
Abstraction	and	Performance	in	
Database	Systems	

Christoph	Koch	
EPFL	DATA	Lab	

Contents	
•  Expressiveness	vs.	efficient	evaluation	of	declarative	

languages	
–  How	Georg	shaped	me	and	this	talk	

•  Domain-specific	languages	are	hot	across	computer	science	
–  DSLs	vs	declarative	languages	

•  Epidemiology	of	Database	People	Missing	Boats	Disorder	
(DMBD)	
–  In	DB	systems:	The	Scalability	Blunder:	NoSQL	
–  In	DB	systems:	How	DSLs	make	DB	performance	work	
mainstream	…	and	folklore.	

–  In	DB	theory:	Where	are	the	PODS	people	in	the	DSL	revolution?	
•  Opportunities:	Non-Turing	complete	DSLs	&	FMT	
•  What	I	do	

My	collaboration	with	Georg	
•  20+	joint	papers	on	expressiveness,	

complexity,	and	efficient	evaluation	
of	declarative/query	languages.	

•  Things	I	learned	from	Georg:	
–  How	to	do	research,	really	
–  How	to	write	a	PODS	paper	J	
–  Using	declarative	languages	creatively	
–  Expressiveness	vs.	complexity	is	not	a	

zero-sum	game!	
–  One	can’t	just	write	papers	and	have	a	

career	here,	but	advance	human	
knowledge!	

–  Much	more	

The	years	0	to	13AG	
•  I	did	more	work	on	declarative	languages	

–  E.g.	for	probabilistic	databases	and	video	games	
•  I	moved	more	into	systems	

•  How	could	I	combine	declarative	languages,	
expressiveness/efficiency	with	systems?	
– Domain-specific	languages	
– Databases	and	compilation/code	generation	for	
performance.	

•  This	is	what	I	currently	mostly	do.	

Declarative	languages	and	DSLs	
•  Domain-specific	languages	(DSLs)	

–  Engineered	languages	
–  Usually	Turing-complete	
–  Embedded	DSL:	classical	PL	(e.g.	Java)	+	library	(domain-
specific	vocabulary)	

•  SQL	is	a	DSL	(domain	=	database	querying)	
–  But	most	new	DSLs	are	not	very	declarative.	

•  In	Turing-complete	DSLs:	(compiler)	optimizations	tend	
to	be	local	and	sometimes	brittle.	

DSLs	are	hot!	
•  Motivation:	not	declarativity	but	performance	

–  Compensate	for	the	failure	of	Dennard	scaling	and	
Moore’s	law.	

– We	don’t	know	how	to	build	robust	optimizing	
compilers	with	deep/global	optimizations.	

–  Consequence:	Domain-specific	compilation	–	
opportunities	for	automatic	software	specialization.	

•  People	all	over	CS	are	flocking	to	DSLs	
–  Computer	architecture.	ASPLOS;	Chisel,	…	
– HPC	&	Graphics:	OpenGL,	Halide,	…	
–  Systems,	databases:	LegoBase,	S-Store…	

DSLs	and	code	generation	
•  Software	specialization	by	compilation.	

•  Staging/partial	evaluation	(e.g.	specialize	DBMS	code	for	a	given	
schema).	

•  DSL	compiler	frameworks	allow	to	easily	add	domain-specific	
code	optimizations.	
•  Usage	in	domain	makes	them	robust.	
•  Squid:	github.com/epfldata/squid	[Parreaux,	Shaikhha,	K.,	GPCE2017,	

Scala2017,	POPL2018]	

•  Increasingly,	DSLs	enable	code	generation	that	matches	or	
outperforms	human	systems	programming	experts!	
•  Observed	in	multiple	domains,	e.g.	linear	transforms	[Spiral],	OLAP	

[LegoBase],	OLTP	[S-Store]	
•  “Abstraction	without	Regret”	[Rompf&Odersky,	CACM;	K.,	

CIDR2013]	

S-Store	TPC-C	benchmark	results	

8

OLTPX	

Dashti,	John,	K.,	2014	

DSLs	and	the	role	of	database	research	

•  Relational	databases	created	many	firsts.	
•  SQL	is	still	the	most	successful	DSL	
•  RDBMS	shows	how	to	build	an	entire	system,	the	entire	stack,	for	

executing	SQL	efficiently.	
•  Algebras,	plan	languages,	cost-based	optimization,	logical	vs.	physical	

data	representation;	managing	the	memory	hierarchy,	mem	
hierarchy-aware	operator	implementation.	

–  The	basic	pipeline	and	architecture	is	the	foundation	of	all	
modern	DSL-based	systems.	

	
–  Some	credit	is	given	(e.g.	GraphLab),	but	the	database	
contribs	are	increasingly	taken	as	a	historical	footnote	
across	CS.	
•  Also,	are	we	still	innovating	in	any	significant	way?	

DSLs	and	the	role	of	database	research	

Database	performance	techniques	are	becoming	
mainstream	… and	the	role	of	databases	fades	
away.	In	two	ways:	

– The	contributions	of	the	DB	community	are	
becoming	a	historical	footnote.	

•  Database	ideas	stop	being	considered	database	ideas.	
– Databases	functionality	is	integrated	into	other	
kinds	of	systems,	and	classical	DBMS	will	be	used	
in	fewer	scenarios.	

Example	1:	row/columnar	representations	

•  Much	hyped	(M.	Stonebraker).	Various	DBMS	
built	– Vertica,	SAP	Hana,	…	

•  But:	It’s	CS	folklore	now.	
•  Ubiquituous	in	programming	tools	

–  List<Pair<Int,	Int>>:		n+1	objects	
–  Pair<List<Int>,	List<Int>>:	3	objects	
– Makes	a	huge	performance	difference	in	OO	runtime	
systems,	e.g.	JVM	–	boxing/unboxing	overheads!!!	

•  Heavily	used	in	HPC,	graphics,	ML,	…	

Example	2:	GRACE	Hash	join		

•  Classical	database	course	
material.	Seems	uniquely	
about	databases	(?)	

•  Main-mem	DB	case:	hash	join	
becomes	the	trival	
implementation.	

•  GRACE	hash-join	=	main	mem	
hash	join	+	staging	for	the	mem	hierarchy.	

•  Mem	hierarchy	considerations	have	by	now	been	better	
analyzed/addressed	by	the	compilers,	computer	
architecture	and	HPC	communities.	
–  general/automatic	algo	transformation	techniques	exist	(loop	
tiling	&	superoptimization;	see	Aho	et	al.	Dragon	Book	2nd	Ed.	
Chapter	11)	

A	case	of	missing	the	boat	

•  Is	there	anything	about	DB	Performance	that	won’t	be	
absorbed	into	the	CS	systems/performance	mainstream?	

•  Conjecture:	No.	
•  Experience	in	the	DBLab	project	(github.com/epfldata/

dblab)	[Shaikhha,	…,	K.,	VDLB	2014,	SIGMOD	2016,	
TODS2018,	JFP2018].	
–  We	are	building	a	library	of	compiler	optimizations	for	data-
intensive	systems,	by	abstracting	from	a	database	system	
(LegoBase).	

–  After	cleaning	up,	none	seem	really	specific	to	databases.	

•  This	is	a	problem	for	the	future	of	database	research.	

Database	People	Missing	Boats	
Disorder	(DMBD)	–	a	pandemic?	

•  Causes:	
– Lack	of	care	to	recognize	major	CS	trends	(early)	
– Lack	of	effort	to	abstract&generalize	results	
– Catering	too	much	to	reviewers	in	a	calcified	&	
broken	system	of	conferences.	

•  Symptoms:	Rectal	pain,	depression		
•  Treatment:	???	

Another	case	of	MtB	in	DB	systems:	NoSQL	

•  There	always	was	distributed	and	parallel	databases	
research.	
–  Banned	from	first-rate	publication	venues	
–  Few	systems	built	–	not	“sexy”	enough.	

•  Then	Google	and	Facebook	wanted	scalable	
databases,	and	we	couldn’t	offer	them.	

•  Consequences	today:	
–  A	massive	loss	of	prestige	for	our	community	
–  A	widely-held	belief	that	one	has	to	look	for	SOSP	rather	

than	SIGMOD	for	good	DB	research.	
–  Genuine	contributions	of	the	DB	community	do	not	get	

acknowledged	and	cited,	but	reinvented.	

A	third	MtB	case:	DB	Theory	

	
•  Estimated	#	of	PODS	papers	talking	of	DSLs,	
ever:							0	

•  Pub.	venues	for	foundational	DSL	work:	POPL,	
SIGGRAPH,	ASPLOS,	…	
– Citation	in-degree	into	DB	theory	literature:	~0	

Opportunities	

•  Many	results	from	DB	Theory,	finite	model	theory	
on	non-Turing	complete	languages	carry	over	to	
modern	DSLs.	

•  People	in	other	domains	do	not	know	these	
results	and	find	them	exciting,	when	applied	to	
their	DSL.	

•  E.g.	collection	programming	languages	like	Spark	
are	essentially	just	nested	relational	algebra…	

•  My	experience	at	a	DSL	summer	school.	

Quiz	
From:	K,	“Exploiting	Domain-Specific	Knowledge:	[…]	Part	1:	Lessons	on	DSLs	learned	

by	the	DB	community”,	DSL	Design&Implementation	Summer	School,	2016.	
Consider	the	following	DSL:	
•  purely	functional	Scala,	with	“if”	as	the	only	control	structure	
•  Types	built	from	Int,	List,	and	tuples	
•  List	ops:	singleton	constr,	empty	list,	map(x	=>	…)	,	flatten,	list	concat	++	
•  Tuple	construction	(…)	and	projection	_i	
•  (deep)	equality	test	=;	the	identity	function	
Let	us	call	this	language	(Scala/List)	Monad	Calculus	(MC)	to	have	a	label.	
	
Example:	
	
scala> val R = List(1)++List(2); val S = List(1)++List(3)
R: List[Int] = List(1, 2)
S: List[Int] = List(1, 3)

scala> R.map(r => S.map(s =>  
 if (r==s) List((r,s)) else List()).flatten).flatten
res2: List[(Int, Int)] = List((1,1))

for(r <- R; s <- S; if (r==s)) yield (r,s)
Obviously, flatMap and filter are definable.

Quiz:	What	can	you	do	in	MC?	

R.map(r => S.map(s =>  
 if (r==s) List((r,s)) else List()).flatten).flatten

	
	
•  Joins?												 	 	 	 	 	 	 	 	 	 	---	yes	
•  Arbitrary	“conjunctive	queries” 	 	 	 	 	 	---	yes	
•  Arbitrary	SQL	select-from-where	queries	 	 	 	 	---	no,	conditions	(<)!	
•  Test	whether	two	values	are	not	equal 	 	 	 	 	---	yes	(else)	
•  Test	whether	an	item	is	not	in	a	list						--	yes(!)		List.filter(x=> x==a) == List()
•  Aggregations:	select	count(*)	from	… 	 	 	 	 	---	no	
•  Testing	on	order/look	sideways,	sorting	a	list	of	integers? 	---	no	
•  Reachability	in	a	graph	given	by	the	edge	relation?	 	 	---	no	
	

Quiz:	What	can	you	do	in	MC?	

R.map(r => S.map(s =>  
 if (r==s) List((r,s)) else List()).flatten).flatten

	

•  Does	every	program	terminate? 	 	 	 	 	 	---	yes	
•  How	big	is	the	largest	value	than	can	be	produced? 	 	---	polynomial	in	input	
•  How	quickly	does	every	prog	terminate?	 	 	 	 	---	PTIME	
•  All	queries	of	relational	algebra 	 	 	 	 	 	---	yes	!!!	
•  Only	queries	expressible	in	relational	algebra	 	 	 	---	yes	%	repr	!!!!!!!!!!	
•  Can	every	program	be	parallelized?	 	 	 	 	 	---	yes,	fantastically	

	 	 	 	 	 	 	 	 	 	 	 	 						well!	(AC0)	
--	given	polynomially	much	hardware,	every	program	runs	in	CONSTANT	time!!!!	
--	if	you	have	only	constantly	much	hardware	=>	Brent	Scheduling	Principle	

Quiz:	Extending	MC	
R.map(r => S.map(s =>  
 if (r==s) List((r,s)) else List()).flatten).flatten

	
•  Testing	on	order/look	sideways,	sorting	a	list	of	integers? 	---	no	
•  List.map	preserves	order	but	can’t	“query”	it.	
•  But	what	if	I	want	a	DSL	that	can	do	this?	
	
Could	add	List.foldLeft,	and	nothing	else.	
	
•  Does	every	program	still	terminate?			---	yes	
•  Does	every	program	still	run	in	PTIME?	---	no,	nonelementary!	
	
	

The	FO[X]	DSL	Zoo	

Database	theory	work	that	we	need	
more	of	

1.  Results	on	complexity	and	efficiency	that	
systems	people	can	understand	to	be	
relevant	to	them,	and	which	carry	over	to	
new	languages,	e.g.	
– Georg’s	work	on	hypertree	decompositions	
– Result	cardinality	bounds	–	AGM	bound	
– Worst-case	optimal	joins	
– …	

2.  Results	that	bridge	the	gap	between	PODS	
and	POPL/SIGGRAPH/ASPLOS	work.	

Summary	

	
•  Try	not	to	miss	the	DSL	boat.	

•  If	this	advice	is	useful	to	you,	you	ultimately	
have	Georg	to	thank	for	it	J	

