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ABSTRACT
Counting the answers to a query is a fundamental problem in
databases, with several applications in the evaluation, opti-
mization, and visualization of queries. Unfortunately, count-
ing query answers is a #P-hard problem in most cases, so
it is unlikely to be solvable in polynomial time. Recently,
new results on approximate counting have been developed,
specifically by showing that some problems in automata the-
ory admit fully polynomial-time randomized approximation
schemes. These results have several implications for the
problem of counting the answers to a query; in particular,
for graph and conjunctive queries. In this work, we present
the main ideas of these approximation results, by using la-
beled DAGs instead of automata to simplify the presentation.
In addition, we review how to apply these results to count
query answers in different areas of databases.

1. INTRODUCTION
Query answering is arguably the most important prob-

lem in databases. In its full generality, the answers to
a query come in di↵erent sizes and flavors: in graph
databases, a query can retrieve nodes and paths; over
documents, the answers are spans or subsections of files;
and on relational databases, answers are given as a set
of tuples. Although data models and query languages
di↵er on the outcome, one output is ubiquitous in all
scenarios: counting the number of query answers.

Counting query answers is indeed a fundamental prob-
lem in data management systems. In fact, most query
languages include a COUNT clause for retrieving the num-
ber of answers of a query. For query optimization,
counting the number of answers could help in the opti-
mization process, when the number of partial answers
of a subquery is needed. Even for user experience, dis-
playing the number of answers could help a user to know
how many of them there are, before overflowing the
screen with answers. In all these scenarios, e�ciently
counting query answers is crucial for the performance
of the database system.

The main challenge of counting query answers is that
the number of answers could be exponential in the size

of the data. For this reason, directly counting the an-
swers by evaluating the query is computationally ex-
pensive in practice. Even if the number of solutions is
polynomial or linear in the data size, this strategy is
expensive for all the applications mentioned above. A
better solution would be symbolically counting the num-
ber of answers; the query engine will not evaluate the
query and, instead, it will symbolically obtain the num-
ber of solutions directly from the query and data. For
instance, in the past, database researchers have used
this approach for counting the number of answers of
acyclic conjunctive queries without projection, the num-
ber of paths of a certain length in a graph database, and
the number of strings accepted by a deterministic au-
tomaton.

The bad news is that the symbolic approach is not
always possible in data management, since there are
computational complexity barriers that do not allow ef-
ficient algorithms for counting query answers. In the
late 70s, Valiant defined the class of #P-hard prob-
lems [26], which is consider as the counting analog of
NP-hard problems. Specifically, Valiant shows that sev-
eral counting problems from di↵erent areas are #P-hard
[26, 27] and, similar to NP-hardness, researchers widely
believed that there are no polynomial-time algorithms
for solving them. Unfortunately, the #P-hard disease
also contaminates counting query answers, even over
data management problems whose decision versions are
tractable. For instance, it can be decided in linear-time
whether there is an answer for an acyclic conjunctive
query, but it is #P-hard to count the number of an-
swers for such a query [23]. Notice that in these results
the query and the database are part of this input, so we
are considering the combined complexity of the prob-
lem (as opposed to data complexity where the query
is assumed to be fixed [28]). All of the results in this
article are about the combined complexity of counting
query answers.

One possible approach for tackling #P-hard problems
is to approximate the counting, namely, to have an al-
gorithm that, given the input, outputs a value n̄ with
a relative error of " (i.e., �n − n̄� ≤ " ⋅ n for the actual
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value n). If this algorithm is randomized, then the ap-
proximation is expected to be close to the actual value
with a high probability. In addition, if this approxima-
tion algorithm runs in polynomial time, we have what
is called a Fully Polynomial-time Randomized Approxi-
mation Scheme (FPRAS [18]). Interestingly, some #P-
hard problems admit FPRASs, like counting the num-
ber of truth assignments that satisfy a propositional for-
mula in DNF [19] and counting the number of perfect
matchings in a bipartite graph [17]. Since counting the
number of query answers in databases is usually com-
plex (i.e., #P-hard), our goal is to obtain an FPRAS
for this problem. Unfortunately, finding an FPRAS for
a #P-hard problem is challenging, and there are only
a few counting problems in data management that are
known to admit FPRASs.

The work in [4, 5] provided new results on count-
ing query answers, by developing techniques that solve
counting problems related to query answering. Specifi-
cally, an FPRAS for the problem of counting the num-
ber of strings accepted by a non-deterministic finite au-
tomaton is given in [4]. Moreover, the extension of this
result to tree automata is given in [5]. Interestingly,
both problems live at the core of several query answer-
ing problems in areas like graph databases, information
extraction, and conjunctive query evaluation, thus al-
lowing the development of e�cient approximation algo-
rithms for such query answering problems.

The goal of this document is to present the main ideas
and results in [4, 5]. These results heavily rely on au-
tomata theory, which requires some knowledge of the
reader in this topic. Instead, this paper provides a uni-
form setting for the results in [4, 5] based on a counting
problem for labeled DAGs. In this way, we simplify the
notation and the presentation of the main ideas.

The paper is organized as follows. In Section 2, we
present the counting problem over labeled DAGs and
the main ideas of its FPRAS. In Section 3, we extend
these ideas to succinct labeled DAGs, which is the main
artifact for the results in [5]. In Section 4, we present
applications of these results for automata theory, graph
databases, and conjunctive query evaluation.

2. COUNTING IN LABELED DAGS
We begin by defining the main problem studied in this

work. In what follows, assume that ⌃ is a fixed finite
alphabet containing at least two symbols. A labeled
DAG is a tuple D = (V,E) such that V is a finite set of
vertices, E ⊆ V ×⌃×V is a (finite) set of labeled edges,
and the directed graph G = (V,{(u, v) � ∃a ∶ (u, a, v) ∈
E}) is acyclic. The size of D is defined as �D� = �V �+ �E�.

Each vertex u of a labeled DAG D = (V,E) defines
a language LD(u) over the alphabet ⌃. Formally, a
vertex u of D is said to be a sink if u has no outgoing
edges (i.e., (u, a, v) ∉ E for every a ∈ ⌃ and v ∈ V ). Then
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(a) Labeled DAG D1
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Figure 1: Two labeled DAGs with alphabet {a, b}.
LD(u) = {�} if u is a sink vertex in D, where � is the
empty string. Otherwise, LD(u) is recursively defined
as follows:

LD(u) = �(u,a,v)∈E
{a} ⋅LD(v),

where, given two sets L1 and L2 of strings, L1 ⋅ L2

is defined as the set of strings consisting of the con-
catenation of each string of L1 with each string of L2.
Given that D is acyclic, it can be easily verified that
the set of strings LD(u) is correctly defined for every
u ∈ V . As an example, we show a labeled DAG D1

in Figure 1a. In this case, we have that LD1(v4) ={�} as v4 is a sink vertex in D1, and LD1(v3) = {a} ⋅LD1(v4)∪{b} ⋅LD1(v4) = {a, b}. Moreover, we have thatLD1(v1) = {b} ⋅LD1(v3)∪{a} ⋅LD1(v4)∪{b} ⋅LD1(v4) ={ba, bb, a, b}, and LD1(v2) = {ba, bb, b}. Finally, we have
that LD1(v0) = {aba, abb, aa, ab, bba, bbb, bb}. Notice that
for a labeled DAG D and a vertex u of D, it can be the
case that LD(u) is of exponential size in �D�. For exam-
ple, for the labeled DAG D2 in Figure 1b, it holds that�LD2(v0)� is 2n.

In this work, we are interested in the following count-
ing problem:

Problem: #LDAG

Input: A labeled DAG D and a vertex u of D
Output: �LD(u)�

Why is #LDAG an interesting problem? The setting
defined for labeled DAGs serves as an abstraction to
represent many other counting problems. In fact, we
will show in Section 4 some consequences of our results
for labeled DAGs, which are obtained by representing
di↵erent problems in this setting. As an example of this,
below we show how the problem #DNF can be reduced
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Figure 2: A labeled DAG encoding propositional for-
mula (x ∧ ¬y ∧ z) ∨ (w ∧ x) ∨ (¬w ∧ y ∧ z).
to #LDAG.

Recall that #DNF is the problem of counting, given
a propositional formula ' in DNF, the number of truth
assignments that satisfy '. For example, there are 7
truth assignments that satisfy the propositional formula
 = (x∧¬y ∧ z)∨ (w ∧ x)∨ (¬w ∧ y ∧ z), one of which is
�(w) = 0, �(x) = 1, �(y) = 0 and �(z) = 1. To encode
this counting problem for  as a counting problem for
labeled DAGs, we represent each truth assignment for
the set of variables {w,x, y, z} as a string over the al-
phabet {w, w̄, x, x̄, y, ȳ, z, z̄}, where symbol x is used to
indicate that variable x is assigned value 1, while symbol
x̄ is used to indicate variable x is assigned value 0, and
likewise for the other variables. Then the set of strings
representing truth assignments that satisfy (x∧¬y ∧ z)
can be succinctly encoded as the set of paths from v0

to a sink vertex in the following DAG:

v0

w

w̄

x ȳ z

In this way, the set of truth assignments that satisfy  
is represented by LD(v0), where D is the labeled DAG
shown in Figure 2. In particular, the number of such
truth assignments is equal to �LD(v0)�. This idea can be
easily generalized to any propositional formula in DNF.1

How di�cult is #LDAG? It is straightforward to
prove that #LDAG is in the complexity class #P of
problems that can be expressed as the number of accept-
ing paths of a polynomial-time nondeterministic Turing
machine [26]. Besides, as #DNF is known to be #P-
complete [24] and above we provide a reduction from
#DNF to #LDAG, we conclude that #LDAG is #P-

1The reader may have noticed the similarity of the la-
beled DAGs used to encode DNF formulas to the notion of
binary decision diagram used in knowledge compilation [8].
In fact, popular representations used in this area, such as
ordered or free binary decision diagrams [8], can be eas-
ily encoded by using labeled DAGs. Besides, some non-
deterministic variants of these representations [1] can also
be encoded as labeled DAGs, thus allowing to transfer the
results of this article to such representations.

complete. Therefore, #LDAG is a di�cult problem
that is not expected to be solvable in polynomial time
(under standard complexity theoretical assumptions).
However, this result does not preclude the existence
of e�cient approximation algorithms for this problem.
More precisely, the task is to obtain a fully polynomial-
time randomized approximation scheme (FPRAS [18])
for #LDAG, which is a randomized algorithm satisfy-
ing the following conditions. The input of the algorithm
is a labeled DAG D, a vertex u of D and an approxima-
tion error " ∈ (0,1), and the task is to compute a value
N such that

Pr �(1 − ") ⋅ �LD(u)� ≤ N ≤ (1 + ") ⋅ �LD(u)�� ≥ 3

4
.

Moreover, there must exist a fixed polynomial p(x, y)
such that the algorithm executes at most p(�D�, 1") steps
to compute N .

It is known that #DNF admits an FPRAS [20], so the
existence of a reduction from #DNF to #LDAG does
not preclude the existence of an FPRAS for #LDAG.
In fact, we obtain the following positive result:

Theorem 2.1. #LDAG admits an FPRAS.

In this section, we explain the main ideas behind the
proof of this result.

2.1 The algorithmic template of an FPRAS for
#LDAG

For the rest of this section, assume that the input of
the approximation algorithm for #LDAG consists of a
labeled DAGD = (V,E), a vertex vs ∈ V and an approx-
imation error " ∈ (0,1). Moreover, for the sake of read-
ability, assume that L(u) refers to the language LD(u).

Given a vertex v ∈ V , define the level of v in D

as the maximum length of a string in L(v), namely,
level(v) = maxs∈L(v) �s�. Notice that level(v) = 0 if and
only if v is a sink vertex. This definition is extended
to each nonempty set of vertices P ⊆ V as level(P ) =
maxv∈P level(v). Let n = �V � and m = level(V ), and fix a
value  = �nm" �. Moreover, assume that n ≥ 2 andm ≥ 2,
as otherwise #LDAG can be easily solved in polyno-
mial time by an exhaustive computation. Then for each
vertex v ∈ V , the approximation algorithm stores a num-
ber N(v) and a set S(v) ⊆ L(v) such that:

● N(v) is a (1±−2)`-approximation of �L(v)�, where
` = level(v), and
● S(v) is a uniform sample from L(v) of size 27.

The first condition requires that the following be true:

(1 − −2)` ⋅ �L(v)� ≤ N(v) ≤ (1 + −2)` ⋅ �L(v)�.
In particular, if ` = 0 (a sink vertex), we should have
that N(v) = �L(v)� = 1. The second condition requires
that each w ∈ S(v) is a uniform and independent sample
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1. For each vertex v ∈ V :

(a) Compute N(v) given {N(u), S(u) � ∃a ∶(v, a, u) ∈ E}. For level(v) = 0, the value
N(v) = 1 is computed without any additional
information.

(b) Call a subroutine to sample polynomially
many uniform elements from L(v) using the
value N(v) and the set {N(u), S(u) � ∃a ∶(v, a, u) ∈ E}.

(c) Let S(v) ⊆ L(v) be the multiset of uniform
samples obtained.

2. Return N(vs).
Figure 3: Template of the FPRAS for #LDAG (to be
instantiated in Sections 2.2 and 2.3).

from L(v). Given this condition on the samples, it is
possible to obtain duplicates of an element w ∈ L(v).
In particular, if �L(v)� < 27, then S(v) has to contain
duplicate elements. Therefore, we allow S(v) to be a
multiset (meaning that the strings w in S(v) are not
necessarily distinct). The number N(v) and the set
S(v) can be understood as a summary of L(v) that
are used in the approximation algorithm to estimate
other quantities.

Having the above terminology, we provide in Figure 3
an algorithmic template of our FPRAS for #LDAG [4].
Notice that it proceeds like a dynamic programming
algorithm, computing N(v) and S(v) for every vertex
v of D in a depth-first search ordering. In particular,
it first computes N(v), S(v) for each sink vertex v, and
then it computes N(v), S(v) for each vertex v such that{N(u), S(u) � ∃a ∶ (v, a, u) ∈ E} has been computed.
The final estimate for �L(vs)� is N(vs), where vs is the
input vertex.

In the rest of this section, we show how to instantiate
the template of our approximation algorithm.

2.2 Computing an estimate for a set of ver-
tices

Recall that the input of the problem is a labeled DAG
D = (V,E) with n = �V � and m = level(V ). Moreover,
recall that we assume n ≥ 2 and m ≥ 2, and we de-
fine  = �nm" �. Given ` ≤ m, define V` ⊆ V as the set
of all vertices v ∈ V such that level(v) ≤ `, and de-
fine a sketch data structure sketch[`] ∶= {N(v), S(v) �
v ∈ V`}. Moreover, assume that sketch[`] has already
been computed. In particular, N(v) is a (1 ± −2)`-
approximation of �L(v)�, and S(v) is a uniform sample
from L(v) of size 27 for each v ∈ V` (notice that if
N(v) is a (1 ± −2)r-approximation of �L(v)�, then it is
a (1 ± −2)s-approximation of �L(v)� for every s ≥ r).

Given P ⊆ V , define L(P ) = �v∈P L(v). The goal of

this section is twofold; we first show how to compute an
estimate of �L(P )� for every P ⊆ V`, which is denoted by
N(P ), and then we show how to compute an estimate
of N(v) for each vertex v ∈ V`+1. Notice that the values
N(P ) will play a crucial role for computing not only
N(v), but also the set of uniform samples S(v).

Our first task is then to provide an algorithm to esti-
mateN(P ), where P is a nonempty subset of V`. Notice
that if L(v1) ∩L(v2) = � for each pair v1, v2 of distinct
vertices from P , then �L(P )� = ∑v∈P �L(v)�. Hence an es-
timate of N(P ) can be easily constructed from the esti-
mates N(v) for the vertices v ∈ P : N(P ) = ∑v∈P N(v).
Unfortunately, the previous non-overlapping condition
does not hold in general, as shown in Figure 1a, whereL(v1) ∩ L(v2) ≠ �. Thus, ∑v∈P N(v) is an over-ap-
proximation of the size of �L(P )�, and we need to find
a way to deal with the nonempty intersections of the
sets {L(v) � v ∈ P}.

To solve the previous issue, fix a total order � over
P , and consider the following way to compute �L(P )�:

�L(P )� = �
v∈P
�L(v) � �

u∈P ∶u�vL(u)�.
The question then is how to compute an estimate of�L(v) � �u∈P ∶u�v L(u)� for each vertex v ∈ P . To do
this, consider the following reformulation of the previ-
ous equation:

�L(P )� = �
v∈P
�L(v)� ⋅ �L(v) ��u∈P ∶u�v L(u)��L(v)� (1)

We call the ratio �L(v)��u∈P ∶u�v L(u)���L(v)� the inter-
section rate of v. Inspired by equation (1), we can esti-
mate �L(P )� by using N(v) to estimate �L(v)� and S(v)
to estimate the intersection rate of v. More precisely,
we define the estimate N(P ) for �L(P )� as follows:

N(P ) = �
v∈P

N(v) ⋅ �S(v) ��u∈P ∶u�v L(u)��S(v)�
It is important to note that N(P ) can be computed in
polynomial time in the size of sketch[`]. In fact, the set
S(v)��u∈P ∶u�v L(u) can be computed by iterating over
each string w ∈ S(v), and checking whether w ∉ L(u)
for each u ∈ P such that u � v. Notice that this can
be done in polynomial time in �D� and 1

" , as the size of
S(v) is 27, and it can be verified in polynomial time
whether w ∈ L(v), given w ∈ ⌃∗ and v ∈ V as input. We
call the ratio �S(v)��u∈P ∶u�v L(u)���S(v)� the estimate
of the intersection rate of v.

To show that N(P ) is a good estimate for �L(P )�, we
need that the estimate of the intersection rate of a ver-
tex v is good approximation of the (actual) intersection
rate of v. By a good approximation, we mean that the
following condition C(`) holds at each level `:

C(`) ∶= ∀v ∈ V` ∀P ⊆ V`
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� �L(v) ��u∈P L(u)��L(v)� − �S(v) ��u∈P L(u)��S(v)� � < 1

3

As an immediate consequence of the definition of C(`),
we have that C(k) holds for every k ≤ ` if C(`) is true.
Conditions {C(`) � ` ≤m} are crucial to the results pre-
sented in this and the next section, and most of our
analysis in Section 2 assumes they are true. In Sec-
tion 2.4, we show that, by Hoe↵ding’s inequality, condi-
tion C(m) holds with a probability that is exponentially
large over .

As a first consequence of our assumption that condi-
tion C(`) is true, we show that N(P ) is a good estimate
for �L(P )�.

Proposition 2.2. If C(`) holds, then N(P ) is a (1±

−2)`+1-approximation of �L(P )� for every P ⊆ V`.

With the estimates of �L(P )� for every P ⊆ V`, we are
ready to give an estimate of �L(v)� for each vertex v ∈
V`+1. For every b ∈ ⌃ (recall that ⌃ is the fixed alphabet
for the edge labels of D), define the set of vertices Pb ={u ∈ V � (v, b, u) ∈ E}. Thus, Pb is the set of all vertices
that can be reached from v by following an edge with
label b. Notice that Pb ⊆ V` for each b ∈ ⌃, and that{Pb � b ∈ ⌃} partitions L(v) in the sense that L(v) =�b∈⌃ {b} ⋅ L(Pb), where A � B represents the disjoint
union of sets A and B. Hence, the previous equation
implies that

�L(v)� = �
b∈⌃
�{b} ⋅L(Pb)� = �

b∈⌃
�L(Pb)�. (2)

If we assume C(`) holds, then we have by Proposi-
tion 2.2 that N(Pb) is a (1 ± −2)`+1-approximation of�L(Pb)� for each b ∈ ⌃. That is, we know that the fol-
lowing condition holds for each b ∈ ⌃:
(1 − −2)`+1 ⋅ �L(Pb)� ≤ N(Pb) ≤ (1 + −2)`+1 ⋅ �L(Pb)�.
Hence, we obtain that

�
b∈⌃
(1 − −2)`+1 ⋅ �L(Pb)� ≤

�
b∈⌃

N(Pb) ≤ �
b∈⌃
(1 + −2)`+1 ⋅ �L(Pb)�,

and we can conclude from equation (2) that

(1 − −2)`+1�L(v)� ≤ �
b∈⌃

N(Pb) ≤ (1 + −2)`+1 ⋅ �L(v)�.
Therefore, we have that N(v) = ∑b∈⌃N(Pb) is a (1 ±

−2)`+1-approximation of �L(v)�, so we can derive an

estimate N(v) for �L(v)� by using the previously calcu-
lated estimates for V`.

Notice that for each v ∈ V`+1, the computation of
N(v) is deterministic if we assume that C(`) holds.
Specifically, the estimate N(v) is exact for each ver-
tex v ∈ V0. Next, for each level k ≤ `, we have that C(k)
holds, and we can compute N(v) for level k+1 by using{N(u) � u ∈ Vk} (in fact, by using some of the sets in

{N(P ) � P ⊆ Vk}). Then, we continue with the com-
putation assuming that C(k + 1) is true, until we reach
level `. Therefore, by filling the sets {S(u) � u ∈ V`} with
uniform samples, and assuming that C(`) holds, we can
compute each estimate N(v) for v ∈ V`+1 guaranteeing
that N(v) is a (1±−2)`+1-approximation of �L(v)�. We
summarize this fact in the following proposition.

Proposition 2.3. If C(`) holds, then N(v) is a (1±

−2)`+1-approximation of �L(v)� for every v ∈ V`+1.

Recall that our goal is to compute an estimate of �L(vs)�,
where vs is the input vertex. The following proposition
shows that such an estimate is obtained after processing
all levels in the labeled DAG D.

Proposition 2.4. If C(m) holds, then N(vs) is a(1 ± ")-approximation for �L(vs)�.
In the next section, we show how to compute the set
S(v) using sketch[`], namely, how to generate a uniform
sample from L(v). Specifically, we show that assumingC(`) holds, we can obtain uniform samples from the
sets L(v) such that condition C(` + 1) will hold with
high probability.

2.3 Uniform sampling from a vertex
To carry out our main approximation algorithm, we

must implement the algorithm template in Figure 3,
whose input is a labeled DAGD = (V,E), where n = �V �,
m = level(V ), m ≥ 2 and n ≥ 2. In the previous section,
we implemented Step (a) of this algorithm and, thus,
the goal of this section is to implement the sampling
subroutine in Step (b). This procedure is based on a
sample technique proposed in [18], but modified to suit
our setting.

Recall that V` is the set of all vertices v ∈ V such that
level(v) ≤ `. Let v ∈ V`, and assume that the conditionC(` − 1) holds. Notice that by Proposition 2.3, once we
have C(` − 1), we immediately get the estimate N(v)
of �L(v)�. The procedure to sample a uniform element
of the set L(v) is as follows. We initialize a string w0

to be the empty string. Then we construct a sequence
of strings w1, . . . ,wk, where each element wi is of the
form wi−1 ⋅bi with bi ∈ ⌃, and we define the result of the
sample procedure to be wk. In other words, we sample
a string w of L(v) by building a prefix of the sample,
symbol by symbol. To ensure that w is an element ofL(v) chosen uniformly, we also consider a sequence of
sets P0, . . . , Pk constructed as follows. The first set is
P0 = {v}. Then at the i-th step, we consider the set of
vertices that can be reached from Pi by reading letter
b, namely, for b ∈ ⌃ define:

Pi,b = {u � ∃u′ ∈ Pi ∶ (u′, b, u) ∈ E}.
Further, define the set Pi,� = {u ∈ Pi � level(u) = 0},
namely, all the sink vertices in Pi. Similar to the pre-
vious section, the sets {Pi,b � b ∈ ⌃} and Pi,� induce a
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Sample(P,w,')
1. Compute Pb = {u � ∃u′ ∈ P ∶ (u′, b, u) ∈ E} for

every b ∈ ⌃ and P� = {u ∈ P � level(u) = 0}.
2. Choose b ∈ {0,1,�} with probability:

pb = N(Pb)
N(P�) +∑a∈⌃N(Pa) .

3. If b = �, then with probability ' return w, other-
wise return fail.

4. Else return Sample(Pb, w ⋅ b, '
pb
).

Figure 4: Sampling algorithm for the FPRAS.

partition of the set L(Pi):
L(Pi) = L(Pi,�) � �

b∈⌃{b} ⋅L(Pi,b).
Notice that L(Pi,�) = {�} if Pi,� ≠ �, and L(Pi,�) =� otherwise. Therefore, our sampling algorithm es-
timates the size N(Pi,b) of L(Pi,b) for b ∈ ⌃ ∪ {�},
and chooses b with probability proportional to its size,
namely, N(Pi,b)��N(Pi,�) + ∑a∈⌃N(Pi,a)�. First, as-
sume we choose b ∈ ⌃. Then we define bi+1 = b, append
the symbol to obtain wi+1 = wi ⋅ bi+1, define Pi+1 as
Pi,b, and continue with the recursion on wi+1 and Pi+1.
Hence, we have that Pi+1 is the set of vertices such that
there exists a path labeled by wi+1 that connects v with
some vertex of Pi+1. Instead, if we choose b = �, then we
stop the procedure at this step, let say the k-th step, and
wk is the candidate output string. Since there could be
an error in estimating the sizes of the partitions, it may
be the case that some string were chosen with slightly
larger probability than others. To remedy this and ob-
tain a perfectly uniform sampler, at every step of the
algorithm we store the probability with which we chose
a partition. Thus at the end, we have computed exactly
the probability ' with which we sampled the string wk.
We can then reject this sample with probability propor-
tional to ', which gives a perfect sampler. As long as
no string is too much more likely than another to be
sampled, the probability of rejection will be a constant,
and we can simply run our sampler O(log( 1µ))-times to
get a sample with probability 1 − µ for every µ > 0.

This procedure is given in Figure 4. We call it with
the initial parameters Sample({v}, �, '0), correspond-
ing to the goal of sampling a uniform element of L(P ) =L(v). Here, '0 is a value that we will later choose.
Notice that at every step of the sampling algorithm in
Figure 4, we have that �L(P )� is precisely the number
of strings in L(v) which have the prefix w, as L(P ) is
the set of strings x such that w ⋅ x ∈ L(v).

To get some intuition of the sampling algorithm in
Figure 4, assume for the moment that we can compute

each pb exactly, namely, pb = �L(Pb)���L(P )�. Now the
probability of choosing a given element x ∈ L(v) with�x� = k can be computed as follows. Let P0 = {v}, P1,
. . ., Pk be the sets obtained by the sequence of recursive
calls to Sample until it stops. Ignoring for a moment the
possibility of returning fail, we have that w is the string
returned by Sample({v}, �, '0). Thus, the probability
we choose x is:

Pr(w = x) = �L(P1)��L(P0)� ⋅
�L(P2)��L(P1)� ⋅ . . .

�L(Pk)��L(Pk−1)� ⋅
1

�L(Pk)�
= 1

�L(P0)� .
Now at the point of return, we also have that ' =
'0�Pr(w = x). Thus, if '0�Pr(w = x) ≤ 1, then the
probability that x is output is simply '0. The following
is then easily obtained:

Fact 1. Assume that pb (b ∈ ⌃∪{�}) in the sampling
algorithm in Figure 4 satisfies that

pb = �L(Pb)��L(P )� .
If 0 < '0 ≤ 1��L(v)� and w ≠ fail is the output of the call
Sample({v},�, '0), then for every x ∈ L(v), it holds

Pr(w = x) = '0.

Moreover, the algorithm outputs w = fail with probability
1 − �L(v)� ⋅ '0.

This shows that, conditioned on not failing, the above is
a uniform sampler. However, Fact 1 was obtained under
the strong assumption that each probability pb can be
computed exactly. Hence, in the next result one can
prove that with high probability the same result holds if
we approximate pb with N(Pb)��N(P�)+∑a∈⌃N(Pa)�
(instead of assuming that pb = �L(Pb)���L(P )�).

Proposition 2.5. Assume that condition C(` − 1)
holds. If w ≠ fail is the output of Sample({v},�, e−5

N(v)),
then for every x ∈ L(v):

Pr(w = x) = e
−5

N(v) .
Moreover, it outputs fail with probability at most 1−e−9.
Thus, conditioned on not failing, the algorithm returns
a uniform sample x ∈ L(v).
It is important to mention that, in order for Proposi-
tion 2.5 to be correct, we need that condition C(` − 1)
holds. In fact, the sampling procedure uses valuesN(P )
for approximating the real values �L(P )�, which is sup-
ported by Proposition 2.2 that shows that N(P ) is a
good estimate for �L(P )� if C(` − 1) holds. In the next
section, we prove that C(m) holds with exponentially
high probability, which implies that C(`) holds with ex-
ponentially high probability for every ` ≤m.
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2.4 Bounding the probability of breaking the
main assumption

Recall that the input of the problem is a labeled
DAG D = (V,E), and that n = �V �, m = level(V ) and
 = �nm" �. As it was previously discussed, the compu-
tation of the sketch composed by the estimates N(v)
and sets S(v) is subject that the condition C(m) holds.
Therefore, this section is aimed to bound the probabil-
ity that C(`) is false for each level ` ≤m and show that,
indeed, this probability is exponentially low.

First, assume that we are back to a level ` ≤m, condi-
tion C(`−1) holds, and we want to bound the probability
that condition C(`) holds. In other words, we want to
provide a lower bound for Pr(C(`) � C(`−1)), for which
we will use Hoe↵ding’s inequality.

Proposition 2.6. (Hoeffding’s inequality [16])
Let X1, . . . ,Xt be independent random variables bounded
by the interval [0,1] such that E[Xi] = µ. Then for ev-
ery � > 0, it holds that

Pr��1
t

t�
i=1

Xi − µ� ≥ �� ≤ 2e−2t�2 .

For the first level ` = 0, the condition C(0) certainly
holds. Now assume that we are at some level `, and
recall that V` is the set of all vertices v ∈ V such that
level(v) ≤ `. If C(` − 1) holds, then we know by Propo-
sition 2.5 that for each v ∈ V`, it is possible to fill S(v)
with 27 uniform samples of L(v). Consider an arbi-
trary subset P ⊆ V`, and let S(v) = {w1, . . . ,wt} be
the uniform sample of L(v) of size t = 27. For each
wi, consider the random variable Xi such that Xi = 1
if wi ∈ (L(v) ��u∈P L(u)), and 0 otherwise. Then we
have that:

E[Xi] = �L(v) ��u∈P L(u)��L(v)� ,

t�
i=1

Xi = �S(v) ��u∈P L(u)�,
and t = �S(v)�. Therefore, by Hoe↵ding’s inequality we
infer that:

Pr�� �L(v) ��u∈P L(u)��L(v)� −
�S(v) ��u∈P L(u)��S(v)� � ≥ 1

3
� C(`−1)� ≤ 2e−4

Notice that in the previous inequality the conditionC(`−1) does not change the assumptions of Hoe↵ding’s
inequality. We can bound Pr(¬C(`) � C(` − 1)) by tak-
ing the union bound over all vertices v and all possible
subsets P ⊆ V`:

Pr�∃v ∈ V` ∃P ⊆ V` � �L(v) ��u∈P L(u)��L(v)� −

�S(v) ��u∈P L(u)��S(v)� � ≥ 1

3
� C(` − 1)� ≤

n2n ⋅ 2e−4 ≤ e
4n ⋅ e−4 ≤ e

2nm ⋅ e−4 ≤ e
−2

.

We conclude that, at level `, the probability Pr(C(`) �C(`−1)) ≥ 1−e−2. Hence, we obtain the following lower
bound for the upper level m:

Pr(C(m)) = Pr( m�̀=0C(`))
= m�̀=1Pr(C(`) �

`−1�
`′=0C(`′))

= m�̀=1Pr(C(`) � C(` − 1))
≥ m�̀=1(1 − e

−2) = (1 − e−2)m.

Moreover, it is possible to prove that (1 − e
−2)m ≥

1 − e−. Therefore, putting everything together, we ob-
tain the desired lower bound for the probability that
condition C(m) holds.

Proposition 2.7. The probability that E(m) holds is
bounded below by 1 − e−.
3. COUNTING IN SUCCINCT LABELED

DAGS
In this section, we go one step further in abstraction

by considering succinct labeled DAGs. Intuitively, we
can generalize the idea of labeled DAGs by using edges
of the form (u, r, v), where r defines a set of labels suc-
cinctly encoded in some representation. Then we can
extend the counting problem #LDAG to succinct la-
beled DAGs. Interestingly, this problem is the key al-
gorithmic step to provide e�cient approximation algo-
rithms for counting problems related to tree automata
and conjunctive queries, among other applications. In
what follows, we define our notion of succinct represen-
tation, extend labeled DAGs to its succinct version, and
then present our results for the extension of #LDAG

to succinct labeled DAGs.
As in the previous section, fix a finite alphabet ⌃

containing at least two elements. Then a succinct set-
representation schema (or succinct set for short) is com-
posed by a (possible infinite) infinite set of representa-
tions R. For technical reasons, we assume the existence
of a size function � ⋅ � such that for every r ∈ R, the
number �r� represents the size (e.g., number of bits) to
store r in the underlying computational model (e.g., the
RAM model). We use each r ∈ R to represent a set of
strings over ⌃, so we consider a function set such that
set(r) ⊆ ⌃∗. Here, each string w ∈ set(r) must be of
polynomial size with respect to r, that is, there exists a
polynomial g such that �w� ≤ g(�r�) for every r ∈ R and
w ∈ set(r) (where �w� is the usual length of a string).
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Furthermore, the number of strings represented by r

must be at most exponential in the size of r, that is,
there exists a polynomial h such that � set(r)� ≤ 2h(�r�)
for every r ∈ R. The last assumption is to ensure that
the number of bits to encode the number � set(r)� will be
at most polynomial in �r�. Finally, we assume that there
exist polynomial-time algorithms for some key problems
to handle the representations in R. More precisely, we
first assume that membership in each representation
r ∈ R can be solved in polynomial time; that is, we
suppose that there exists an algorithm M that, given
w ∈ ⌃∗ and r ∈ R, verifies whether w ∈ set(r) in poly-
nomial time on �w� and �r�. Second, we assume that the
number of strings in each representation r ∈ R can be
e�ciently approximated; that is, we suppose that there
exists an algorithm C that, given r ∈ R and " ∈ (0,1),
outputs an "-approximation of � set(r)� in polynomial-
time on �r� and 1

" . Finally, we assume that the strings
of each r ∈ R can be almost-uniformly generated; that
is, we suppose that there exist an algorithm U that,
given r ∈ R and " ∈ (0,1), outputs an "-uniform sam-
ple from set(r) (i.e., with probability (1 ± ") 1� set(r)� ) in

polynomial-time on �r� and 1
" . In summary, a succinct

set S is a tuple

S = (R, � ⋅ �, set,M,C,U)
satisfying all the aforementioned properties.

Assuming that the underlying alphabet ⌃ = {0,1}, a
simple example of a succinct set is given by the propo-
sitional formulas in DNF. In particular, a string w ∈{0,1}∗ represents a truth assignment, and each repre-
sentation ↵ ∈ R is a formula in DNF (encoded as a
string over the alphabet {0,1}). The size �↵� of a propo-
sitional formula ↵ is defined as the length of the string
encoding it. Moreover, set(↵) is defined as the set of
all truth assignments that satisfy ↵. In particular, if
↵ mentions n propositional variables, then set(↵) is a
subset of {w ∈ ⌃∗ � �w� = n}. Moreover, given that
#DNF admits a fully polynomial-time randomized ap-
proximation scheme [19], it is possible to verify that the
propositional formulas in DNF satisfy all the properties
of a succinct set; in particular, there exist polynomial-
time algorithms for approximate counting and uniform
generation of truth assignments satisfying a formula
in DNF.

From now on, assume that S = (R, � ⋅ �, set,M,C,U)
is a fixed succinct set such that, for every a ∈ ⌃, there
exists r ∈ R satisfying that set(r) = {a} (later we will
explain why this technical condition is needed). The no-
tion of succinct set is introduced to have a succinct way
to represent the alphabet of a labeled DAG and the lan-
guage associated to each of its vertices. Formally, a suc-
cinct labeled DAG is a tuple D = (V,E) such that V is a
finite set of vertices, E ⊆ V ×R×V is a finite set of edges
labeled by representations from S, and the directed

graph G = (V,{(u, v) � ∃r ∶ (u, r, v) ∈ E}) is acyclic. The
size of D is defined as �D� = �V � +∑(u,r,v)∈E �r�. More-
over, each vertex u of D defines a language, denoted byLD(u), over the alphabet

�(u,r,v)∈E
set(r).

Formally, if u is a sink vertex, then LD(u) = {�} (re-
call that � is the empty string); otherwise, LD(u) is
recursively defined as:

LD(u) = �(u,r,v)∈E
set(r) ⋅LD(v).

Notice that the previous definition is based on the def-
inition of the language associated to a node of a (non-
succinct) labeled DAG. However, there are some dif-
ferences between these definitions. First, each edge(u, r, v) from D succinctly encodes a set set(r) that
can contain an exponential number of possible sym-
bols. Second, the elements of each set set(r) cannot
be directly accessed; for instance, there may not be an
algorithm that can enumerate the elements of set(r)
with a polynomial-time delay between two output ele-
ments. Instead, we only know that three problems can
be solved e�ciently for these sets: checking whether an
element belongs to set(r), generating almost-uniformly
at random an element from set(r), and approximating
the size of set(r).

In this work, we are interested in the following count-
ing problem for succinct labeled DAGs.

Problem: #SuccLDAG

Input: A succinct labeled DAG D and a ver-
tex u of S

Output: �LD(u)�
Recall that for every a ∈ ⌃, there exists ra ∈R such that
set(ra) = {a}. Given this condition, we know that an
input (D,u) of the counting problem #LDAG can be
viewed as an input of #SuccLDAG just by replacing
each edge (v, a, v′) by (v, ra, v′). Hence, we have that
#SuccLDAG is a generalization of #LDAG, from
which it is possible to conclude that #SuccLDAG is
a #P-complete problem (the proof of the membership
of #SuccLDAG in #P is left as an exercise for the
reader). Interestingly, as for the case of #LDAG, it is
possible to obtain an e�cient approximation algorithm
for #SuccLDAG.

Theorem 3.1. #SuccLDAG admits an FPRAS.

In the rest of this section, we give an overview of the
main di�culties of#SuccLDAG, compared to the case
of (non-succinct) labeled DAGs. Given a succinct la-
beled DAG D = (V,E), we can proceed as in Section 2
to compute an estimate for �LD(u)�. Namely, for each
vertex v ∈ V such that level(v) = ` (recall the definition
of level(v) from Section 2), we can store a number N(v)
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and a set S(v) ⊆ LD(v) such that, N(v) is a (1±−2)`-
approximation of �LD(v)� and S(v) is a uniform sample
from LD(v) of polynomial size. Given the estimates of
level ` − 1, obtaining N(v) for vertices of level ` will
be similar than for labeled DAGs. Instead, the central
challenge is to design a polynomial time algorithm to
sample from the set LD(v), allowing the construction
of S(v).

To understand the main challenge for sampling fromLD(v), we can try to proceed as in Section 2. Given a
set of vertices P ⊆ V , define LD(P ) = �v∈P LD(v) and:

set(P ) = �
r ∶ ∃v∃v′∶ (v∈P ∧ (v,r,v′)∈E)

set(r).
In other words, set(P ) are all the first symbols of strings
in LD(P ). Then, starting from a vertex v, we can sam-
ple one symbol at a time, building a sequence of strings
w1, . . . ,wk, where wi = wi−1 ⋅ bi and bi is the next sym-
bol. This strategy gives the sequence of sets P0, . . . , Pk

where P0 = {v}, and Pi+1 is defined from Pi and the
next symbol b ∈ set(Pi). Specifically, for each symbol
b ∈ set(Pi), define the set of vertices:

Pi,b = {u � ∃u′ ∈ Pi−1 ∶ (u′, r, u) ∈ E ∧ b ∈ set(r)}.
Then we can choose b with probability (approximately)�LD(Pi,b)���LD(Pi)�, and continue with the recursion
with the set Pi+1 = Pi,b.

But there is a fundamental problem with this ap-
proach in the succinct case: the set of possible symbols
set(Pi) is of exponential size with respect to D. Hence,
we cannot estimate �L(Pi,b)� for each b ∈ set(Pi). In-
stead, our approach will be to approximate the behav-
ior of the above “idealistic” algorithm that estimates all
these sizes, by sampling from set(Pi) without explicitly
estimating the sampling probabilities. Namely, we can
sample a string w ∈ LD(P ) for a set P ⊆ V , by sampling
the next symbol from a “proxy” distribution which is
close to the true distribution over set(P ), where each b

is chosen with probability �LD(Pb)���LD(P )�. For build-
ing this proxy distribution, we exploit the membership
algorithm M , the approximate counting algorithm C,
and the almost-uniform sampling algorithm from suc-
cinct set S. The reader is refer to [5] for the tech-
nical details of our sampling algorithm to build S(v)
from LD(v).
4. APPLICATIONS OF OUR RESULTS

For the last part of this paper, we present applications
of the results in Sections 2 and 3 to automata theory,
graph databases, and conjunctive query evaluation.

4.1 Automata theory
Given a non-deterministic finite automaton (NFA) A

over an alphabet ⌃, let L(A) be the set of strings in
⌃∗ that are accepted by A. Then the following is a

a

a a

a b

a a

(a) ⌃-tree t

q0

q0 q1

q1 q0

q1 q1

(b) Run of T over t

Figure 5: Execution of a tree automaton T with alpha-
bet ⌃ = {a, b}, initial state q0, and transitions (q1, a),(q0, a, q0, q1), (q0, a, q1, q0) and (q0, b, q1, q1).
fundamental counting problem for automata.

Problem: #NFA

Input: An NFA A and a natural number n

(given in unary)
Output: �{w ∈ L(A) � �w� = n}�

The problem #NFA is known to be #P-complete, so
this problem is not expected to be solvable in polyno-
mial time. However, as a corollary of the results in Sec-
tion 2, it is possible to obtain an e�cient approximation
algorithm for this problem.

Proposition 4.1. #NFA admits an FPRAS.

The extension of finite automata to trees has proved
to be very useful in many database applications [22,
25]. Such an extension is defined as follows. Given
an alphabet ⌃, a ⌃-tree is recursively defined as fol-
lows. Each symbol a ∈ ⌃ is a ⌃-tree. If t1 and t2 are
⌃-trees and a ∈ ⌃, then a(t1, t2) is a ⌃-tree. For exam-
ple, a(b(a, a(b, b)), a) is a tree over the alphabet {a, b},
which can be depicted as shown in Figure 5a. Moreover,
the number of nodes of a ⌃-tree t, denoted by �t�, is re-
cursively defined as: �a� = 1 and �a(t1, t2)� = 1+ �t1�+ �t2�,
for each a ∈ ⌃. For example, for the tree t shown in
Figure 5a, it holds that �t� = 7.

A (top-down) tree automaton T over an alphabet ⌃
is a tuple (Q,⌃,�, q0) such that Q is a finite set of
states, � ⊆ (Q ×⌃) ∪ (Q ×⌃ ×Q ×Q) is the transition
relation, and q0 ∈ Q is the initial state. Given a ⌃-
tree t, a run of T over t is a Q-tree ⇢ satisfying the
following conditions. Given q ∈ Q, denote by Tq the
tree automaton obtained from T by putting q as the
initial state, that is, Tq = (Q,⌃,�, q). If t = a, where
a ∈ ⌃, then ⇢ must be the Q-tree q0 and (q0, a) must be
a tuple in �. Moreover, if t = a(t1, t2), where a ∈ ⌃ and
t1, t2 are ⌃-trees, then ⇢ must be a Q-tree of the form
q0(⇢1,⇢2), where (q0, a, q1, q2) ∈ � for some q1, q2 ∈ Q,
⇢1 is a run of Tq1 over t1, and ⇢2 is a run of Tq2 over t2.
For example, Figure 5b shows a run of a tree automaton.
A ⌃-tree t is accepted by tree automaton T if there
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Figure 6: A graph database, and two paths ⇡1 and ⇡2
in it.

exists a run of T over t. The set of all ⌃-trees accepted
by T is denoted by L(T ).

As for the case of automata over strings, the following
is a fundamental counting problem for tree automata.

Problem: #TA

Input: A tree automaton T and a natural
number n (given in unary)

Output: �{t ∈ L(T ) � �t� = n}�
It is straightforward to prove that #TA is in #P. Then
from the #P-hardness of #NFA, it is possible to con-
clude that #TA is a #P-complete problem, so #TA is
not expected to be solvable in polynomial time. How-
ever, as a corollary of the results in Section 3, it is pos-
sible to obtain an e�cient approximation algorithm for
this problem.

Proposition 4.2. #TA admits an FPRAS.

For the sake of presentation, #TA is defined in this
section for binary trees where each node has either no
children or two children. However, the previous result
can be extended to ranked trees, where each node can
have at most k children for a natural number k.

4.2 Graph databases
Given a set ⌃ of labels, a graph database G is a

pair (V,E) where V is a set of vertices and E ⊆ V ×
⌃ × V is a set of labeled edges. For example, Figure 6
shows a graph database storing data about people and
their relationships; in particular, the set of labels for
this graph database is {friend, knows}, so that a triple(a, friend, b) indicates that a and b are friends, while a
triple (a,knows, b) indicates that a knows b.

Path queries are a fundamental way to retrieve in-
formation from graph databases [2, 11]. In its simplest
form, a path query Q over a graph database G = (V,E)

is a triple (a, r, b), where a, b ∈ V and r is a regular
expression over the set ⌃ of edge labels for G. An
answer to Q over G is a path from a to b whose la-
bels conform to r. Formally, such a path is a sequence
⇡ = v0, p1, v1, p2, . . . , pn, vn of vertices and labels such
that (vi, pi+1, vi+1) ∈ E, a = v0 and b = vn. More-
over, ⇡ is said to conform to r if the string p1p2�pn

is in the regular language defined by r. For exam-
ple, Q1 = (Zara, friend∗, Paul) is a path query over the
graph database in Figure 6, for which the paths ⇡1 and
⇡2 shown in the same figure are answers. Thus, an
answer to Q1 over the graph database shown in Fig-
ure 6 is a path of friends from Zara to Paul. The set
of answers of a path query Q over a graph database
G is denoted by Q(G). Clearly, Q(G) can be an infi-
nite set, as paths can contain cycles, so there can be
an infinite number of them in a graph. For this rea-
son, the length of the paths to be retrieved must also
be specified when posing a path query; the length of a
path ⇡ = v0, p1, . . . , pn, vn, denoted by �⇡�, is defined
as n. Hence, in the most classical view of the query
answering problem in graph databases, a query is ei-
ther a pair (Q,n) or a pair (Q, shortest) [9], where Q

is a path query, n a natural number and shortest is a
reserved keyword. Given a graph database G, a path ⇡
is an answer to (Q,n) over G if ⇡ ∈ Q(G) and �⇡� = n.
Moreover, a path ⇡ is an answer to (Q, shortest) over
G if ⇡ ∈ Q(G) and �⇡� = `, where ` =min⇡′∈Q(G) �⇡′�. For
example, assuming that Q1 = (Zara, friend∗, Paul) and
G is the graph database shown in Figure 6, the path ⇡2
in the same figure is an answer to (Q1,4) over G, given
that �⇡2� = 4. However, ⇡2 is not an answer to the query(Q1, shortest) over G since min⇡∈Q1(G) �⇡� = 2. On the
other hand, ⇡1 is an answer to (Q1, shortest) over G.

In the case of graph databases and path queries, the
following are the fundamental counting query answers
problems to be solved:

Problem: #PathGD

Input: A graph database G, a path query
Q and a natural number n (given
in unary)

Output: �{⇡ ∈ Q(G) � �⇡� = n}�
Problem: #ShortestPathGD

Input: A graph database G and a path
query Q

Output: �{⇡ ∈ Q(G) � �⇡� = `}�, where ` =
min⇡∈Q(G) �⇡�

It is possible to prove that both problems #PathGD

and #ShortestPathGD are #P-complete [3, 21], so
they are not expected to be solvable in polynomial time.
However, by using the results of Section 2, it is possible
to prove that both problems admit e�ciently approxi-
mations.

SIGMOD Record, September 2022 (Vol. 51, No. 3) 15



Proposition 4.3. Both #PathGD and
#ShortestPathGD admit an FPRAS.

4.3 Acyclic conjunctive queries
Conjunctives queries (CQs) are expressions of the

form Q(x̄) ← R1(ȳ1), . . . ,Rn(ȳn) where each Ri is a
relational symbol, each ȳi is a tuple of variables, and x̄

is a tuple of output variables with x̄ ⊆ ȳ1 ∪�∪ ȳn. Con-
junctive queries are the most common class of queries
used in database systems, so the computational com-
plexity of the tasks related to their evaluation is a fun-
damental object of study. Given as input a database
instance D and a conjunctive query Q(x̄), the query
evaluation problem is defined as the problem of com-
puting Q(D) ∶= {ā � D � Q(ā)}. Namely, Q(D) is the
set of answers ā to Q over D, where ā is an assignment
of the variables x̄ which agrees with the relations Ri.
The corresponding query decision problem is to verify
whether or not Q(D) is empty. It is well known that
even the query decision problem is NP-complete for con-
junctive queries [6]. Thus, a major focus of research in
the area has been to find tractable special cases [29, 7,
13, 15, 14, 10, 12].

Beginning with the work in [29], a fruitful line of re-
search for finding tractable cases for CQs has been to
study the degree of acyclicity of a CQ. In particular,
the treewidth tw(Q) of Q [7, 15], and more generally
the hypertree width hw(Q) of Q [14], are two primary
measurements of the degree of acyclicity. A class C of
conjunctive queries has bounded treewidth (hypertree
width) if tw(Q) ≤ k (hw(Q) ≤ k) for every Q ∈ C, for
a fixed constant k. It is known that the query decision
problem can be solved in polynomial time for every classC of CQs with bounded treewidth [7, 15] or bounded hy-
pertree width [14].

In addition to evaluation, counting the number of an-
swers to a conjunctive query is a fundamental problem,
in particular because the optimization process of a re-
lational query engine requires, as input, an estimate of
the number of answers to a query (without evaluating
it). Unfortunately, counting the number of answer of
a conjunctive query is more challenging than evaluat-
ing it. Specifically, given as input a conjunctive query
Q and database D, computing �Q(D)� is #P-complete
even when hw(Q) = 1 [23], that is, for so called acyclic
CQs [29]. However, these facts do not preclude the ex-
istence of e�cient approximation algorithms for classes
of CQs with a bounded degree of acyclicity. In fact, we
show in this article how the results in Section 4.1 can
be used to construct a fully polynomial-time random-
ized approximation scheme for every class of CQs with
bounded hypertree width. Since hw(Q) ≤ tw(Q) for ev-
ery CQ Q [14], this result also includes every class of
CQs with bounded treewidth. Specifically, consider the
following family of counting problems.

Problem: #k-HW

Input: A CQ Q such that hw(Q) ≤ k and a
database D

Output: �Q(D)�
Then it is possible to prove that:

Proposition 4.4. The problem #k-HW admits an
FPRAS for every k ≥ 1.

Recall that in Proposition 4.2, we show that the prob-
lem #TA admits an FPRAS. In what follows, we give
a high-level overview of a reduction to #TA from the
counting problem for the class of acyclic conjunctive
queries, that is, from the class of CQs Q such that
hw(Q) = 1. This reduction can be properly formal-
ized, and it can be extended to each problem #k-HW,
so to conclude from Proposition 4.2 that each problem
#k-HW admits an FPRAS.

Consider a CQ Q1(x) ← G(x),E(x, y),E(x, z),C(y),
M(z). This query is said to be acyclic because it can
be encoded by a join tree, that is, by a tree t where
each node is labeled by the relations occurring in the
query, and which satisfies that each variable in the query
induces a connected subtree of t [29]. In particular,
a join tree for Q1(x) is depicted in Figure 7a, where
the connected subtree induced by variable x is marked
in red. An acyclic conjunctive query Q can be e�-
ciently evaluated by using a join tree t encoding it [29];
in fact, a tree witnessing the fact that ā ∈ Q(D) can
be constructed in polynomial time. For example, if
D1 = {G(a), G(b), E(a, c1), E(b, c1), E(b, c2), E(b, c3),
C(c1), C(c2), M(c3)}, then b is an answer to Q1 over
D1, which is witnessed by the two trees shown in Fig-
ure 7b. Notice that the assignments to variable y that
distinguish these two trees are marked in blue.

As shown in Figure 7b, there is no one-to-one corre-
spondence between the answers to an acyclic CQ and
their witness trees, so #1-HW cannot be directly solved
by counting such trees. However, we observe that in a
witness tree t, if only output variables are given actual
values and non-output variables are assigned an anony-
mous symbol �, then there will be a one-to-one corre-
spondence between answers to a query and witnesses.
Such structures are denoted as anonymous trees, an ex-
ample of which is given in Figure 7c. But how can we
specify when an anonymous tree is valid? For example,
if t′ is the anonymous tree obtained by replacing b by a

in Figure 7c, then t
′ is not a valid anonymous tree, be-

cause a is not an answer to Q1 over D1. At this point,
tree automata come to the rescue, as they can be used
to specify the validity of such anonymous trees. In this
way, #1-HW can be reduced to #TA.

Proposition 4.4 can be extended to the case of unions
of conjunctive queries with a bounded degree of acyclic-
ity. More precisely, a union of CQs (UCQ) is an expres-
sion of the form Q(x̄)← Q1(x̄)∨�∨Qm(x̄), where each
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G(x)
E(x, y) E(x, z)
C(y) M(z)

(a) A join tree.

G(b)
E(b, c1) E(b, c3)
C(c1) M(c3)

G(b)
E(b, c2) E(b, c3)
C(c2) M(c3)

(b) Two witness trees for the answer b.

G(b)
E(b,�) E(b,�)
C(�) M(�)

(c) An anonymous tree for b.

Figure 7: Join, witness, and anonymous trees for a CQ.

Qi(x̄) is a conjunctive query, and the same tuple x̄ of
output variables is used in the CQs Q1(x̄), . . ., Qm(x̄).
The set of answers of Q over a database D, denoted by
Q(D), is defined as Q(D) = �m

i=1Qi(D). Concerning
to our investigation, we are interested in the following
family of counting problem for unions of CQs.

Problem: #k-UHW

Input: A database D and a union of CQs
Q(x̄)← Q1(x̄)∨�∨Qm(x̄) such that
hw(Qi) ≤ k for all i ∈ {1, . . . ,m}

Output: �Q(D)�
As expected, #k-UHW is #P-complete [23] for every
k ≥ 1. However, #1-UHW remains #P-hard even if we
focus on the case of UCQs without existentially quan-
tified variables, as opposed to the case of CQs where
#1-HW can be solved in polynomial time if existential
quantifiers are not allowed [23]. Nevertheless, by using
Proposition 4.4, it is possible to provide the following
positive result.

Proposition 4.5. The problem #k-UHW admits an
FPRAS for every k ≥ 1.
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