On the Succinctness of Query Rewriting for Datalog

Shqiponja Ahmetaj1 \quad Andreas Pieris2

1Institute of Logic and Computation, TU Wien, Austria

2School of Informatics, University of Edinburgh, UK

Foundational Challenges in Data and Knowledge Management, Vienna, March 23, 2018
Ontology-Based Query Answering

Certain-Answers\((q, D, \Sigma)\) = \{ \(c_1, \ldots, c_n\) \in \text{dom}(D)^n \mid D \land \Sigma \models q(c_1, \ldots, c_n) \}
Ontology-Mediated Queries

$$Q = (\Sigma, q(x_1, \ldots, x_n))$$

$$Q(D) = \text{Certain-Answers}(q, D, \Sigma)$$
Scalable OMQ Evaluation

Database

ontology-mediated query (OMQ)

\[Q = (\Sigma, q(x_1, \ldots, x_n)) \]

Exploit standard RDBMSs - efficient technology for answering queries
Query Rewriting

\[Q = (\Sigma, q(x_1, \ldots, x_n)) \]

\[Q_{\text{rew}}(x_1, \ldots, x_n) \]

a query that can be executed by exploiting existing database technology

for every database \(D \) : \(Q(D) = Q_{\text{rew}}(D) \)
Query Rewriting: An Example

\[Q = (\Sigma, q) \]

\[Q_{rew} = \exists x (\text{Person}(x) \land \text{HasFather}(\text{John}, x)) \lor \text{Person}(\text{John}) \]
Query Rewritability

\[(L, CQ)\]

- an ontology language
- the class of conjunctive queries
 (fragment of first-order logic)

Definition: An OMQ language \(O \) is **QL-Rewritable** if every \(Q \in O \) is QL-Rewritable

First-order (FO), \(\exists FO^+ \), Non-recursive Datalog (NDL), UCQ or Datalog
Query Rewritability: The Main Questions

1. Can we isolate meaningful OMQ languages that are QL-Rewritable?

2. What is the price of QL-rewriting?

...have been extensively studied for DL- and rule-based OMQ languages
Tuple-Generating Dependencies (TGDs)

(a.k.a. existential rules or Datalog\(\pm\) rules)

\[\forall x \forall y (\varphi(x,y) \rightarrow \exists z \varphi(x,z)) \]

\((\text{TGD}, \text{CQ})\)
The Guarded Family

Weakly-Guarded

one body-atom contains all the harmful \forall-variables

$$R(w), \varphi(x,y) \rightarrow \exists z \psi(x,z) \quad - \quad w \subseteq \{x,y\}$$

Guarded

one body-atom contains all the \forall-variables

$$R(x,y), \varphi(x,y) \rightarrow \exists z \psi(x,z)$$

Linear

one body-atom

$$R(x,y) \rightarrow \exists z \psi(x,z)$$

The Guarded Family

Theorem: It holds that

1. (Linear, CQ) is UCQ-Rewritable
2. (Guarded, CQ) is not FO-Rewritable, but is Datalog-Rewritable
3. (Weakly-Guarded, CQ) is not Datalog-Rewritable
(Guarded, CQ) is not FO-Rewritable

\[Q = \{\{R(x,y), P(y) \rightarrow P(x)\}, \ P(c_n)\} \]

\[D \supseteq \{P(c_1)\}, \text{ and contains no other } P\text{-atom} \]

\[Q_{rew} \text{ has to check for the existence of an } R\text{-path in } D \text{ of unbounded length} \]

\[c_n \xrightarrow{R} \#_{n-1} \xrightarrow{R} \#_{n-2} \xrightarrow{R} \ldots \xrightarrow{R} \#_2 \xrightarrow{R} c_1 \]

compute the transitive closure of R - not possible via a first-order query
(Weakly-Guarded, CQ) is not Datalog-Rewritable

Evaluation of (Weakly-Guarded, CQ) queries is

EXPTIME-complete in data complexity

...in fact, (Weakly-Guarded\textneg stratified, CQ) = EXPTIME, even w/o an order

[Gottlob, Rudolph & Šimkus, PODS 2014]
The Guarded Family

Theorem: It holds that

1. \((\text{Linear}, \text{CQ})\) is UCQ-Rewritable
2. \((\text{Guarded}, \text{CQ})\) is not FO-Rewritable, but is Datalog-Rewritable
3. \((\text{Weakly-Guarded}, \text{CQ})\) is not Datalog-Rewritable
The Guarded Family

Theorem: It holds that

1. *(Linear,CQ)* is UCQ-Rewritable

2. *(Guarded,CQ)* is not FO-Rewritable, but is Datalog-Rewritable

3. *(Weakly-Guarded,CQ)* is not Datalog-Rewritable
(Linear, CQ) is UCQ-Rewritable

Via a resolution-based algorithm - XRewrite

ALGORITHM 1: The algorithm XRewrite

Input: a CQ q over a schema \mathcal{R} and a set Σ of TGDs over \mathcal{R}
Output: the perfect rewriting of q w.r.t. Σ

\begin{verbatim}
 \begin{algorithm}
 \begin{tabular}{l}
 \textbf{Input:} a CQ q over a schema \mathcal{R} and a set Σ of TGDs over \mathcal{R}
 \\
 \textbf{Output:} the perfect rewriting of q w.r.t. Σ
 \\
 \textbf{Algorithm XRewrite:}
 \\
 $i := 0$;
 \\
 $Q_{\text{rew}} := \{(q, r, u)\}$;
 \\
 \textbf{repeat}
 \\
 $Q_{\text{rew}} := Q_{\text{rew}}$;
 \\
 \textbf{foreach} $(q, x, u) \in Q_{\text{rew}}$, where $x \in \{r, f\}$ \textbf{do}
 \\
 \textbf{foreach} $\sigma \in \Sigma$ \textbf{do}
 \\
 \textbf{/* rewriting step */}
 \\
 \textbf{foreach} $S \subseteq \text{body}(q)$ such that σ is applicable to S \textbf{do}
 \\
 \begin{tabular}{l}
 \textbf{if} there is no $(q^*, r, \ast) \in Q_{\text{rew}}$ such that $q^* \simeq q^*$ \textbf{then}
 \\
 $Q_{\text{rew}} := Q_{\text{rew}} \cup \{(q', r, u)\}$;
 \\
 \end{tabular}
 \\
 $i := i + 1$;
 \\
 $q' := \gamma_{S, \ast'}(q[S/body(\sigma')])$;
 \\
 \textbf{end}
 \\
 \textbf{end}
 \\
 \textbf{end}
 \\
 \\
 \textbf{end}
 \\
 \textbf{/* factorization step */}
 \\
 \textbf{foreach} $S \subseteq \text{body}(q)$ which is factorizable w.r.t. σ \textbf{do}
 \\
 $q' := \gamma_S(q)$;
 \\
 \textbf{if} there is no $(q^*, r, \ast) \in Q_{\text{rew}}$ such that $q^* \simeq q^*$ \textbf{then}
 \\
 $Q_{\text{rew}} := Q_{\text{rew}} \cup \{(q', r, u)\}$;
 \\
 \textbf{end}
 \\
 \textbf{end}
 \\
 \textbf{end}
 \\
 \textbf{/* query q is now explored */}
 \\
 $Q_{\text{rew}} := (Q_{\text{rew}} \setminus \{(q, x, u)\}) \cup \{(q, x, e)\}$;
 \\
 \textbf{end}
 \\
 \textbf{until} $Q_{\text{rew}} = Q_{\text{rew}}$;
 \\
 $Q_{\text{rew}} := \emptyset$;
 \\
 return Q_{rew};
 \end{algorithm}
\end{verbatim}

applicability condition for TGDs

apply useful reduction steps, but only useful ones

(Linear, CQ) is UCQ-Rewritable

Via a resolution-based algorithm - XRewrite

Given an OMQ $Q = (\Sigma, q)$ from (Linear, CQ)

1. The height of $XRewrite(Q)$ is at most $|q|

2. The size of $XRewrite(Q)$ is at most $\#pred(\Sigma)^{|q|} \cdot (\text{arity}(\Sigma) \cdot |q|)^{\text{arity}(\Sigma) \cdot |q|}$

worst-case optimal

Lower Bound for \(\text{(Linear, CQ)} \)

\[
\Sigma = \{ R_i(x) \rightarrow P_i(x) \}_{i \in \{1, \ldots, n\}} \quad \text{q} = \exists x (P_1(x) \land \ldots \land P_n(x))
\]

\[
\exists x \ P_1(x) \land \ldots \land P_n(x)
\]

\[
P_1(X) \lor R_1(X) \quad P_n(X) \lor R_n(X)
\]

\(\Rightarrow \) we need to consider \(2^n \) disjuncts
Theorem: For (Linear, CQ) there is

- No \existsFO$^+/\text{NDL}$-rewriting of polynomial size
- No FO-rewriting of polynomial size (unless the PH collapses)

Proof: Via succinctness of monotone Boolean circuits

NOTE: The above proof exploits databases with a single domain element
Two Domain Elements

\[Q = (\Sigma, q(x_1, \ldots, x_n)) \]

rewrite in polynomial time

\[Q_{\text{rew}}(x_1, \ldots, x_n) \]

for every database \(D_{01} : Q(D_{01}) = Q_{\text{rew}}(D_{01}) \)

\[\subseteq \{ \text{Zero}(0), \text{One}(1) \} \]
Polynomial Rewritings

... assuming two domain elements

Theorem: A \((\text{Linear, CQ})\) query can be rewritten in polynomial time as:

- An \(\exists FO^+/\text{NDL}\) query for bounded arity predicates
- An \(\text{FO}\) query for arbitrary signatures

Proof:

- Bounded arity signatures - via the polynomial witness property
- Arbitrary signatures - via proof generators
Polynomial Witness Property (PWP)

Definition: (L, CQ) enjoys the PWP if: there exists a polynomial $\text{pol}(\cdot)$ such that for every $Q = (\Sigma, q(x)) \in (L, CQ)$, database D, and $t \in \text{dom}(D)^{|x|}$

$$t \in Q(D) \Rightarrow q(t) \text{ can be entailed after } \text{pol}(|\Sigma|, |q|) \text{ chase steps}$$

Theorem: PWP $\Rightarrow \exists \text{FO}^+/\text{NDL}$-rewritings constructible in polynomial time, focusing on databases with at least two constants

Witnesses and Linearity

\[0 = \{ \} \quad q = \exists z \exists o \text{ Number}(o, \ldots, o, z, o) \]

\[
\{ \text{Number}(x_1, \ldots, x_{n-i}, z, o, \ldots, o, z, o) \rightarrow \text{Number}(x_1, \ldots, x_{n-i}, o, z, \ldots, z, z, o) \}_{i \in \{1, \ldots, n\}}
\]

\[
\begin{align*}
0 & \quad \text{Number}(0, \ldots, 0, 0, 0, 1) \\
1 & \quad \text{Number}(0, \ldots, 0, 1, 0, 1) \\
2 & \quad \text{Number}(0, \ldots, 1, 0, 0, 1) \\
2^n & \quad \text{Number}(1, \ldots, 1, 1, 0, 1)
\end{align*}
\]
Proof Generator

\[q = \exists x \exists y \exists z \exists w \ (P(x, a, y) \land P(z, y, b) \land P(w, c, b)) \]

\[\alpha = (\ldots z_1 \ldots) \]
\[\beta = (\ldots z_2 \ldots) \]
\[\gamma = (\ldots z_4 \ldots) \]
\[\delta = (\ldots z_3 \ldots) \]

\[\text{chase forest} \]

\[\beta \]
\[\delta \]

\[h, \ \{\alpha, \beta, \gamma, \delta\}, \]

\[D \]

[Gotlob, Manna & P., IJCAI 2015]
Proof Generator

\[k = (|q| + 1) \cdot (2 \cdot \text{arity})^\text{arity} \]

\[q = \exists x \exists y \exists z \exists w \ (P(x,a,y) \land P(z,y,b) \land P(w,c,b)) \]

check via an FO query whether a proof generator exists

[Gotlob, Manna & P., IJCAI 2015]
Polynomial Rewritings

... assuming two domain elements

Theorem: A (Linear, CQ) query can be rewritten in polynomial time as:

- An ∃FO⁺/NDL query for bounded arity predicates
- An FO query for arbitrary signatures

Proof:

- Bounded arity signatures - via the polynomial witness property
- Arbitrary signatures - via proof generators
The Guarded Family

Theorem: It holds that

1. *(Linear,CQ)* is UCQ-Rewritable

2. *(Guarded,CQ)* is not FO-Rewritable, but is Datalog-Rewritable

3. *(Weakly-Guarded,CQ)* is not Datalog-Rewritable
(Guarded, CQ) is Datalog-Rewritable

Via inference rules - inspired by DLs

\[
\begin{align*}
\alpha \to \beta \land A & \quad \frac{A \text{ has no existential variables}}{\alpha \to A} \\
\alpha \to \beta & \quad \frac{\gamma_1 \land \gamma_2 \to \delta}{\alpha \land h(\gamma_1) \to \beta \land h(\delta)} \\
& \quad \frac{\gamma_1 \land \gamma_2 \to \delta \text{ is a Datalog rule,} \quad h \text{ is a homomorphism from}}{
\quad \quad \gamma_2 \text{ to } \beta \text{ with } \text{vars}(h(\gamma_1)) \subseteq \text{vars}(\alpha).}
\end{align*}
\]
(Guarded, CQ) is Datalog-Rewritable

Via inference rules - inspired by DLs

Given an OMQ $Q = (\Sigma, q)$ from (Guarded, CQ),

the size of the Datalog rewriting is at most $2^{\left(\#\text{pred}(\Sigma) \cdot \#\text{body-vars}(\Sigma)^{\text{arity}(\Sigma)}\right)}$

worst-case optimal?

[Gottlob, Rudolph & Šimkus, PODS 2014]
Polynomial Rewritings

... assuming two domain elements

Theorem: A (Guarded, Full CQ) or (Guarded, Acyclic CQ) query over bounded arity predicates can be rewritten in polynomial time as a Datalog query

Proof: Via types

- Build all possible types
- Mark “bad” types
- From marked types to Datalog rules that capture ground consequences
Wrap Up

\[(\text{Linear,CQ}) \quad \text{EXPTIME} \quad \text{UCQ}\]

\[(\text{Linear,CQ}) \quad \text{PTIME} \quad \exists \text{FO}^+, \text{NDL, FO}\]

\[(\text{Linear,CQ}) \quad \text{PTIME} \quad \exists \text{FO}^+, \text{NDL} \quad \text{bounded arity, \{0,1\}}\]

\[(\text{Linear,CQ}) \quad \text{PTIME} \quad \text{FO} \quad \{0,1\}\]
Wrap Up

\[(\text{Guarded, CQ}) \xrightarrow{\text{2EXPTIME}} \text{FO}\]

\[(\text{Guarded, CQ}) \xrightarrow{\text{EXPTIME}} \text{Datalog}\]

\[(\text{Guarded, CQ}) \xrightarrow{\text{bounded arity}} \text{Datalog}\]

\[(\text{Guarded, FCQ/ACQ}) \xrightarrow{\text{PTIME}} \text{Datalog}\]
Open Problems

- (Linear, CQ) $\xrightarrow{\text{PTIME}}$ UCQ
 - bounded arity, \{0,1\}

- (Linear, CQ) $\xrightarrow{\text{PTIME}}$ NDL
 - \{0,1\}

- (Guarded, CQ) $\xrightarrow{\text{PTIME}}$ Datalog
 - bounded arity, \{0,1\}

Thank You!