Pablo Barceló
Center for Semantic Web Research &
DCC, University of Chile
CRPQs of Bounded Hypertreewidth

\[\text{HW}(k) := \text{class of CQs that admit a hypertree decomposition of width at most } k \]

Hypertree decomposition of a CQ: \[\exists \bar{y} \bigwedge_{1 \leq i \leq m} R_i(\bar{x}_i) \]

1. Each node is labeled with some variables from the CQ
2. The variables of each atom in the CQ appear together in a node
3. Appearances of variables are connected

Its width is:
- max width of a node
- (min set of atoms of q needed to cover the variables in the node)

\[\text{HW}(1) = \text{acyclic CQs} \]

The hypertreewidth of a CQ is the minimum width of its hypertree decompositions
Bounded hypertreewidth modulo equivalence

Given a CQ q, is there a $q' \in \text{HW}(k)$ such that $q \equiv q'$?

Proposition

(B, Romero, Vardi, ‘16; similar ideas in Dalmau, Kolaitis, Vardi, ’02)

The latter holds iff the **core** of q is in $\text{HW}(k)$

Core: Minimal subset of atoms of q that is equivalent to q

Corollary

If $q \equiv q'$ for $q' \in \text{HW}(k)$, then $|q'| \leq |q|$ and can be computed in $2^{O(|q|)}$

Moreover, evaluation of q is **fixed-parameter tractable**

Checking bounded hypertreewidth modulo equivalence is NP-c
In the absence of constraints
Bounded hypertreewidth modulo equivalence
= CQ minimization

Adding constraints
Yields a richer notion of semantic acyclicity

Example
The following CQ is not equivalent to an acyclic CQ:
\[\exists x, y, z \ A(x, y) \land B(y, z) \land C(z, x) \]
But it becomes so in the presence of the full tgd:
\[\forall x, y \ (A(x, y) \land B(y, z) \rightarrow C(z, x)) \]
It is equivalent to the following acyclic CQ under the tgd:
\[\exists x, y, z \ A(x, y) \land B(y, z) \]
Results for tgds
(B, Gottlob, Pieris, ’16)

Theorem
Being equivalent to a CQ in HW(1) under full tgds is undecidable

Theorem
Being equivalent to a CQ in HW(k) is decidable for guarded, sticky and non-recursive sets of tgds (2EXP, EXP, NEXP, resp)
Results for egds

Theorem (unpublished)
Being equivalent to a CQ in HW(1) under egds is undecidable

Theorem (Figueira, ’16)
Being equivalent to a CQ in HW(k) under unary keys over schemas of arity at most two is decidable (2EXP)
Open question

Decidability status of the problem under keys/FDs

Formal statement
Given a CQ q and a finite set Σ of keys/FDs, is there a $q' \in \text{HW}(k)$ such that $q \equiv_{\Sigma} q'$?
Conjunctive Regular Path Queries (CRPQs)

Evaluated over *graph databases* (Edge-labeled directed graphs, or databases over a schema of binary relations)

CRPQs extend CQs over graph databases; they can check if a pair of nodes is linked by a path labeled by a reg exp

CRPQs are expressions of the form:

$$\exists z \bigwedge_{1 \leq i \leq m} L_i(x_i, y_i)$$

Its hypertreewidth corresponds to the one of its *underlying* CQ
Open question

Bounded hypertreewidth modulo equivalence
Given a CRPQ \(q \), is there a CRPQ \(q' \in HW(k) \) such that \(q \equiv q' \)?

If CRPQs are extended with unions and inverses (UC2RPQs):
EXPSPACE-c for \(k = 1 \) (B, Romero, Vardi, ’16)