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The origins
• I first met Georg Gottlob in Italy, at my first (logic- programming) 

conference.
Georg was an invited speaker
• After a few years I visited Georg and Nicola Leone in Vienna

Georg was an invited speaker at a conference on Inductive Logic Programming
We worked on PAC learning of acyclic clauses

• We started our investigations on acyclic queries and their generalizations
• It was the time of Georgs’s Wittgenstein award
• A beatufil and very stimulating period

Kurt Gödel Colloquium and Grohe lecture on the Robber and Cops game
• A never ending friendship and fruitful scientific collaboration

• Databases, Game Theory, Knowledge Representation and Reasoning



The challenge



Georg: «The evil is in cycles»



Acyclic queries & join trees

Join tree:  a tree whose nodes are
labelled by query hyperedges
(or query atoms)  such that:

• each hyperedge labels some
node, and

• For each query variable V,  the
tree-nodes containing V span a 
connected subtree
(connectednes condition)



Acyclic conjunctive query (ACQ): 
A Query whose associated hypergraph is acyclic (more precisely,α-acyclic [Fagin 83]) 

Query acyclicity was independently defined by
• [Beeri et al. STOC81]  acyclic database schemas,  and
• [Goodman & Shmueli 1981, TODS‘82] tree queries

[Graham; Yu & Özsoyoğlu] GYO reduction

A query is acyclic iff it has a join tree

Good properties:
• ACQs can be recognized in polynomial (actually linear) time,
• A join-tree for an ACQ can be built in linear time,
• A Bolean ACQ Q can be answered in time O(|Q| × |rmax| × log |rmax|)  [Yan‘81]
• A non-Boolean ACQ can be answered with polynomial delay.



Generalizing acyclicity



Tree Decomposition
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• Variables of each atom
covered by some bag

• Connectedness condition
Tree Decomposition of width 8



The power of hyperedges: Generalized Hypertree Decomposition
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Unfortunately: 

GHW is NP-hard to compute, even for small width.

Theorem [G., Miklos, Schwentick 07+09]: 

Checking whether ghw(Q)=3 is NP complete

Thus, GHDs do not fulfill criterion 2 (efficient recognizability).

à Slightly restrict GHDs using a special condition, yielding HDs 



Hypertree Decomposition
= GHD +Special Condition

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’)

j(J,X,Y,X’,Y’)

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’)

d(X,Z) e(Y,Z) h(Y’,Z’)g(X’,Z’), f(F,_,Z’)

p(B,X’,F) q(B’,X’,F)

Each variable
that does not appear

at some vertex v

Cannot appear in
the subtrees rooted

at v

J X Y
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Good properties of
(G)HDs and of queries of bounded (G)HW



GHW and HW generalize acyclicity:
for an acyclic query Q,  ghw(Q)=hw(Q)=1 .

For fixed k, deciding whether
hw(Q) £ k is in polynomial time: O(v ´ |Q|2k).

Computing k-hypertree decompositions -if
they exist- is feasible within the same bound.

Answering Boolean CQs of ghw or hw k is feasible in time 
O(|Q| × |rmax|k × log |rmax|);
answering non-Boolean CQs with poly delay.  

ü

ü

ü

ü

1. generalization

2. efficient
recognizability

3. efficient
query-answering



Hybrid decompositions:
matching physical DB parameters



(G)HDs are query plans. Based on available selectivity and cardinality
indexes, we can associate a cost to each such decomposition:

Local cost c(n) at each
decomposition-node n
for joins & projections

Local cost c‘(n) at each
decomposition-edge e
for semijoin

D:

cost(D)=SnÎN c(n)  + SeÎE c‘(e)



Work by Scarcello, Greco, Leone [PODS 04; JCSS 07] : 

Theorem: Finding a minimum cost normal-form HD is tractable.  

A k-width HD is in normal form iff it is generated by Opt-k-Dekomp

Algorithm Cost-k-Dekomp
More research needed to

understand trade-off 

Theorem: Finding a minimum cost HD (or GHD) is NP-hard. 

Note: This is just as bad as classical query optimization. 

More surprising: Problem is tractable for a slight restriction of HDs: 



Many more works implementing HDs and
generalizations

• [Afrati,Joglekar, Ré, Salihoglu,Ullman, ICDT 2017]: GYM: A Multiround Join Algorithm In MapReduce. 

• [Koch , Ahmad, Kennedy, Nikolic, Nötzli, Lupei,  Shaikhha VLDBJ 2014] DBToaster: higher-order delta processing for dynamic, 
frequently fresh views.

• [Tu,Ré SIGMOD 2015] DunceCap: Query Plans Using Generalized Hypertree Decompositions

• [Abo Khamis,  Ngo, Rudra PODS 2016 Best Paper] FAQ: Questions Asked Frequently

• [Aberger, Tu, Olukotun, Ré,  SIGMOD 2016] EmptyHeaded: A Relational Engine for Graph Processing.

• [Joglekar, Puttagunta,Ré, PODS‘16] AJAR: Aggregations and Joins over Annotated Relations

• [Khamis, Ngo, Suciu, PODS‘17] What Do Shannon-type Inequalities, Submodular Width, and Disjunctive Datalog Have to Do 
with One Another?



Beyond hypertrees (?)



Tractable recognizability
Tractable query answering

Intractable recognizability
Tractable query answering

Unknown recognizability
Exponential (but FP)-time query answering



© [Marx 2005]

Theorem [Grohe & Marx 06] : The answer to a query of fractional
cover weight r*(Q)  can be computed in time |Q| ´ rmaxr*(Q)+O(1)



Observe:     {Q| r*(Q) ≤ k}  and  {Q| hw(Q) ≤ k}  are incomparable.

To combine the two notions profitably, Grohe and Marx defined

Fractional Hypertree Decompositions (FHDs) and correspondingly FHW

FHD of width k:



The AGM bound [Atezerias, Grohe, Marx ‘08]

The AGM bound is tight

CS 838: Foundations of Data Management Spring 2016

Lecture 6: Size Bounds for Joins
Instructor: Paris Koutris 2016

As we discussed in previous lectures, the output size of a join query often dominates the running
time, since the algorithm has to enumerate all the output tuples. Thus, being able to compute the
output size, or even provide a good upper bound on the output size becomes an important task.
In this lecture, we discuss the following question: given a conjunctive query q, where each relation
Rj has size Nj, what is the largest possible output?

Example 6.1. Consider the join query q(x, y, z) = R1(x, y), R2(y, z) where the sizes of the relations are

N1, N2 respectively. It is easy to see that the largest possible output is N1 · N2, which occurs when the join

behaves like a cartesian product.

Example 6.2. Consider the triangle query T(x, y, z) = R(x, y), S(y, z), T(z, x), where relations have

sizes NR, NS, NT. A first straightforward bound is NR · NS · NT. We can get a better bound by noticing

that the join of any two relations is an upper bound on the total size, so we get an improved bound of

min{NR · NS, NR · NT, NT · NS}.

Can we do any better? We will see that another upper bound on the size of the query is
p

NR · NS · NT.

Notice that, depending on the relation between NR, NS, NT, this can be a better or worse bound than the

above three quantities.

6.1 The AGM Bound

We start by introducing some notation.

Definition 6.3. The fractional edge cover of a conjunctive query q is a vector u, which assigns a weight

uj to relation Rj, such that for every variable x 2 vars(q), Âj:x2vars(Rj) uj � 1.

We say fractional edge cover to distinguish from the (integral) edge cover, which assigns to each
relation a weight of 0 or 1. The value of the minimum fractional edge cover of a CQ q is denoted
by r⇤(q). The AGM inequality, first proved in [AGM08], bounds the output size of a join w/o
projections using any fractional edge cover.

Theorem 6.4. Let q be a full conjunctive query. For every fractional edge cover u of q, we have:

|q| 
`

’
j=1

N
uj

j

Example 6.5. For the triangle query, a fractional edge cover is uR = uS = uS = 1/2, which gives thep
NR · NS · NT bound. Observe that this is the edge cover with the minimum value (3/2) as well. Notice
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that (uR, uS, uT) = (1, 1, 0), (1, 0, 1), (0, 1, 1) are also valid fractional edge covers, which give the NR · NS,

NR · NT and NS · NT upper bounds respectively.

Example 6.6. As an exercise, compute the optimal fractional edge covers for the cycle query Ck, and the

Loomis Whitney join LWk, where:

LWk = R1(x2, . . . , xk), R2(x1, x3, . . . , xk), . . . , Rk(x1, . . . , xk�1)

The AGM bound gives us an infinite number of upper bounds on the output size. Given the car-
dinalities of each relation, how can we find the best (minimum) possible bound? We can achieve
this by minimizing the quantity ’`

j=1 N
uj

j
by solving the following linear program:

min Â
j

log2(Nj) · uj

s.t.8x 2 vars(q) : Â
j:x2vars(Rj)

uj � 1

8Rj : uj � 0

The AGM bound is tight; in other words, we can always find a database instance I, such that |q(I)|
is equal to the the worst-case upper bound.

6.2 Worst-Case Optimal Joins

All of the join processing algorithms we have seen so far (e.g. for acyclic queries) have used Select-
Project query plans. Consider the triangle query with relations of equal size N: the worst-case
output size is N

3/2. Consider the three standard query plans to compute this query: (R ./ S) ./ T,
(R ./ T) ./ S and (T ./ S) ./ R. We can construct an instance such that any such plan needs
time W(N

2) to run (since the intermediate size of the join will be that large). In fact, even if we add
projections to the plan, we can show that the running time will always be W(N

2) in the worst case.
The question is: can we design an algorithm that always runs in time linear w.r.t. the worst-case
output, which in our case is O(N

3/2)?

The answer to this question is yes; there exists a worst-case optimal algorithm that matches the
worst-case output in running time [NRR13,V14].

References
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Coloring bound [G. Gottlob, S.T. Lee, G. Valiant, P. Valiant ‘12]

This bound is designed to work with output variables, and in the 
presence of keys and functional dependencies

Size and Treewidth Bounds for Conjunctive Queries 16:9

Now consider Q′ = chase(Q) = R0(WWW Z )← R1(WWW)∧ R2(W Z ), and note that
since all the variables appearing in the output relation also appear together in one
of the atoms of the query body, C(Q′) = 1 < C(Q). In general, C(chase(Q)) ≤ C(Q),
because, trivially, any valid coloring of chase(Q) is also a valid coloring of Q.

3.1. Color Number and Fractional Edge Coverings
The color number of a query seems to be a new concept; nevertheless, in the special
case of a query Q = R0(u0) ← Ri1 (u1) ∧ · · · ∧ Rim(um) without any keys or functional
dependencies, colorings of a specific form are related to fractional edge covering of the
hypergraph associated to query Q (see Definition 3.5) via linear programming duality.
Our main size bounds of Section 4 build upon the results of Grohe and Marx [2006]
and Atserias et al. [2008], in which the size increase for join queries (queries without
functional dependencies (or keys), where all variables appear in the output atom) is
bounded by the minimal fractional edge cover number; thus, it will be useful to estab-
lish this connection between the color number and the minimal fractional edge cover
number. Demonstrating this connection relies on observing that the lack of functional
dependencies implies that there is always a maximal coloring with an especially sim-
ple structure, and then leveraging this structure to show that the color number of such
queries is given as the solution to a linear program, whose dual describes the minimal
fractional edge covering. We now make this high-level overview rigorous.

Definition 3.5. Given query Q = R0(u0) ← Ri1 (u1) ∧ · · · ∧ Rim(um), the minimal
fractional edge cover number of Q, denoted by ρ∗(Q), is given by the following linear
program:

minimize
∑m

j=1 y j

subject to
∑

j:X∈uj
y j ≥ 1 ∀X ∈ var(Q),

y j ≥ 0.

This definition should be interpreted as the linear program relaxation of the mini-
mal edge covering of the hypergraph corresponding to Q in which var(Q) are the graph
nodes, and each uj defines a hyperedge.

The following proposition shows that for queries with no functional dependencies,
the color number is given by the solution to a simple linear program.

PROPOSITION 3.6. Given query Q = R0(u0) ← Ri1 (u1) ∧ . . . ∧ Rim(um) with no func-
tional dependencies, the color number, C(Q), is given as the solution to the following
linear program:
Assume without loss of generality that var(Q) = {X1, . . . , Xn},

maximize
∑

i:Xi∈u0
xi

subject to
∑

i:Xi∈uj
xi ≤ 1 ∀ j≥ 1

xi ≥ 0.

While colorings are combinatorial objects, it is worth stressing that the above linear
program is not a proper relaxation of the quantity in question; the linear program
will have a rational solution (whose bit–length is polynomial in |Q|), and any rational
solution p/q to this linear program with xi=ri/q can be transformed into a valid coloring
L with p colors such that |L(Xi)| = ri. The constraints of the linear program then imply
max j | ∪X∈uj L(X )| ≤ q.

PROOF OF PROPOSITION 3.6. First, note that there is always an optimal coloring
with the property that for all X ̸∈ u0,L(X ) = ∅. Next, observe that it suffices to assume

Journal of the ACM, Vol. 59, No. 3, Article 16, Publication date: June 2012.
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FHD of width k:

Fractional hypertree decompositions
• Assume the fractional hypertree width is k
• Then, at least one vertex has a cover equal to k
• There exists a database that meets the worst-case bound

!∗ < $

!∗ = $ !∗ < $

!∗ < $ !∗ < $



Why we can go beyond FHDs

• Two different decompositions with «critical covers» !"and !#
• From the AGM bound: there exists a database $"where !" meets the 

worst case bound and a database $# where !# meets the bound

%∗ < (

%∗ = ( %∗ < (

%∗ < ( %∗ < (

%∗ = (

%∗ < (%∗ < (

%∗ < (

!"

!#



Example: database !"

• Two different decompositions with «critical covers» #"and #$
• From the AGM bound: there exists a database !"where #" meets the 

worst case bound and a database !$ where #$ meets the bound

%∗ < (

%∗ = ( %∗ < (

%∗ < ( %∗ < (

%∗ = (

%∗ < (%∗ < (

%∗ < (

#"

#$

Evaluating #$ on !" is strictly better
than the worst-case bound



Example: database !"
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Why we can go beyond FHDs

• In general, we have different decompositions with different «critical
covers»
• It is possible that there exists no database that simultaneusly meets

the worst-case AGM bound on all hypertree decompositions!

!∗ < $

!∗ = $ !∗ < $

!∗ < $ !∗ < $

!∗ = $

!∗ < $!∗ < $

!∗ < $
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&(



What can we do?
• Given a query and a database, choose the best possible

decomposition
à use weighted hypertree decompositions

Hybrid approach



A more powerful (structural) width?
Think of a measure (width) such that, for every database,
there is a hypertree decomposition whose width does not exceed a 
given threshold

For some classes of queries, such a width can be strictly smaller than
the fractional hypertree width

• See [Khamis, Ngo, Suciu 2017]



A case study: cycles



A case study: cycles



A case study: cycles



A case study: cycles



Cycles and decompositions



The cost of cycles



The cost of cycles



The cost of cycles

§ Consider the case p=6
§ Consider one variable, say x6, with a few values in its 

active domain



The cost of cycles



The cost of cycles

§ Consider the case p=6
§ Assume now that all variables have many values. In this 

case, they should be “almost keys”, and a different kind of 
decomposition should be considered



The cost of cycles

If we have quasi-keys of 
maximum degree d,
the cost of each node is !"#

(d=1 for actual keys)



The cost of cycles

We can show that the following
«width» bound holds:



The cost of cycles



The cost of cycles



Surprising results

• The submodular width [Marx 2013] is based on data-dependent
decompositions, but
• It provides a structural worst-case bound

• Our first feeling was that (hypertree) decompositions techniques
were practically useful for long and complex queries, but
• It turns out that we can get important results even for simple queries, such

as the short cycles



Some hot issues for future research

• The challenge: when conjunctive queries are tractable?

• Can minimum cost decompositions be well approximated?

• Better integrate classical query optimization methods with HDs

• Provide efficient FPT algorithms that match the submodular width
• N.B.: the PANDA algorithm [Khamis, Ngo, Suciu 2017] is not far from that, 

but the !" notation hides a log & |((*)| factor (it is not FPT)



Appendix

59



Can HDs be applied outside CQs?



Example of CSP: Crossword Puzzle

P A R I S
P A N D A
L A U R A
A N I T A      

1h: L I M B O
L I N G O
P E T R A
P A M P A
P E T E R      

1v:
and so on



Constraint satisfaction problems: Renault 
example(1/2)

• Variables encode type of engine, country, options like air cooling, 
etc. 

• The considered instances consist of about 150 atoms/constraints
and 110 variables, with database instances where attributes have
at most 42 distinct values, and the largest constraint relation 
contains 48721 tuples. 

• Renault Megane configuration [Amilhastre, 
Fargier, Marquis AIJ, 2002] Used in CSP 
competitions and as a benchmark problem



Constraint satisfaction problems: Renault 
example(2/2)

• We discovered that the generalized hypertree width is 3 for most instances (with a 
maximum of 4). 

• The total number of solutions is about 2 · 1012, however this information is not very
meaningful, because of the many auxiliary variables occurring in the problem. 

• Rather, by using the algorithms based on generalized hypertree decompositions, it
is possible to compute the solutions of these instances (or just their number) over 
the actual variables of interest.

• None of the other available engines that we know, either in the database or in the 
CSP community, were able to compute such a result for those large instances. 

For more information, we refer to the Hypertree Decomposition web-page:    
http://www.dimes.unical.it/scarcello/Hypertrees/

http://www.dimes.unical.it/scarcello/Hypertrees/


Combinatorial Auctions
Bidders can place bids on 
Packages of items.
Winner determination: Choose a set of 
compatible bids of maximum revenue
or minimum cost.
For classical auctions, winner determination 
is obviously tractable. Not so for CAs.

Interesting tractable results based on the hypertree width
of the dual hypergraphs [Gottlob & Greco, JACM 2013]



Applications in different domains

London Regional Transports:  
Combinatorial auctions of bus routes.
Private bus companies bid on bundles of routes.



Airport slot auction
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Very complicated hypergraphs!


