
Graph Queries: From Theory to Practice

Angela Bonifati
University of Lyon 1 & CNRS LIRIS
{angela.bonifati}@univ-lyon1.fr

Stefania Dumbrava
⇤

ENS Rennes & CNRS IRISA & INRIA
{stefania-gabriela.dumbrava}@ens-rennes.fr

ABSTRACT
We review various graph query language fragments that
are both theoretically tractable and practically relevant.
We focus on the most expressive one that retains these
properties and use it as a stepping stone to examine the
underpinnings of graph query evaluation along graph
view maintenance. Further broadening the scope of
the discussion, we then consider alternative processing
techniques for graph queries, based on graph summa-
rization and path query learning. We conclude by pin-
pointing the open research directions in this emerging
area.

1. INTRODUCTION
Graphs are semantically rich data models able

to represent inherently complex object structures
and their interconnectivity relationships. Due to
their high expressivity, graphs are used in numer-
ous domains, including Knowledge Representation
and the Semantic Web, Linked Open Data, geoloca-
tion data, as well as life science repositories, such as
those used in medicine, biology, and chemistry. Sev-
eral graph datasets, such as DBPedia [11], Wikidata
[40], and Bio2RDF [34], to name a few, are readily
available and exhibit a continuous growth, as new
user content is injected on a daily basis. Hence,
such massive, graph-shaped data have tremendous
potential to be queried and explored for knowledge
extraction purposes [17].

In this paper, which summarizes our previous
work in this area [16, 13, 23], we survey estab-
lished theoretical graph query foundations and dis-
cuss their practical impact. To this end, we exam-
ine graph query evaluation and incremental main-
tenance techniques, along with implementation as-
pects. We also review alternative graph query pro-
cessing techniques, such as approximate query eval-
uation and path query learning.

⇤Work mainly done while a�liated with University of
Lyon 1 & CNRS LIRIS.

As opposed to their relational counterparts,
graph queries are recursive in nature and need to
inspect both the structure and the heterogeneity
of the underlying data. We illustrate this aspect
with the following user-specified query that we have
taken from the online Wikidata query set, formu-
lated by real users at the Wikidata SPARQL query
service 1. The query outputs the geolocation infor-
mation of all hospitals in the Wikipedia ontology at
a world-wide scale:

Q1: SELECT ⇤ WHERE {
? item wdt : P31⇤/wdt : P279⇤ wd: Q16917 ;

wdt : P625 ? geo .
}

Note that wd:Q16917 is a hospital item, wdt:P31
and wdt:P279 are the “instance of” and “subclass
of” Wikidata properties, while wdt:P625 is a coor-
dinate location property. Such a query relies on a
recursive expression of the kind a

⇤
/b

⇤, which drives
the navigation of the Wikipedia ontology to find
all possible occurrences of hospitals, as item in-
stances or subclasses. More precisely, the above
query retrieves a set of geolocation data points that
represent the positions of hospitals in a map. As
such, its result represents a graph of interconnected
hospital locations. Concerning the language frag-
ment to which this query belongs, we can classify
it as a Conjunctive Regular Path query, belonging
to C2RPQ, a notable query fragment that we dis-
cuss in Section 2. Due to the presence of recursion,
such a query performs complex navigation on the
Wikidata graph. An alternative example of a graph
query is the following Wikidata one, which retrieves
a single aggregate value, namely the total number
of humans in Wikidata 2.

Q2: SELECT (COUNT(? item) AS ? count)
WHERE {

? item wdt : P31/wdt : P279⇤ wd:Q5 .
}
1https://www.wikidata.org/wiki/Wikidata:
SPARQL_query_service/queries/examples
2Amounting to 4531233 (on September 25, 2018).

SIGMOD Record, December 2018 (Vol. 47, No. 4) 5

In such a case, a property path of the type a/b
⇤

allows to navigate the Wikidata ontology.
While the first query belongs to C2RPQ, the sec-

ond query is a counting regular path query (a frag-
ment henceforth named RPQC). Even though these
fragments have remarkable di↵erences in terms of
their evaluation complexity (see Section 3), they are
also significantly di↵erent in terms of their retrieved
output. In fact, while the result of the first query is
a geographical network, the second query retrieves
a semantically rich aggregate value.

This wide array of possibilities, in terms of query
input and output, along with the complexity of
query evaluation, drives and motivates our current
research in the area [23, 16, 22, 18, 8, 15, 7, 13, 12,
9], part of which we revisit in this paper.

We start by describing the actual expressivity
and computational complexity of practical graph
query fragments, as used in various modern graph
query languages [3], and focus on how to e�ciently
process them. We also expand on ensuring the re-
liability of potentially security-critical applications
that can leverage queries in the above languages. To
this end, we illustrate in [16] the feasibility of em-
ploying formal methods to formalize the expressive
regular query (RQ) language and to mechanize the
implementation of a corresponding inference and
view maintenance engine, whose correct behavior
we establish through machine-checked proofs.

Hence, we turn to RPQs and study approximate
query processing (AQP), which gives the users the
agency to decide the tradeo↵ w.r.t e�ciency for
query fragments that are expensive to process. In
particular, in [23], we investigate the e↵ectiveness
of storing pre-computed aggregates to approximate
the result of RPQC queries, which have a high run-
time evaluation cost. To this purpose, we illustrate
a query-driven summarization algorithm that we in-
troduced. As we will outline in Section 4, we tackle
reachability preservation, in the presence of aggre-
gates, with the explicit purpose of obtaining a small,
reusable graph summary that can lend itself easily
to in-database approximate evaluation.

Next, we illustrate path query learning as an
alternative processing technique for graph queries
[13]. Still on the RPQ fragment, we show how to in-
fer a query statement from a set of positive and neg-
ative examples, the latter embodying the expected
(or not) query results. As the consistency checking
problem for RPQ queries is PSPACE-complete, we
resort to lifting the soundness condition of the learn-
ing algorithm and propose a learning algorithm that
selects paths of a given length. Finally, we discuss
an interactive scenario, which leads to a learning al-

gorithm that starts with an empty sample and con-
tinuously interacts with the user, in order to infer
the goal query.

The paper is organized as follows. We start in
Section 2 with an outline of the underlying graph
data models and the fundamental graph query frag-
ments that have been studied in the literature and
identified as retaining practical interest. Section 3
expands on the complexity of query and incremental
view evaluation and illustrates both evaluations for
a highly expressive query fragment. Section 4 de-
scribes approximate analytical processing and path
query learning. Finally, we conclude in Section 5,
by highlighting open problems in this area and by
providing future research directions.

2. PRELIMINARIES
Graph Database Models. Graph databases rely
on nodes, to denote abstract entities, and on edges,
to denote the relationships between them. Such is
the structure of the basic edge-labeled model, which
we consider in Section 3. This can be further en-
hanced, to account for direction, by taking edges to
be ordered pairs of vertices, for heterogeneity, by
allowing multiple edges between a given pair of ver-
tices, as well as multiple labels, on both vertices
and edges, and for data storage, by allowing an ar-
bitrary number of properties, or key/value pairs, to
be attached to both vertices and edges. Considering
these extensions, we reach the expressivity level of
the property graph model (PGM) [2, 17], on which
we focus in Section 4 and which we define next.

Given a finite sets of symbols (labels) ⌃, prop-
erty keys K, and property values N , a property
graph instance G over (⌃, K, N), is a structure
(V, E, ⌘,�, ⌫), such that V and E are finite sets of
vertex/edge identifiers, ⌘ : E ! V ⇥ V associates
a pair of vertex identifiers to each edge identifier,
� : V [E ! P(⌃) 3 associates a set of labels to
vertex/edges, and ⌫ : (V [E)⇥K! N , associates
a value to each vertex/edge property key.

Example 1. We exemplify the base, edge-labeled
model with the graph instance GSN in Fig. 1, which
represents a social network, whose schema is in-
spired by the LDBC benchmark [24]. Entities are
customers (type Person, Ci), connected (l0) and/or
following (l1) each other, that can purchase (l4)
merchandise (type Product, Mi). This is promoted
(l5) in ads (type Message, Ai), which are posted
(l3) on brand pages (type Forum, Pi), moderated
(l2) by specific persons. Additionally, customers can
endorse (l6) each other or endorse a brand.

3i.e., P(⌃) denotes the set of finite subsets of ⌃.

6 SIGMOD Record, December 2018 (Vol. 47, No. 4)

C1 C2 C3

C4

C5 C6C7

C8 C9

C10

M1 M2 M3 M4

A1 A2 A3

P1

P2

A4 A5 A6

M5 M6 M7

Page connected (l0)

Ad follows (l1)

Merchandise moderated (l2)

Customer posted (l3)

purchased (l4)

promoted (l5)

endorses (l6)

Figure 1: Example Social Graph GSN

Fundamental Query Fragments. Regular ex-
pressions over a finite alphabet ⌃ are defined as
e ::= ✏ | s, with s 2 ⌃ | e + e | e · e | e⇤. A reg-
ular language L(⌃) of complex labels can thus be
inductively built: L(✏) = {✏}; L(s) = {s| s 2 ⌃};
L(e1+e2) = L(e1)[L(e2); L(e1 ·e2) = L(e1) ·L(e2);
L(e⇤) = {e1 · e2 | e1 2 L(e) ^ e2 2 L(e⇤)}. Next,
given V, a countably infinite set of variables, and
D, a domain of constant values, terms are elements
of V [D. Based on these building blocks, the fol-
lowing prominent query fragments have emerged:
1) regular path queries, RPQ = {s(t1, t2)|s 2
L(⌃)}, 2) counting RPQ, RPQC = {s(t1, t2)|s 2
L(⌃ [{count})}, 3) 2-way RPQs, which al-
low backward navigation, 2RPQ = {s(t1, t2)|s 2
L(⌃ [{s�|s 2 ⌃})}, 4) conjunctive 2RPQ,
C2RPQ = {

V
i2N si(t1, t2)|si 2 2RPQ}, 5) union

of C2RPQ, UC2RPQ = {
W

i2N si(t1, t2)|si 2
C2RPQ}, 6) nested UC2RPQ, nUC2RPQ =
{
W

i2N si(t1, t2)|si 2 {s⇤|s 2 UC2RPQ}}, 7) union
of conjunctive, nested 2RPQ, UCN2RPQ =
{
W

i2N
V

j2N si,j(t1, t2)|si,j 2 {s⇤|s 2 2RPQ}}, and
the recent 8) regular queries, RQ = {s(t1, t2)|s 2
{s⇤|s 2 UCN2RPQ}}.

The most expressive graph query fragment, RQ
(regular queries) [39, 36], is an extension of
unions of conjunctive 2-way regular path queries
(UC2RPQs) and of unions of conjunctive nested
2-way regular path queries (UCN2RPQs). Regu-
lar queries support expressing complex regular pat-
terns between graph nodes. They also correspond
to Datalog with linear recursion [31], also known as
non-recursive Datalog, extended, at the language-
level, with transitive closures of binary predicates.

Example 2. Revisiting Example 1, we illustrate
the above query fragments on the social graph GSN

from Figure 1:

Q1 : ⌦1(X,B) (l0 + l1)
⇤ · l6(X,B)

Q2 : ⌦2(X,B) l�4 · l5 · l�3 (X,B)
Q3 : ⌦3(C,) l�4 · l5 · l�3 (X,B), count(X,C)
Q4 : ⌦4(X,B) l�2 (X,B), l6 · l5 · l�3 (X,B)
Q5 : ⌦5(X,Y) l4 · ⌦4

+ · l4(X,Y)
Q6 : ⌦6(X,Y) l3 · l5(B, X),⌦5(X,Y), l3 · l5(B, Y)
Q7 : ⌦7(X,Y) (l�6 · (l0 + l1)

+ + ⌦6)(X,Y)
Q8 : ⌦8(X,Y) (l�4 · ⌦7 · l4)+(X,Y)

Consider B to be a brand in the social graph GSN .
⌦1 returns the customers connected, directly or in-
directly, to an endorser, while ⌦2 returns B’s cus-
tomers. ⌦3 counts the above, while ⌦4 returns B’s
fans, i.e., the customers that monitor a B page and
endorse its merchandise. ⌦5 returns the products
that are viral, i.e., purchased (or endorsed, for ⌦7)
by connected brand fans (of brand B, for ⌦6). ⌦8

returns all consumers that purchase viral B prod-
ucts. In terms of query expressivity, the following
memberships hold: Q1 2 RPQ,Q2 2 2RPQ,Q3 2
RPQc, Q4 2 C2RPQ,Q5 2 UC2RPQ,Q6 2
nUC2RPQ,Q7 2 UCN2RPQ,Q8 2 RQ.

3. GRAPH QUERY PROCESSING
Our discussion on the evaluation and processing

of graph queries begins in Section 3.1, with an brief
overview of the respective complexity of the various
query classes we discuss. Narrowing down on Reg-
ular Queries, which represent the most expressive
fragment, we then proceed, in Section 3.2, to pre-
senting the design of a custom RQ evaluation and
incremental maintenance algorithm. In Section 3.3,
we provide insights concerning its corresponding im-
plementation and formal development, carried out
with the Coq proof assistant [37]. To the best of
our knowledge, this work constitutes the first cer-
tified specification and implementation of the RQ
language and of its mechanized processing engine.

3.1 Complexity Results
In Table 1, we summarize the main complexity re-

sults [36, 39] regarding the evaluation and contain-
ment of the graph query classes in Section 2. Note
that, at a foundational level, these fragments rely on
conjunctive queries (CQ), whose evaluation is poly-
nomial and whose containment is NP-complete [19].
Their common denominator is that they perform
edge traversals (through join chains), while specify-
ing and checking the existence of constrained paths.

The most expressive class we consider is RQ (Reg-
ular Queries) [36], already described in Section 2.
Unlike full Datalog [1], with P-complete evalua-
tion and undecidable containment, Regular Datalog
is particularly well-behaved. First, its evaluation

SIGMOD Record, December 2018 (Vol. 47, No. 4) 7

t ::= n 2 D | x 2 V (Term)
A ::= s(t1, t2), s 2 ⌃ | t1 = t2 (Atom)
L ::= A | A+ (Literal)
B ::= L1 ^ . . . ^ Ln (Conj. Body)
D ::= B1 _ . . . _Bn (Disj. Body)
C ::= (t1, t2) D (Clause)
⇧ ::= ⌃! {C1, . . . , Cn} (Program)

Figure 2: Regular Datalog Grammar

has NLOGSPACE-complete data complexity and is
hence included in NC, the class of highly paralleliz-
able problems. Second, the containment of Regu-
lar Datalog queries is decidable, with an elementary
tight bound (2EXPSPACE-complete) [36].

The behaviors of the other fragments presented
in Table 1 resemble each other, with two excep-
tions. The evaluation of counting label-constrained
reachability queries RPQC has #P�complete data
complexity [38] and its containment problem is un-
defined. The containment problem for RPQ and
2RPQ is PSPACE-complete [6]. For the sake of con-
ciseness, we omit here further details on the com-
plexity of evaluation of special classes of RPQ, boil-
ing down to the trichotomy in [9] and to simple
transitive expressions in [33].

3.2 Evaluation and Maintenance
We present the theoretical foundations of an eval-

uation and incremental view maintenance engine for
regular queries (RQ). We begin with a high-level de-
scription of the basic algorithm underpinning eval-
uation and then extend the introduced constructs
to support incremental maintenance.
Evaluation. As a subset of Datalog, RQs can
consequently lend themselves to the same evalua-
tion techniques employed by deductive reasoning
engines. The adopted evaluation strategies of these
engines can be classified as: 1) bottom-up, i.e., start
from the extensional database and generate new
facts by forward-chaining, 2) top-down, i.e., start
from the query (part of the intensional database)
and construct a proof tree or a refutation proof by
back-chaining, or 3) rewriting-based, i.e., transform
the query into one for which bottom-up evaluation
emulates top-down information passing (magic-sets
[10]) or pushdown automata (chain-queries [28]).
Henceforth, we focus on the bottom-up approach,
and build on it in order to construct the first in-
ference engine. Our choice is motivated by the
desirable properties of bottom-up inference, such
as guaranteed termination for finite models and
amenability to formalization. Specifically, we rely

on its fundamentally set-theoretical nature to spec-
ify the RQ engine’s behavior and to construct its
machine-checked soundness proof in the Coq proof
assistant.

To facilitate e�cient mechanical reasoning, we
represent RQ constructs as illustrated in Fig. 2.
Notably, we formalize programs as mappings from
indexing symbols to a single pair of source-target
nodes and to a normalized disjunctive body. The
normalized form is obtained through a completion
procedure, uniformizing clause heads and regroup-
ing their respective bodies. For example, the pro-
gram s(a, b). s(z, y) p(x, y), q+(z, x) is normal-
ized as s(x, y) (a = x^b = y)_(p(z, y)^q+(x, z))
and represented by a function from s to the head
and disjunctive body. Based on this representation,
we define an RQ over a graph G as a stratified, Reg-
ular Datalog program ⇧, along with a distinguished
query clause, whose head is the top-level view. We
illustrate this in Example 3, with lr(X,Y) as RQ.

Example 3. In GSN , let B be a brand wanting to
determine if a customer pair (lc) is in the same ad-
vertising reachability cluster (lr). We say that B’s
advertising reaches a customer X either: 1) directly

(ld), if X endorses (l6) or purchases (l
�
4) merchan-

dise promoted (l5) in ads posted (l3) on the brand’s
page, or 2) indirectly (li), if X is linked via a fol-
lower/connection chain to another customer that is
under the direct reach of B.

lr(X,Y) lc+(X,Y)
lc(X,Y) li(X,B), li(Y,B)
li(X,B) (l1 + l0)+ · ld(X,B)
ld(X,B) (l6 + l�4) · l5 · l3(X,B)

Figure 3: Advertising Reachability Clusters

The semantics of Regular Datalog programs fol-
lows standard term-model definitions. For opti-
mization purposes, we model interpretations G as
indexed relations (⌃⇥ {;,+})! P(D ⇥D), which
contain labeled graphs and their transitive closure.
Given that closures are thus internalized, we also
impose that interpretations be well-formed, i.e.,
that the information stored in G(s,+) corresponds
to the actual transitive closure of G(s, ;). Hence,
we check if, for every node pair (n1, n2) 2 G(s,+),
there exists a path (vertex sequence) that starts
with n1 and ends with n2. Hence, a ground literal
s
m(n1, n2) is satisfied by G i↵ (n1, n2) 2 G(s,m),
with m 2 {;,+}, the transitive closure marker.
Consequently, a clause, with index s and disjunc-
tive body D ⌘ (L1,1 ^ . . . ^ L1,n) _ . . . _ (Lm,1 ^
. . . ^ Lm,n), is satisfied by G, G |=s (t1, t2)
D, i↵ 8⌘,

W
i=1..m(

V
j=1..n G |= ⌘(Li,j))) G |=

8 SIGMOD Record, December 2018 (Vol. 47, No. 4)

Query Fragment Evaluation Containment
RPQ NLOGSPACE-complete PSPACE-complete
RPQC #P�complete Undefined
2RPQ NLOGSPACE-complete PSPACE-complete
C2RPQ NLOGSPACE-complete EXPSPACE-complete
UC2RPQ NLOGSPACE-complete EXPSPACE-complete
nUC2RPQ NLOGSPACE-complete EXPSPACE-complete
UCN2RPQs NLOGSPACE-complete EXPSPACE-complete

RQ NLOGSPACE-complete 2EXPSPACE-complete

Table 1: Evaluation and containment data complexity for the language fragments studied in this paper.

⌘(s(t1, t2)), i.e, for all substitutions ⌘, which ground
body literals, if an instantiated body disjunct is sat-
isfied, then so is the instantiated head. The latter is
indeed a ground literal, as we impose the safety con-
dition that all head variables appear in the body. A
well-formed interpretation G is thus a model for a
program ⇧ w.r.t ⌃ i↵ G satisfies all clauses indexed
by ⌃ symbols, i.e., G |=⌃ ⇧ i↵ 8 s 2 ⌃,G |=s ⇧(s).

To compute models, we implement bottom-up
RQ evaluation based on the consequence operator
[1]. This relies on a generic matching algorithm
that, for an initial interpretation and a clause con-
struct, computes the set of all satisfying substi-
tutions. For example, given G and a literal l,
the matching function M

B
G (l) outputs all substi-

tutions �, such that G |= �(l). For a clause,
⇧(s) ⌘ (t1, t2)

W
i=1..n Bi, it extends to body

matching straightforwardly, with M
B
G (Bi) travers-

ing Bi and collecting the set of substitutions ob-
tained from the individual matching. Substitu-
tions for each disjunctive clause are thus accumu-
lated and the resulting ground heads, newly inferred
facts, are added to the interpretation. The conse-
quence operator, encoding nested-loop join, is ex-
pressed set-theoretically as T

⇧,s(G) ⌘ {�(t1, t2) |
� 2

S
i=1..n M

B
G (Bi)}.

Maintenance. Given updates� to a base graph G,
the above evaluation procedure non-incrementally
maintains the top-level ⇧ view, without reusing or
adjusting the previously computed maintenance in-
formation. This makes it especially ine�cient when
few nodes are added to a high-cardinality graph.

To remedy this situation, we extend our pre-
vious algorithm to take into account information
from previously computed models. The key idea
is to restrict matching to graph updates in the
spirit of incremental view maintenance for relational
databases [27]. For example, let V be a material-
ized view, defined as the path over two base edges,
r and s, i.e., V (X,Y) r(X,Z), s(Z, Y). No-
tice that this path can also be seen as a join be-
tween the binary relations r and s on the Z vari-
able, abbreviated as V = r ./ s. For base deltas,
�r and �s, we can compute the view delta as

�V = (�r ./ s) [(r ./ �s) [(�r ./ �s), or,
factoring, as �V = (�r ./ s) [(r⌫ ./ �s), with
r
⌫ = r [�r. Hence, �V = �V1 [�V2, with �V1

and�V2 computable via the following delta clauses:

�1 : �V1 �r(X,Z), s(Z, Y)

�2 : �V2 r
⌫(X,Z),�s(Z, Y)

In general, for V L1, . . . , Ln and an additive up-
date �, we can determine the view delta �V [G;�]
as the set of facts such that V [G : + : �] =
V [G][�V [G;�]. To this end, we compute the delta
program �(V) = {�i | i 2 [1, n]}, where each delta
clause �i is V L1, . . . , Li�1,�Li, L

⌫
i+1, . . . , L

⌫
n.

Note that L
⌫
j marks that we match Lj against

atoms in G [�G with the same symbol as Lj and
�Lj marks that we match Lj against atoms in �G
with the same symbol as Lj . We revisit the schema
in Example 1, on a slightly di↵erent graph instance,
to illustrate this incremental view computation.

Example 4. Consider Figure 4a, in which en-
tity Y is monitored (lm) by X, if X is its connec-
tion/follower/moderator, and auto-referrals (lar)
are computed as cyclic endorsements.

lm(X,Y) (l0 + l1 + l2)(X,Y)
lar(X,Y) l6(X,Y), l6(Y,X)

All detectable auto-referrals are computable with
RQ below, as J⌦KG = {(V6, V0), (V3, V0))}

⌦(X,Y) lar(X,Y), lm(Z,X), lm(Z, Y)

When updating the previous graph in Figure 4b:
J⌦KG0 = {(V6, V0), (V3, V0), (V0,V2), (V2,V0), (V0,V5)}.
The delta update �⌦ = {(V0,V2), (V2,V0), (V0,V5)}
can be incrementally computed from ⇧� = �1[�2[�3,
as: �1 = ;, �2 = {(V2,V0)}, �3 = {(V0,V2), (V0,V5)}.

3.3 Implementation and Certification
The implementation of the engine accounts for

two modes of evaluation: base and incremental.
Note that the former is still needed as, in some cases
we identify, incremental evaluation is either not pos-
sible or not sensible, as full recomputation may be
faster. The built-in engine heuristic is bottom-up
and we leverage the non-recursive, stratified nature

SIGMOD Record, December 2018 (Vol. 47, No. 4) 9

V0

V1 V2

V3

V4V5

V6

lmlm lar

la
r

lar lar

l a
r lar

lm

l m
(a) Initial Graph

V0

V1 V2

V3

V4V5

V6

lmlm lar la
r

lar lar

l a
r lar

lm

l m

lm

lm

lar

(b) Updated Graph

�1 : �⌦(X,Y) �lar(X,Y), lm(Z,X), lm(Z, Y)
�2 : �⌦(X,Y) lar⌫(X,Y),�lm(Z,X), lm(Z, Y)
�3 : �⌦(X,Y) lar⌫(X,Y), lm⌫(Z,X),�lm(Z, Y)

(c) Delta Program for Detectable Auto-Referrals

Figure 4: Detectable Auto-Referrals

of the input programs to achieve single-pass, fine-
grained incremental model computation. In the fol-
lowing, we outline the top-level engine interface and
the main soundness theorem we formally prove.
Implementation. The static parameters of the
engine are: a program ⇧, a graph G, and a sym-
bol set, or support supp, indicating the validity of
a G subset, i.e., what information the incremental
engine needs not recompute. Indeed, as we will
see, a precondition of the engine is that the in-
put graph is a model of ⇧ up to supp, i.e., that
G |=supp ⇧. Note that in the database literature,
the set of G symbols, ⌃, is often seen as a disjoint
set pair, (⌃E ,⌃I), corresponding to the extensional
and intensional program parts. For our engine, this
distinction is “dynamic”, as the already-processed
strata-level is “extensional”, or immutable, for the
rest of the execution. Thus, typical cases for supp

are supp ⌘ ⌃E , when the engine has never been
run before, or supp ⌘ ⌃, where G is the output of
a previous run, and thus the consequences for all
clauses have been computed. The dynamic param-
eters, capturing the current execution state, are: �,
the current update, modified at each call, and the
already and to-be processed strata, ⌃⇤ and ⌃�.

Relying on an incrementality-aware consequence
operator, T

⇧,s
G,supp(�), the engine iterates over ⌃�

and, for each unprocessed symbol s, computes its
corresponding closure. The algorithm then calls it-
self recursively, adding both s and s

+ to ⌃⇤.
Before discussing the implementation of

T
⇧,s
G,supp(�), we explain the modifications made

to base matching, in order to accommodate delta
clauses and programs. Specifically, for each body
to be processed incrementally, we generate a
mask, B�, by marking each of its literals with
m 2 {B,D,F}. This indicates whether the engine
should match against the base interpretation, the

update, or both. We then define incremental atom
matching as:

M
A,m
G,� (a) = (if m 2 {B,F} then M

A
G (a) else ;) [

(if m 2 {D,F} then M
A
�(a) else ;)

Incremental body matching, MB
G,�, proceeds as in

Section 3.2, but additionally takes into account B�,
generated following the diagonal factoring below,
where each row corresponds to a mask element:

2

664

L1
D

L2
F

. . . Ln�1
F

Ln
F

L1
B

L2
D

. . . Ln�1
F

Ln
F

. .

L1
B

L2
B

. . . Ln�1
B

Ln
D

3

775

Finally, the last piece to complete the incremental
engine is the top-level clausal maintenance operator
T

⇧,s
G,supp(�) itself. This is more complex than its base

counterpart, as it must take into account which in-
crementality heuristics to apply, distinguishing be-
tween two cases. If s /2 supp, or � contains dele-
tions for any of the literals in the body of ⇧(s), it
uses the base operator T⇧,s(G :+: �), as we either
cannot reuse the previous model or cannot support
deletions through our incremental strategy. Other-
wise, it generates a body mask, B�, for each of the
bodies B, and returns

S
Bm2B�

M
B
G,�(Bm).

Certification. Before stating the key result with
regard to the correct behavior of our engine, we
mention the pre-conditions imposed. First, we re-
quire our input programs ⇧ be stratified, i.e., that
none of its head symbols depend on other that have
not been previously defined. Second, as we reason
about satisfaction up to a given symbol set, ⌃, we
say that ⇧ is a well-formed slice of ⌃, if, for every s

in ⌃, the symbols defining s in ⇧ are contained in
⌃. We establish that the engine operates over well-
formed slices, which allows us to isolate reasoning
about the current iteration. Finally, we formally
prove that the incremental graph view maintenance
engine is sound, as stated below.

Theorem 1. Let ⇧ be a safe, stratifiable, Regu-
lar Datalog program; ⌃, its symbols; G, a graph in-
stance; �, an update. The incremental view main-
tenance engine cumulatively processes each strata
symbol, such that, if the already processed symbols,
⌃⇤, are a well-formed slice, if � only modifies ⌃⇤,
and if the updated graph is a model of ⇧ under ⌃⇤,
then it outputs an incremental update, which, when
applied to G, forms a model of ⇧ under ⌃.

The proof follows by structural induction on ⌃�,
relying on results we establish regarding modular
satisfaction. These are paramount, as they allow
us to reason about satisfaction locally, within each

10 SIGMOD Record, December 2018 (Vol. 47, No. 4)

well-formed slice. Note that the corresponding Coq
proof of Theorem 1 is about 25 lines long and, thus,
comparable to its paper-version. In total, the li-
brary we developed amounts to ⇠ 1K lines of defini-
tions, specifying our mechanized theory, and ⇠ 700
lines of proofs. Its compactness is mostly due to
the fact that we rely on a library fine-tuned for the
computer-aided theorem proving of finite-set theory
results. This was built to carry out the mechanized
proof of the Feit-Thompson theorem [26] on finite
group classification. We leveraged the finite reason-
ing support, by giving a high-level, mathematical
representation of the core engine components, as
exemplified with the definition of the consequence
operator in Section 3.2. This leads to composable
lemmas that boil down to set-theoretic statements
and, ultimately, to a condensed development, avoid-
ing the proof-complexity explosion characteristic of
formal verification e↵orts.

4. OTHER PROCESSING TECH-
NIQUES

We present alternative approaches that seek to
mitigate the challenges posed by the evaluation of
complex RPQ, as discussed in Section 3.1. First,
in Section 4.1, we focus on leveraging the expres-
sivity of the property graph model to develop e�-
cient approximate query evaluation techniques for
the RPQC fragment. Second, in Section 4.2, we
highlight the promise shown by path query learning
approaches, in the basic RPQ setting.

4.1 Query Approximation
In the following, we outline a newly introduced

algorithm for graph summarization, and its ap-
plication to the approximate evaluation of RPQC

queries.
Graph Summarization. Sampling approaches,
typically used for approximating relational queries,
are not directly applicable to graph processing, due
to the lack of the linearity assumption in graph-
oriented data [30]. Indeed, the linear relationship
between the sample size and execution time typ-
ical of relational query processing falls apart in
graph query processing. For this reason, we focus
on query-driven graph summarization as a baseline
technique for untangling approximate graph query
processing.

Our e↵ort targets the e�cient, high-accuracy, es-
timation of RPQC analytical queries, known to be
costly in terms of runtime. We tackle both chal-
lenges, in an e↵ort to achieve an optimal trade-
o↵. First, we seek to obtain a compact (yet in-
formative) summary, by explicitly inspecting the

query workload and partitioning the graph accord-
ing to the connectivity of the labels identified as
most important. Second, we rely on the expres-
siveness of the property graph model to store perti-
nent, approximation-relevant, data, in the property
lists of both nodes and edges. Specifically, these
recorded statistics serve the purpose of preserving
label-constrained reachability information.

Since both the original and summarized graphs
adhere to the property graph data model (as pre-
sented in Section 2), the approximate evaluation
can be done directly inside the graph database itself,
thanks to a seamless query translation we provide.

We now focus on explaining and illustrating the
underlying summarization algorithm. Let G =
(V, E) be a graph with edge labels ⇤(G). We intro-
duce a summarization algorithm that compresses G
to an AQP-amenable property graph, Ĝ, tailored
for counting label-constrained reachability queries,
with labels in ⇤Q, where ⇤Q ✓ ⇤(G).

The summarization algorithm consists of the fol-
lowing three phases. First, the grouping phase com-
putes �, a label-driven partitioning of G into group-
ings, following the label connectivity on the most
frequent labels in ⇤(G). Next, the evaluation phase
refines the previous step, further isolating into su-
pernodes the grouping components that satisfy a
custom property concerning label-connectivity. The
merge phase then coalesces supernodes into hyper-
nodes, based on label-reachability similarity condi-
tions, as specified the heuristic mode m.

The grouping phase returns a partitioning � of
G, such that |�| is minimized and, for each Gi 2 �,
the number of occurrences of the most frequent edge
label in ⇤(Gi), max

l2⇤(Gi)
(#l), is maximized. Hence, we

first sort the edge label set ⇤(G) into a frequency list,
���!
⇤(G). For each li 2

���!
⇤(G), in descending frequency

order, we identify the largest G-subgraphs that are
weakly-connected on li.

Example 5. Let G be the graph from Figure 1.
It holds that: #l0 = 11, #l1 = 3, #l2 = 2, #l3 =
6, #l4 = 7, #l5 = 7, #l6 = 1. Hence, we can

take
���!
⇤(G) = [l0, l5, l4, l3, l1, l2, l6]. Note that, as

#l4 = #l5, we can choose an arbitrary order for

the labels in
���!
⇤(G). We first add G1 to �, as it re-

groups the maximal weakly-label components on l0.
Hence, V = {R1 � R7,M1 �M6, F1, F2}. Next, we
add G2 to �, as it regroups the maximally weakly-
label component on l5. We obtain V = {F1, F2} and
� = {G1,G2,G3}, as shown in Figure 5a.

The evaluation phase takes as input �, the pre-
viously obtained G-partitioning, together with ⇤Q,
and outputs G⇤ = (V⇤

, E
⇤), an AQP-amenable com-

SIGMOD Record, December 2018 (Vol. 47, No. 4) 11

pression of G. The phase computes V⇤, the set
of supernodes (SN), and E

⇤, the set of superedges
(SE). After each step, G⇤ is enriched with AQP-
relevant properties, such as: VWeight and EWeight,
the number of inner vertices and edges; LPercent,
the percentage-wise label occurrence; and LReach,
the number of vertex pairs connected by an edge
with a given label. We also record pairwise label-
traversal information, such as: EReach, the number
of paths between two cross-edges with given labels,
directions, and common node; and �, the number
of traversal edges, i.e., inner/cross-edge pairs, with
given labels, directions, and common endpoint. Fi-
nally, we compute VF , the number of frontier ver-
tices, given a fixed label and direction, as well as
�, the relative label participation, i.e., the number
of cross-edges on a given label, relative to that of
frontier vertices on another label.

The merge phase takes as input the G⇤ graph and
⇤Q and outputs a compressed graph, Ĝ = (V̂, Ê).
The phase proceeds in two steps, corresponding to
the creation of V̂, the set of hypernodes (HN), and,
respectively, to that of Ê, the set of hyperedges
(HE). HNs are computed by merging together su-
pernodes based on two criteria. The primary, inner-
merge, condition for candidate supernodes requires
them to be maximal weakly label-connected on the
same label. The source-merge heuristic additionally
requires that they share the same set of outgoing la-
bels, while the target-merge heuristic requires that
they share the same set of ingoing labels. HEs are
obtained by merging superedges that share the same
label and endpoints. Finally, Ĝ is enriched with pre-
vious AQP-relevant properties, with the addition of
V⇤

Weight, the average SN weight in each HN.
The three phases of the summarization algorithm

are illustrated on our running example in Figure 5.
Optimal Summarization: NP-Completeness.
We prove the intractability of the optimal graph
summarization problem, under the conditions of our
algorithm. Specifically, let G = (V, E) and � =
{Gi = (Vi, Ei) | i 2 [1, |V|]}, a G-partitioning. Each
HN in Gi 2 � contains HN-subgraphs, Gk

i , that
are all maximal weakly label-connected on a label
l 2 ⇤(G). A summarization function �⇤ : V ! N
assigns to each vertex, v, a unique HN identifier
�⇤(v) 2 [1, k]. �⇤ is valid, if, for any v1, v2, where
�⇤(v1) = �⇤(v2), v1, v2 are in the following cases.
Case 1: part of the same HN-subgraph, Gk

i , that is
maximal weak label-connected on l.
Case 2: part of di↵erent HN-subgraphs, Gk1

i , Gk2
i ,

each maximal label-connected on l and not con-
nected by an l-labeled edge in G.

Theorem 2. Let MinSummary be the problem
that, for a graph G and an integer k

0 � 2, decides
if there exists a label-driven partitioning � of G,
|�| k

0, such that �⇤ is a valid summarization.
MinSummary is NP-complete, even for undirected
graphs, |⇤(G)| 2 and k

0 = 2.

Approximate Query Evaluation. For a graph
G and a counting reachability query Q, we approxi-
mate the result JQKG of evaluating Q over G. Hence,
we translate Q into a query Q

T , evaluated over the
summarization Ĝ of G, such that JQT KĜ ⇡ JQKG , as
discussed next.
Simple and Optional Label Queries. There are two
configurations in which a label l can occur in Ĝ: ei-
ther within a HN or on a cross-edge. Thus, we either
cumulate the number of l-labeled HN inner-edges
or the l-labeled cross-edge weights. To account for
the potential absence of l, we also estimate, in the
optional-label queries, the number of nodes in Ĝ, by
cumulating those in each HN.
Kleene Plus and Kleene Star Queries. To estimate
l
+, we cumulate the counts within HNs containing
l-labeled inner-edges and, as above, the weights on
l-labeled cross-edges. For the first part, we use the
statistics gathered during the evaluation phase. We
distinguish three scenarios, depending on whether
the l+ reachability is due to: 1) inner-edge connec-
tivity – hence, we use the corresponding property
counting the inner l-paths; 2) incoming cross-edges
– hence, we cumulate the l-labeled in-degrees of HN
vertices; or 3) outgoing cross-edges – hence, we cu-
mulate the number of outgoing l-paths. To handle
the ✏-label in l

⇤, we additionally estimate, as before,
the number of nodes in Ĝ.
Disjunction. We treat each possible configuration,
on both labels. Hence, depending on each case, we
cumulate the number of HN inner-edges, on either
label, or the cross-edge weights with either label.
Binary Conjunction. We consider all cases, depend-
ing on whether: 1) the concatenation label l1 · l2
appears on a path within a HN, 2) one of the labels
l1, l2 occurs on a HN inner-edge and the other, as a
cross-edge, or 3) both labels occur on cross-edges.

Example 6. We evaluate the AQP-translation
of example queries of each of the types mentioned
above:
Jl5KĜ = QT

L(l5) =
P

v̂2V̂
EWeight(v̂, l5) ⇤ LPercent(v̂, l5)

= EWeight(HN2, l5) ⇤ LPercent(HN2, l5) = 7
Jl2?KĜ = QT

L(l2) +
P

v̂2V̂
V⇤Weight(v̂) ⇤ VWeight(v̂) = 27

Jl+0 KĜ =
P

v̂2V̂

LReach(v̂, l0) +
P

ê2Ê

EWeight(ê, l0) = 15

Jl⇤0KĜ = Jl+0 KĜ +
P

v̂2V̂
V⇤Weight(v̂) ⇤ VWeight(v̂) = 40

Jl4 + l1KĜ = Jl4KĜ + Jl1KĜ = 14 and Jl�4 · l1KĜ = 7.

12 SIGMOD Record, December 2018 (Vol. 47, No. 4)

G1 G3

G2

P1 P2 P3

P4

P5 P6P7

P8 P9

P10

R1 R2 R3 R4

M1 M2 M3

F1 F2

M4 M5 M6

R5 R6 R7

Grouping

Subgrouping

(a) Grouping Phase

SN1 SN2 SN3 SN4

SN5 SN6 SN7

SN8 SN9

(b) Evaluation Phase

HN1 HN2

HN3

HN4

HN1 HN2

HN3

(c) Source and Target Merge Phases

Figure 5: Summarization Phases for GSN

4.2 Query Learning
The problem of learning a regular path query q 2

RPQ consists of deriving a query statement from
a set of user examples, specified under the form of
positive and negative labels on the nodes of an in-
put graph instance. A positive example is thus a
positively labeled node n+ in the input graph G if n
should be present in the query result, while a nega-
tive example n� is the opposite. We denote by S+

the set of positive examples and by S� the set of
negative ones and their union by S = S+ [S�. In
this work, we exemplify the query to be learned as
an automaton. Regular languages can alternatively
be represented by automata. We refer to [28] for
standard definitions of nondeterministic finite word
automaton (NFA) and deterministic finite word au-
tomaton (DFA). We rely on a Gold-style learning
algorithm [25], thus on the standard framework of
language identification in the limit. We aim at a
polynomial query learning algorithm that is at the
same time sound and complete. Soundness means
that given the set of positive and negative exam-
ples, the algorithm will correctly return a consis-
tent query with respect to the input positive and
negative examples. The algorithm should also be
complete, in the sense that it should be capable of
learning any query from the set of input examples.
It is easy to see that soundness is di�cult to achieve,
due to the intractability of consistency checking [13,
12], which is PSPACE-complete for queries in RPQ
and NP-complete for concatenations of symbols.

Example 7. Consistency checking for a query of
the kind Q(l4, l5) ⌘ l4 · l5(,) corresponding to the
direct reach of a company via its page ads (i.e., the
node pairs of customers and product advertisements
in Figure 1) is already NP-complete.

Due to this intractability, in our work [13, 12]
we lifted the soundness condition of the algorithm
and resorted to query learning with an abstain con-
dition. If a consistent query cannot be e�ciently
found, the algorithm abstains from answering. The
learning model with abstain is guaranteed to re-
turn, in polynomial time, either a consistent query
or a null value, if such a query cannot be found. In
particular, if a polynomial characteristic sample is
provided, the learning algorithm is guaranteed to
return the goal query.

The learning algorithm works by selecting the
smallest consistent paths (SCPs) of length bounded
by k (in order to avoid the enumeration of infinite
paths). It then generalizes the SCP by states merge
on the automaton [35].

The learnability of our query class corresponding
to RPQn (denoting the RPQ of size at most n)
is stated by the following result.

Theorem 3. The query class RPQn is learn-
able with abstain in polynomial time and data, us-
ing the algorithm learner with the parameter k set
to 2⇥ n+ 1.

In order to illustrate the underpinnings of our
learning algorithm, we define the notion of a con-
sistent path as follows. A path is consistent if it
can be selected by the algorithm, for each positive
node, and it does not cover any negative node. One
can enumerate consistent paths (according to the
canonical order) by identifying the paths of each
node labeled as positive and stopping when a con-
sistent path is found, for each node. We refer to the
obtained set of paths as the set of smallest consis-
tent paths (SCPs).

SIGMOD Record, December 2018 (Vol. 47, No. 4) 13

Example 8. For example, given the graph in
Figure 1 and a sample s.t. S+ = {C2, C10} and
S� = {M5}, we obtain the SCPs l0 · l6, for C10,
and, respectively, l0 · l0 · l0 · l6, for C2.

Notice that in this case the disjunction of the
SCPs (i.e., the query l0 · l6 + l0 · l0 · l0 · l6) is consis-
tent with the input sample and one may think that
a learning algorithm should return such a query.
The shortcoming of such an approach is that the
learned query would be always very simple, in the
sense that it uses only concatenation and disjunc-
tion. Since we want a learning algorithm that covers
all the expressibility of RPQ (in particular includ-
ing the Kleene star), we need to extend the algo-
rithm with a further step, namely the generaliza-
tion. The PTA (Prefix Tree Acceptor) [21] of the
previous SCPs can be constructed and its states are
tentatively merged, if the obtained DFA does not
select any negative node. In our example, it is easy
to see that the generalized path expression should
correspond to l

+
0 · l6.

Although Theorem 3 provides a theoretical k in
order to guarantee learnability of queries of a cer-
tain size, our practical evaluation [13, 12] showed
that small values of k (ranging between 2 and 4)
are enough to cover many notable cases of graph
query learning.

The above setting is static since the set of posi-
tive and negative examples is provided beforehand
and no interaction with the user takes place dur-
ing the learning process. An alternative, interactive
scenario, can be envisioned that leads to a learning
algorithm that starts with an empty sample and
continuously interacts with the user during the con-
struction of the input sample. The user provides
positive and negative labels on the nodes of the in-
put graph G until she is satisfied with the output of
the learned query. Thus, the sample keeps growing
until at most one query consistent with the user’s
labels is found. This scenario is inspired by the An-
gluin’s model learning with membership queries [4].

Let S be a sample over a graph G, the set of all
queries consistent with S over G is defined as:

C(G, S) = {q 2 RPQ | S+ ✓ q(G)^S� \ q(G) = ;}.

Assuming that the user labels the nodes consis-
tently with some goal query q, the set C(G, S) al-
ways contains q, where, initially, S = ;.

Therefore, an ideal strategy of presenting nodes
to the user is able to get us quickly from S = ; to a
sample S s.t. C(G, S) = {q}. In particular, a good
strategy should not propose to the user the certain
nodes i.e., nodes not yielding new information when
labeled by the user. Formally, given a graph G, a

sample S, and an unlabeled node ⌫ 2 G, we say
that ⌫ is certain (w.r.t. S) if it belongs to one of
the following sets:

Cert+(G, S) = {⌫ 2 G | 8q 2 C(G, S). ⌫ 2 q(G)},
Cert�(G, S) = {⌫ 2 G | 8q 2 C(G, S). ⌫ /2 q(G)}.

In other words, a node is certain with a label ↵ if
labeling it explicitly with ↵ does not eliminate any
query from C(G, S).

The notion of certain nodes is inspired by pos-
sible world semantics and certain answers [29],
and already employed for XML querying for non-
expert users [20] and for the inference of relational
joins [14, 15]. Additionally, given a graph G, a sam-
ple S, and a node ⌫, we say that ⌫ is informative
(w.r.t. S), if it is neither labeled by the user nor
certain.

An intelligent strategy should propose to the user
only informative nodes. Since deciding the informa-
tiveness of a node is intractable, we need to explore
practical strategies that e�ciently compute the next
node to label. The basic idea behind these is to
avoid the intractability of deciding the informative-
ness of a node, by only looking at a small number
of paths of that node. More precisely, we say that a
node is k-informative, if it has at least one path of
length at most k that is not covered by a negative
example. If a node is k-informative, then it is also
informative, otherwise we are not able to establish
its informativeness w.r.t. the current k.

5. CONCLUSION AND PERSPEC-
TIVES

In addition to our overview of topics we addressed
concerning graph query evaluation, approximate
processing and learning, we also would like to briefly
outline the challenges encountered when tackling
the problems of query benchmarking and log anal-
ysis, as reported in our previous work [8, 18]. In
gMark [8], we addressed the graph and query work-
load generation problems concerning edge-labeled
graph instances and UC2RPQ query workloads.
Such a generator has been employed in the experi-
mental evaluation of [16, 23] to generate varied test
cases of these engines. Benchmarking is a long-
standing question in our community, which serves,
at the same time, the purpose of both system-driven
and theoretical research. On the other hand, em-
pirical analysis of real-world SPARQL query logs
[18] also brought to our attention specific query lan-
guage fragments adopted in practice by users and
bots. A major future challenge is to let these stud-
ies influence the design of graph query benchmarks
that take into account the requirements of users and

14 SIGMOD Record, December 2018 (Vol. 47, No. 4)

applications, as reflected by concrete usage of graph
query languages.

As discussed in Section 2, the e↵orts to under-
stand and hone in graph query expressivity have
benefited from the purely-declarative, logic based
formulation provided by Datalog. Various of its
fragments have been tailored to user-specific ap-
plications, with Regular Datalog having recently
emerged as an optimal compromise between usabil-
ity and tractability. In this setting, we provide,
as presented in Section 3, a mechanically certified
specification of this query language, as well as a cus-
tom algorithm for its evaluation and fine-grained
incremental maintenance in the dynamic setting.
Additionally, we build on state-of-the-art theorem
proving technology to verify, with the Coq theo-
rem prover, the correct behavior of the engine. As
shown in [16], its reasonable performance on realis-
tic, synthetically-generated [8] graph instances as-
certains the potential of employing formal methods
to obtain correct-by-construction query engines.

Various works, such as [32, 9, 33], have tackled
the complexity of evaluating graph queries, high-
lighting the challenges it poses. To mitigate these,
in Section 4, we explore alternative processing ap-
proaches. A first such technique is based on ap-
proximate query evaluation, as introduced in [23].
Inspired by the internalization of transitive closure,
which lies at the core of Regular Queries, we define
a graph summarization that seeks to compress the
nodes in the same label-connectivity closure. We
combine the compactness of the obtained represen-
tation with the expressivity of the property graph
model, used to store reachability preservation in-
formation, to maximize both evaluation e�ciency
and accuracy. With respect to existing related ap-
proaches, we base our work on the property graph
model, leveraging aggregate pre-computation and
query-driven graph summarization to provide scal-
able, high-accuracy, in-database query answers.

In Section 4.2, we have described a polynomial al-
gorithm for learning graph queries of the basic RPQ
class. More expressive fragments, for example those
including conjunctions, can benefit from our previ-
ous work on learning relational queries [14]. A pos-
sible unification between the two lines of research
would be desirable given the actual occurrences of
C2RPQ in real-world query logs [18]. Another di-
rection of future work would be to actually amelio-
rate the interactive paradigm presented in [14, 13,
12]. In these instances, the initial sample is empty
and the user gradually fills the sample by providing
positive and negative labels, until the inferred query
and the user goal query coincide. For instance, more

feedback from the learning system would be needed
to more accurately model the user’s intentions and
to more e�ciently reduce the search space given by
the initial sample, through asking questions [5].

6. REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu.
Foundations of Databases. Addison-Wesley,
1995.

[2] R. Angles. The property graph database
model. In AMW, volume 2100 of CEUR
Workshop Proceedings, 2018.

[3] R. Angles, M. Arenas, P. Barceló, A. Hogan,
J. L. Reutter, and D. Vrgoc. Foundations of
modern query languages for graph databases.
In ACM Computing Surveys, volume 50,
pages 68:1–68:40, 2017.

[4] D. Angluin. Queries and concept learning.
Machine Learning, 2(4):319–342, 1988.

[5] A. Arioua and A. Bonifati. User-guided
repairing of inconsistent knowledge bases. In
EDBT, pages 133–144, 2018.

[6] P. B. Baeza. Querying graph databases. In
PODS, pages 175–188, 2013.

[7] G. Bagan, A. Bonifati, R. Ciucanu, G. H. L.
Fletcher, A. Lemay, and N. Advokaat.
Generating Flexible Workloads for Graph
Databases. PVLDB, 9(13):1457–1460, 2016.

[8] G. Bagan, A. Bonifati, R. Ciucanu, G. H. L.
Fletcher, A. Lemay, and N. Advokaat. gMark:
Schema-driven generation of graphs and
queries. IEEE Transactions on Knowledge
and Data Engineering, 29(4):856–869, 2017.

[9] G. Bagan, A. Bonifati, and B. Groz. A
Trichotomy for Regular Simple Path Queries
on Graphs. In PODS, pages 261–272. ACM,
2013.

[10] F. Bancilhon, D. Maier, Y. Sagiv, and J. D.
Ullman. Magic Sets and Other Strange Ways
to Implement Logic Programs. In PODS,
pages 1–15, 1986.

[11] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer,
C. Becker, R. Cyganiak, and S. Hellmann.
DBpedia - A crystallization point for the Web
of Data. Journal of Web Semantics,
7(3):154–165, 2009.

[12] A. Bonifati, R. Ciucanu, and A. Lemay.
Interactive Path Query Specification on
Graph Databases. In EDBT, pages 505–508,
2015.

[13] A. Bonifati, R. Ciucanu, and A. Lemay.
Learning Path Queries on Graph Databases.
In EDBT, pages 109–120, 2015.

SIGMOD Record, December 2018 (Vol. 47, No. 4) 15

[14] A. Bonifati, R. Ciucanu, A. Lemay, and
S. Staworko. A Paradigm for Learning Queries
on Big Data. In Data4U@VLDB, page 7, 2014.

[15] A. Bonifati, R. Ciucanu, and S. Staworko.
Learning Join Queries from User Examples.
ACM Transactions on Database Systems,
40(4):24:1–24:38, 2016.

[16] A. Bonifati, S. Dumbrava, and E. J. G. Arias.
Certified Graph View Maintenance with
Regular Datalog. Theory and Practice of
Logic Programming, 18(3-4):372–389, 2018.

[17] A. Bonifati, G. H. L. Fletcher, H. Voigts, and
N. Yakovets. Querying Graphs. Synthesis
Lectures on Data Management. Morgan &
Claypool Publishers, 2018.

[18] A. Bonifati, W. Martens, and T. Timm. An
Analytical Study of Large SPARQL Query
Logs. PVLDB, 11(2):149–161, 2017.

[19] A. K. Chandra and P. M. Merlin. Optimal
Implementation of Conjunctive Queries in
Relational Data Bases. In STOC, pages
77–90, 1977.

[20] S. Cohen and Y. Weiss. Certain and possible
XPath answers. In ICDT, pages 237–248,
2013.

[21] C. de la Higuera. Grammatical Inference:
Learning Automata and Grammars.
Cambridge University Press, 2010.

[22] R. Delanaux, A. Bonifati, M. Rousset, and
R. Thion. Query-based linked data
anonymization. In ISWC, pages 530–546,
2018.

[23] S. Dumbrava, A. Bonifati, A. Ruiz-Diaz, and
R. Vuillemot. Approximate Query Processing
for Label-Constrained Reachability Queries.
CoRR, abs/1811.11561, 2018.

[24] O. Erling, A. Averbuch, J. Larriba-Pey,
H. Chafi, A. Gubichev, A. Prat-Pérez,
M. Pham, and P. A. Boncz. The LDBC social
network benchmark: Interactive workload. In
SIGMOD, pages 619–630, 2015.

[25] E. M. Gold. Complexity of automaton
identification from given data. Information
and Control, 37(3):302–320, 1978.

[26] G. Gonthier, A. Asperti, J. Avigad, Y. Bertot,
C. Cohen, F. Garillot, S. L. Roux,
A. Mahboubi, R. O’Connor, S. O. Biha,
I. Pasca, L. Rideau, A. Solovyev, E. Tassi,
and L. Théry. A Machine-Checked Proof of
the Odd Order Theorem. In ITP, pages
163–179, 2013.

[27] A. Gupta, I. S. Mumick, and V. S.
Subrahmanian. Maintaining Views

Incrementally. SIGMOD Record,
22(2):157–166, 1993.

[28] J. E. Hopcroft and J. D. Ullman. Introduction
to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

[29] T. Imielinski and W. Lipski Jr. Incomplete
information in relational databases. Journal
of the ACM, 31(4):761–791, 1984.

[30] A. P. Iyer, A. Panda, S. Venkataraman,
M. Chowdhury, A. Akella, S. Shenker, and
I. Stoica. Bridging the GAP: towards
approximate graph analytics. In GRADES,
pages 10:1–10:5, 2018.

[31] H. V. Jagadish, R. Agrawal, and L. Ness. A
Study of Transitive Closure As a Recursion
Mechanism. In SIGMOD, pages 331–344,
1987.

[32] K. Losemann and W. Martens. The
complexity of regular expressions and
property paths in SPARQL. ACM
Transactions on Database Systems,
38(4):24:1–24:39, 2013.

[33] W. Martens and T. Trautner. Evaluation and
Enumeration Problems for Regular Path
Queries. In ICDT, pages 1–21, 2018.

[34] Michel Dumontier and Alison Callahan and
Jose Cruz-Toledo and Peter Ansell and
Vincent Emonet and François Belleau and
Arnaud Droit. Bio2RDF Release 3: A larger,
more connected network of Linked Data for
the Life Sciences. In ISWC, pages 401–404,
2014.

[35] J. Oncina and P. Garćıa. Inferring regular
languages in polynomial update time. Pattern
Recognition and Image Analysis, pages 49–61,
1992.

[36] J. L. Reutter, M. Romero, and M. Y. Vardi.
Regular queries on graph databases. Theory
of Computing Systems, 61(1):31–83, 2017.

[37] The Coq Development Team. The Coq proof
assistant, version 8.8.0.
https://zenodo.org/record/1219885, 2018.

[38] L. G. Valiant. The complexity of computing
the permanent. Theoretical Computer Science,
8:189–201, 1979.

[39] M. Y. Vardi. A theory of regular queries. In
PODS, pages 1–9, 2016.

[40] Vrandečić, Denny and Krötzsch, Markus.
Wikidata: A Free Collaborative
Knowledgebase. Communications of the
ACM, 57(10):78–85, 2014.

16 SIGMOD Record, December 2018 (Vol. 47, No. 4)

