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ABSTRACT
We overview recent developments on query reformula-
tion over a restricted interface, in the presence of in-
tegrity constraints. We overview an approach to the prob-
lem via reduction to query containment with constraints,
where the reduction makes use of interpolation algo-
rithms from logic. We first present the approach in the
context of reformulating one query as another query us-
ing a fixed set of tables. We then generalize to reformu-
lation of a query as a plan over a set of access methods.

1. INTRODUCTION
This article summarizes a series of articles [2, 8,

9, 5, 6, 4] revisiting reformulating queries over re-
stricted data interfaces in the presence of integrity
constraints. In this problem, we start with a source
query Q written in some declarative language and
a set of integrity constraints ⌃. We also have some
“interface restriction”, representing a limit on how
data is accessed. We want to translate Q into a tar-
get object P — either a query or a program — that
satisfies two properties:

• P is equivalent to Q for all query inputs satis-
fying the constraints ⌃

• P satisfies the interface restriction.
We consider two flavors of interface restriction.

The first is vocabulary-based restriction. We have a
subset V of the tables in the schema, and we want P
to be a query referencing only tables in V. The pro-
totypical case is where V is a set of view tables, and
⌃ includes the assertion that each view table stores
exactly the tuples satisfying the corresponding view
definition.

A second kind of interface restriction is given by
access methods : each table T with n attributes is as-
sociated with a set (possibly empty) of access meth-
ods. Each method is further associated with a sub-
set of the attributes of T – the input positions. The
idea is that a method gives functional access to table
T : given a binding for the input positions, it returns
the matching tuples in T . Our reformulation prob-

lem is to see if Q is equivalent, modulo constraints
⌃, to something “executable with respect to the ac-
cess methods”. That is, we want a plan that makes
use of the access methods, whose result agrees with
Q for all inputs satisfying ⌃.

Thus our reformulation problem generalizes both
rewriting queries with respect to views, which has
been studied for decades, as well as prior work on
determining whether a query can be executed with
access methods [20, 19, 31, 23, 24, 12].

We present a common framework for dealing with
both of these problems, using a reduction to query
containment with constraints. From a proof of a
query containment one can extract a reformulation,
using a technique from logic called interpolation.
This framework provides new reformulation algo-
rithms both when the target is a query and when
the target is a plan. It also gives a common way to
see many prior results in the area. For instance, it
allows us to re-derive classic results on querying over
views, such as Levy, Mendelzon, Sagiv, and Srivas-
tava’s [17], and methods for reformulating queries
using constraints, such as the Chase and Backchase
of Deutsch, Popa, and Tannen [16, 14, 26].

Although the unified presentation of reformula-
tion comes from our own work, it builds on a long
line of prior papers. Particularly important is Nash,
Segoufin and Vianu’s work on characterizing when
a query can be expressed using views [25]. Two
other key antecedents are Deutsch, Ludäscher, and
Nash’s paper [12] on querying with access methods
and integrity constraints, and the book of Toman
and Weddell [30] on reformulation over constraints.

In this survey article we will go through some of
the main ideas, skipping most of the details. A full
exposition of the techniques, as well as a detailed
discussion of related work, can be found in [4].

Organization:. Section 2 contains standard DB
preliminaries, as well as some results on query con-
tainment with constraints. Section 3 looks at the
reformulation problem for vocabulary-based inter-

SIGMOD Record, June 2018 (Vol. 47, No. 2) 5



faces. Section 4 turns to interfaces based on access
methods. We present a discussion of implications
and future directions in Section 5, before conclud-
ing in Section 6.

2. PRELIMINARIES
Data and queries. The basic data model of a

querying scenario is given by a relational schema
S that consists of a set of relations each with an
associated arity (a positive integer). The positions
of a relation R of S are 1, . . . , n where n is the arity
of R. An instance of R is a set of n-tuples (finite or
infinite), and an instance I of S consists of instances
for each relation of S. For an instance I of S and a
relation R 2 S, the set of tuples assigned to R in I

is the interpretation of R in I. We can equivalently
see I as a set of facts R(a1 . . . an) for each tuple
(a1 . . . an) in the instance of each relation R. The
active domain of I, denoted adom(I), is the set of
all the values that occur in facts of I.

The source queries that are being reformulated
will be conjunctive queries (CQs) which are expres-
sions of the form 9x1 . . . xk (A1 ^ · · · ^ Am), where
the Ai are relational atoms of the form R(x1 . . . xn),
with R being a relation of arity n and x1 . . . xn be-
ing variables or constants. A union of conjunctive
queries (UCQ) is a disjunction of CQs. The tar-
get for reformulation of a CQ will not necessarily
be another CQ or even a UCQ. Sometimes it will
be a formula of first-order logic (FO). FO is built
up from relational atoms and equalities using the
boolean operations and quantifiers 8 and 9, where
quantifiers always range over the active domain. For
an instance I and query Q given by an FO formula,
the set of bindings for the variables that satisfy the
formula is the output of Q on I, denoted Q(I).

Integrity constraints. To express integrity con-
straints on instances, we will use sentences of FO.
Some of the results apply only to dependencies, which
will be either tuple-generating dependencies (TGDs)
or equality-generating dependencies (EGDs).

A TGD is an FO sentence ⌧ of the form 8~x ('(~x) !
9~y  (~x, ~y)) where ' and  are CQs. An EGD is of
the form: 8~x ('(~x) ! xi = xj) where ' is a CQ
whose variables include xi and xj .

For brevity, in the sequel, we will omit outermost
universal quantifications in dependencies.

Query containment problems. A query con-
tainment with constraints is an assertion

Q ✓⌃ Q
0

where Q and Q
0 are queries given by logical formu-

las, and ⌃ is a set of integrity constraints (given by
logical sentences). Such a containment holds if for

every instance I satisfying ⌃, the result of Q on I is
contained in the result of Q0 on I

1. We say that “Q
is contained in Q’ with respect to ⌃”. To verify a
query containment, it is necessary and su�cient to
find a proof in some suitable proof system. There
are many proof systems for first-order logic. One ex-
ample is the tableau proof system. A tableau proof
witnesses that a first-order logic formula ' is unsat-
isfiable. It is a tree where every node p is associated
with a set of formulas Fp. The root of the tree is as-
sociated with the singleton set of formulas {'} and
every leaf must be associated to a set containing an
explicitly contradictory formula (False). A non-leaf
node p, associated with formulas Fp, has at most
two children. For each child c, the set of formulas
Fc is related to Fp by adding on some subformula
of a formula �p 2 Fp. For example, if Fp includes
a formula �p that is a disjunction �1 _ �2, then one
of the children will contain �1 and the other will
contain �2. Tableau proofs give a complete method
for detecting unsatisfiability of a sentence:

Proposition 1: If ' is unsatisfiable there is some
tableau proof witnessing this. ⌅
A query containment Q1 ✓⌃ Q2 holds exactly when
Q1 ^ ⌃ ^ ¬Q2 is unsatisfiable. Thus tableau proofs
provide a complete method to verify query con-
tainment with arbitrary first-order integrity con-
straints ⌃. Other proof systems for first-order logic
include resolution and natural deduction. For query
containment problems in which the constraints ⌃
consist of dependencies, there are more specialized
proof systems, such as the chase [22].

3. REFORMULATING OVER A SUBSET
OF THE RELATIONS

We revisit the reduction from reformulation to
query containment with constraints implicit in the
work of Nash, Segoufin, and Vianu [25]. We will
phrase their work in terms of reformulation of a
query defined over a source vocabulary, where the
goal is to translate it into a query over a target vo-
cabulary. We have integrity constraints that can
involve relations in both the source vocabulary and
the target vocabulary. Thus the “interface” is de-
fined by giving the target vocabulary.

Let S be a collection of relations, ⌃ a set of in-
tegrity constraints, and V a subset of S. A first-
order reformulation of Q over V with respect to ⌃
1Note that in this work we will always consider contain-
ments over all instances, not just finite ones. The the-
orems presented here do not hold for general first-order
logic if only finite instances are considered. However,
for many classes of interest, the results hold verbatim
over finite instances [4].
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means a safe first-order query QV (that is, a query
equivalent to a relational algebra query), using only
the relations in V, and such that for every instance
I satisfying ⌃, Q(I) = QV(I).

Example 3.1. A university database has a relation
Prof containing ids and last names of professors,
along with the name of the professor’s department.
It also has a relation Stud listing the id and last
name of each student, along with their advisor’s id.

The database does not allow users to access the
Prof and Stud relations directly, but instead exposes
a view VProf where the id attribute is dropped, and
a relation VStud where the advisor’s id is replaced
with the advisor’s last name.

That is, VProf is a view defined by the formula:

{ lname, dname |
9 profid Prof(profid, lname, dname)}

or equivalently by the constraint:

(9profid Prof(profid, lname, dname)) $ VProf(lname, dname)

VStud is a view defined by the formula:

{studid, lname, profname |
9profid 9dname Stud(studid, lname, profid)

^Prof(profid, profname, dname)}

or equivalently by the constraint:

[(9profid 9dname Prof(profid, profname, dname)^
Stud(studid, lname, profid))

$ VStud(studid, lname, profname)]

Consider the query asking for the names of the
advisors of a given student. We can reformulate
this query over the VStud view. The reformulation
is just the query returning the profname attribute
of the view. But a query asking for the last names
of all students that have an advisor in the history
department can not be refomulated using these two
views: knowing the advisor’s name is not enough to
identify the department. /

If L is some subset of FO, we can similarly talk
about an L reformulation of Q over V with respect
to ⌃.

One of the main ideas of [25] is a reduction of
finding a reformulation to verifying a query contain-
ment with constraints, and the key to this reduction
is the notion of determinacy, which we define next.
If ⌃ is a collection of first-order constraints, we say
that a first-order query Q over S is determined over
V relative to ⌃ if:

For any two instances I and I
0 that sat-

isfy ⌃ and have the same interpretation of

all relations in V (that is, they have the
same T -facts for each T 2 V), we have
Q(I) = Q(I 0).

That is, two instances that agree on V must agree
on Q. How does determinacy connect with reformu-
lation? We first show that determinacy boils down
to checking query containment with constraints. Let
us extend our original schema for the constraints ⌃
and the query Q by making a copy R

0 of every re-
lation R in the schema. Let Q0 be the copy of Q on
the new relations, and ⌃0 be the copy of the con-
straints ⌃ on the new relations. Our assumption of
determinacy of Q can be restated as a query con-
tainment problem Q ✓� Q

0, where � contains ⌃,⌃0

and the additional interface axioms:
^

T2V
8~y T (~y) $ T

0(~y)

This is the query containment corresponding to de-
terminacy of Q over V relative to ⌃.

We now want to argue that when the query con-
tainment above holds, we can get a reformulation
of Q over V with respect to ⌃. To do this, we need
to bring into the picture interpolation. If we have
a query containment problem Q ✓� Q

0, and a par-
tition of � into �1 and �2, an interpolant for the
containment and partition is a formula � such that:

• Q is contained in � with respect to �1 and �
is contained in Q

0 with respect to �2

• Every relation in � occurs in both {Q} [ �1

and in {Q0} [ �2.

The crucial facts about interpolants that are rel-
evant to us are:

• For every query containment problem Q ✓�

Q
0, for every partition of � into �1,�2, there

is an interpolant. Thus in particular if Q is
determined over V relative to ⌃, then for ev-
ery partition of � the containment Q ✓� Q

0

above corresponding to determinacy has an in-
terpolant.

• Suppose that the query containment correspond-
ing to determinacy of Q over V relative to ⌃
holds, and partition � above into �1 = ⌃,
�2 = ⌃0 [ the interface axioms. Let QV be any
interpolant for the query containment relative
to this partition. Then QV is a reformulation
of Q over V with respect to ⌃.

The first item, saying that interpolants exist, is
a basic result in logic; we do not prove it here. We
give the short proof of the second item, saying that
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interpolants for this particular partition give refor-
mulations. It is a variant of an argument in [11].

Proof. For simplicity, in the proof we assume
Q is a sentence. The definition of interpolant says
that QV can use only relations that occur both in
{Q} [ �1 and also in �2 [ {Q0}. This implies that
QV uses only relations in V.

Since Q ✓�1 QV , we know that if an instance
satisfies the constraints ⌃ and also satisfies Q, it
must also satisfy QV .

We argue that if an instance satisfies ⌃ and also
satisfies QV , it must also satisfy Q. Fix I satisfying
⌃ such that QV holds in I. Extend I to an instance
I + I

0 by letting the interpretation of each primed
relation R

0 be the same as the corresponding un-
primed relation R of I. The instance I+ I

0 satisfies
QV , ⌃0, and the interface axioms. Since QV ✓�2 Q,
we know that I+I

0 satisfies Q0. By the construction
of I + I

0, this means I satisfies Q.
We have shown that for an instance satisfying ⌃,

Q holds if and only if QV holds, which means QV is
a reformulation.

Since the existence of a reformulation implies that
the query containment for determinacy holds, we
have the following result:

Theorem 3.1: A conjunctive query Q has a first-
order reformulation with respect to vocabulary V
and constraints ⌃ if and only if Q is determined over
V relative to ⌃ if and only if the query containment
corresponding to determinacy of Q over V relative
to ⌃ holds. ⌅

Finding the reformulation. Theorem 3.1 re-
duces the problem of existence of a reformulation
to a query containment problem. But of course, we
do not just want to know if a reformulation exists,
we want to be able to find it. There is a refine-
ment of Theorem 3.1 that talks about finding the
reformulation from a witness that the query con-
tainment holds. The witness we require is a proof.
We mentioned in the preliminaries that there are
many proof systems for first-order logic, and most of
them admit feasible interpolation algorithms. One
example is the tableau proof system mentioned in
the preliminaries. One can find interpolants quickly
from tableau proofs:

Proposition 2: There is a polynomial time algo-
rithm that given a tableau proof thatQ1 ✓⌃ Q2 and
a partition of ⌃ into ⌃1,⌃2, finds an interpolant �
for the containment and partition. ⌅

Using Proposition 2 we can get the refined version
of Theorem 3.1 mentioned above:

Theorem 3.2: A conjunctive query Q has a first-
order reformulation with respect to vocabulary V
and constraints ⌃ if and only if the query contain-
ment for determinacy of Q over V holds. Further,
given a tableau proof of the query containment we
can extract a reformulation in polynomial time. ⌅

If the constraints ⌃ are arbitrary first-order sen-
tences, we cannot bound the time taken to find
tableau proof, since query containment with first-
order constraints is undecidable. But for many re-
stricted classes of constraints – e.g. referential con-
straints – we can show that the query containment
for determinacy is also decidable. Indeed, for many
classes C of constraints the query containment prob-
lem for determinacy is no more complex than the
problem of query containment for the class C.

There is a subtlety we should mention. In our
reformulation problems we start with a CQ, and
we are interested in reformulations that can be con-
verted to relational algebra. That is, we want refor-
mulations that are not arbitrary first-order, but for-
mulas which only quantify over the active-domain,
and where the free variables are safe. Using classi-
cal tableau with prior interpolation procedures does
not give us this. But by varying both the proof
system and the interpolation algorithm slightly, we
can get active-domain formulas. Safe reformula-
tions can be achieved by post-processing the inter-
polants. Details can be found in [4].

3.1 Variation: vocabulary-based reformu-
lation with positive existential queries

We now explore what happens when we restrict
the target language for a reformulation. A positive
existential formula with inequalities (9+, 6= formula)
is a formula built up using only existential quantifi-
cation, starting from atomic relations and inequal-
ities. By convention, we also consider the formula
False to be positive existential with inequalities. A
safe FO formula in this class is equivalent to a re-
lational algebra expression that does not have the
di↵erence operator, but allows inequalities in selec-
tions. Thus we will sometimes refer to 9+, 6= formu-
las as “USPJ

6= queries”.
Given a conjunctive query Q, restricted vocabu-

lary V, and constraints ⌃ given by FO sentences,
we are interested in getting a 9+, 6= reformulation of
Q over V with respect to ⌃. This means we want
a 9+, 6= formula over V that agrees with Q for in-
stances satisfying the constraints.

The query containment for 9+, 6= reformula-
tion. We start by finding the appropriate variant
of determinacy equivalent to a query Q having a
9+, 6= reformulation. The property was isolated in
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[25]. We say that a query Q over schema Sch is
monotonically-determined over V relative to ⌃ if:

whenever we have two instances I, I 0 that
satisfy ⌃ and for each relation T 2 V, the
interpretation of T 2 I is a subset of the
interpretation of T in I

0, then Q(I) ✓
Q(I 0).

If a 9+, 6= formula QV over V is true on an in-
stance I, then it is true on any instance I

0 which
only adds tuples to the relations in V. It follows
that monotonic-determinacy of Q over V relative to
⌃ is a necessary condition for Q to have a 9+, 6=

reformulation over V with respect to ⌃.
We can express monotonic-determinacy as a query

containment problem. Again we will use a vocabu-
lary that allows us to talk about two copies of the
relations, with R

0 being a copy of R. We let ⌃0 be
a copy of the constraints ⌃ where each occurrence
of a relation R in S has been replaced by a copy R

0.
And we let Q0 be defined from Q analogously.

Then monotonic-determinacy of a first-order query
Q over V relative to ⌃ can be restated as saying
that the query containment Q ✓� Q

0 holds, where
� contains ⌃, ⌃0 and the “forward interface axiom”:

^

T2V
8~y T (~y) ! T

0(~y))

That is, the di↵erence from determinacy is that
we have only implication in the “forward” direction,
from unprimed to primed, while for determinacy we
have implications in both directions. This is the
query containment for monotonic-determinacy.

Generating 9+, 6= reformulations from proofs
of the query containment. We now give a result
saying that from proofs of the query containment
for monotonic-determinacy, we get 9+, 6= reformula-
tions. It is an analog of Theorem 3.1.

Theorem 3.3: If the constraints ⌃ are first-order
then conjunctive query Q has a USPJ

6= reformu-
lation over V relative to ⌃ if and only if the query
containment for monotonic-determinacy holds. ⌅

Theorem 3.3 is proven using the same technique
as Theorem 3.1: applying an interpolation algo-
rithm to the query containment associated to monotonic-
determinacy. One needs to ensure that the inter-
polants have some additional properties in order to
be sure that the interpolant coming from the proof
does not have negation. Many interpolation algo-
rithms are known to ensure this additional prop-
erty [21]. As with Theorem 3.1, there is a variant
that tells us we can find the reformulation e↵ectively
given a proof of the query containment.

3.2 Variation: existential reformulation
We now look at another variation of the refor-

mulation problem: determining whether a query
can be reformulated using an existential formula,
or equivalently a UCQ with negation allowed only
on atomic formulas. That is, a formula that is
built up from atoms and negated atoms by pos-
itive boolean operators and existential quantifica-
tion. There are conjunctive queries that are equiv-
alent to existential formulas but not to positive ex-
istential ones. For example, in the absence of any
constraints 9x S(x) ^ ¬R(x) is not equivalent to a
positive existential formula.

As before, let Sch be a schema with a set of in-
tegrity constraints ⌃ in FO, and V a subset of the
relations of Sch. We start by isolating a determi-
nacy property that Q must have in order to possess
an existential reformulation.

For a set of relations V and instances I and I
0, we

say that I is a V induced-subinstance of I 0 provided
for each T 2 V two conditions hold. First, I 0 con-
tains every fact T (~c) in I. Second, I contains every
fact T (c1 . . . cn) in I

0 such that each ci occurs in
the domain of some relation of V in I. We say that
a query Q over schema Sch is induced-subinstance-
monotonically-determined over V relative to ⌃ if:

Whenever we have two instances I, I
0 that sat-

isfy ⌃, and I is a V induced-subinstance of I 0, then
Q(I) ✓ Q(I 0).

If an existential formula over V is true on an in-
stance I, then it is true on any instance I

0 which
only adds tuples to the relations in V and never
“destroys a negated assertion about a relation of V
holding in I”. From this we see that if a formula
is equivalent to an existential formula under con-
straints ⌃, then the formula is induced-subinstance-
monotonically-determined over V relative to ⌃.

As in the previous cases, we can translate this
property into a query containment with constraints,
but it will be slightly more complicated than deter-
minacy or monotonic-determinacy. Let InDomainV(x)
abbreviate the formula:

_

T2V

_

j

9w1 . . . 9wj�1 9wj+1 . . . warity(T )

T (w1, . . . wj�1, x, wj+1, . . . , warity(T ))

So InDomainV states that x is in the domain of a
relation in V. The query containment for induced-
subinstance-monotonic-determinacy isQ ✓� Q

0, where
� contains ⌃, ⌃0, and also the following two addi-
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tional axioms:
^

T2V
(8~y T (~y) ! T

0(~y))

^

T2V
(8~y

^

i

InDomainV(yi) ^ T
0(~y) ! T (~y) )

Comparing with the two previous query contain-
ments, we have the forward interface axiom, used in
the axioms for determinacy and monotone-determinacy.
We also have a restriction of the backward interface
axiom used in determinacy. It is easy to see that
induced-subinstance-monotonic-determinacy is equiv-
alent to this containment holding.

Extracting reformulations from a proof of
the query containment. Continuing the prior
pattern, we can show that from a proof of the query
containment corresponding to induced-subinstance-
monotonic-determinacy, we can extract an existen-
tial reformulation from it:

Theorem 3.4: If the constraints ⌃ are in FO, and
CQQ is induced-subinstance-monotonically-determined
over V relative to ⌃, then there is an existential for-
mula '(~x) using only relations in V that is a refor-
mulation of Q with respect to ⌃. ⌅

The bottom line on vocabulary-based reformula-
tion is:

For every target language, we have a di↵erent
query containment problem. From proofs of the query
containment, we can extract reformulations.

When constraints are dependencies, one can use
chase proofs to verify the query containment. For
chase proofs, extraction of the reformulation from a
proof turns out to be very simple (see [9, 4]).

4. ACCESS METHODS
In the previous section the target of reformula-

tion was specified through vocabulary restrictions.
We wanted a query that used a fixed set of target
relations, perhaps restricted to be positive existen-
tial or existential. In this section we deal with a
finer notion of reformulation, where the target has
to satisfy access restrictions.

Access methods are close to the traditional no-
tion of interface in programming languages: a set
of functions that access the data. A specification
of this interface will be an extended set of meta-
data describing both the format of the data (e.g.
the vocabulary that would be used in queries and
constraints) and the access methods (functions that
interact with the stored data).

An access schema consists of:

• A collection of relations, each of a given arity.

• A finite collection C of schema constants (“Smith”,
3, . . .). Schema constants represent a fixed set
of values that will be known to a user prior
to interacting with the data. Values that can
be used in queries and constraints should be
schema constants, as before. In addition, any
fixed values that might be used in plans that
implement queries should come from the set of
schema constants. For example, a plan that re-
formulates a query about the mathematics de-
partment might involve first putting the string
“mathematics” into a directory service.

• For each relationR, a collection (possibly empty)
of access methods2. Each access method mt is
associated with a collection (possibly empty)
of positions of R – the input positions of mt.

• Integrity constraints, which are sentences of
first-order logic as before.

Example 4.1. Suppose we have a Profinfo rela-
tion containing information about faculty, includ-
ing their last names, o�ce number, and employee
id. We have a restricted interface that requires giv-
ing an employee id as an input.

Intuitively, in such a schema we can not find out
information about all professors. But if we had
a query asking about a particular professor, hard-
coding the professor’s employee id, we would be able
to use the interface to answer it. /

An access (relative to a schema as above) consists
of an access method of the schema and a method
binding — a function assigning values to every input
position of the method. If mt is an access method
on relation R with arity n, I is an instance for a
schema that includes R, and AccBind is a method
binding on mt, then the output or result of the ac-
cess (mt,AccBind) on I is the set of n-tuples ~t such
that R(~t) holds in I and ~t restricted to the input
positions of mt is equal to AccBind.

An access method may be “input-free”: have an
empty collection of input positions. In this case, the
only access that can be performed using the method
is with the empty method binding.

The goal is to reformulate source queries in a tar-
get language that represents the kind of restricted
computation done over an interface given by an ac-
cess schema. We formalize this as a language of
plans. Plans are straight-line programs that can
perform accesses and manipulate the results of ac-
cesses using relational algebra operators. This lan-
2Our definition of “access methods” is a variant of the
terminology “access patterns” or “binding patterns”
found in the database literature.
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guage could model, at a high-level, the plans used
internally in a database management system. It
could also describe the computation done within a
data integration system, which might access remote
data via a web form or web service and then com-
bine data from di↵erent sources using SQL within
its own database management system.

Example 4.2. Suppose we have a Profinfo rela-
tion with a restricted interface that requires giv-
ing an employee id as an input, as in Example 4.1.
But we also have a Udirectory relation containing
the employee id and last name of every university
employee, with an input-free access method. The
fact that the directory contains every employee and
that a professor is an employee is captured by the
integrity constraint stating that every employee id
in the Profinfo is also contained in Udirectory.

Suppose we are interested in the query asking for
ids of faculty named “Smith”:

Q = 9onum Profinfo(eid, onum, “Smith”)

A reformulation is a program using the given meth-
ods, where the program is equivalent to Q for all
inputs satisfying the integrity constraints ⌃.

One can easily see that there is a reformulation
of Q using these access methods: we simply access
Udirectory to get all the employee ids, then use these
to access Profinfo, filtering the resulting tuples to
return only those that have name “Smith”.

On the other hand, if we did not have access to
Udirectory, we can see intuitively that there is no
such reformulation. /

Formally, we have a plan language with two basic
commands. The first is an access command. Over
a schema Sch with access methods, an access com-
mand is of the form:

T (OutMap mt (InMap E

where:
• E is a relational algebra expression, the input
expression, over some set of relations not in
Sch (henceforward “temporary relations”);

• mt is a method from Sch on some relation R;
• InMap, the input mapping of the command,
is a function from the output attributes of E
onto the input positions of mt;

• T , the output relation of the command, is a
temporary relation;

• OutMap, the output mapping of the command,
is a bijection from positions of R to attributes
of T .

Note that an access command using an input-free
method must take the empty relation algebra ex-
pression ; as input.

The manipulation of data retrieved by an access
is modeled with the other primitive of our plan lan-
guage, a middleware query command. These are
of the form T := Q, where Q is a relational alge-
bra expression over temporary relations and T is a
temporary relation. We use the qualifier “middle-
ware” to emphasize that the queries are performed
on temporary relations created by other commands,
rather than on relations of the input schema.

A relational algebra-plan (or simply, RA-plan)
consists of a sequence of access and middleware query
commands, ending with at most one return com-
mand of the form Return E, where E is a relational
algebra expression.

Example 4.3. We return to Example 4.2 where we
had two sources of information. One was Profinfo,
which was available through an access methodmtProfinfo
requiring input on the first position. The second
was Udirectory, which had an access methodmtUdirectory
requiring no input. Our queryQ asked for ids of fac-
ulty named “Smith”. One plan that is equivalent to
Q would be represented as follows

T1 ( mtUdirectory ( ;
T2 := ⇡eid(�lname=“Smith”T1)

T3 ( mtProfinfo ( T2

Return ⇡eid(T3)

Above we have omitted the mappings in writing ac-
cess commands, since they can be inferred from the
context. /

Fragments of the plan language. There are
fragments of our plan language, analogs of the stan-
dard fragments of relational algebra and first-order
logic. In RA-plans, we allowed arbitrary relational
algebra expressions in both the inputs to access
commands and the middleware query commands.
We can similarly talk about USPJ

6=-plans, where
both kinds of commands can only use USPJ

6= queries.
Plans that reformulate queries. We now de-

fine what it means for a plan to correctly implement
a query. Given an access schema Sch, a plan refor-
mulates a query Q with respect to Sch if for every
instance I satisfying the constraints of Sch, the out-
put of the plan on I is the same as the output of
Q. We often omit the schema from our notation,
since it is usually clear from context, saying that a
plan PL reformulates Q. Note that this extends the
notion of a query QV over relations V reformulating
a query Q.

4.1 Reduction to query containment
Recall from Section 3 that a query Q had a re-

formulation with respect to a vocabulary-based in-
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terface V if and only if the output of Q was deter-
mined by the data stored in V. In the case of access
methods, we would like to say that Q can be re-
formulatable using the access methods if and only
if it is “determined by the data we can get via the
access methods”. We will require some auxiliary
definitions to formalize what we mean by “the data
we can get via the access methods”.

Given an instance I for schema Sch the accessible
part of I, denoted AccPart(I) consists of all the facts
over I that can be obtained by starting with empty
relations and iteratively entering values into the ac-
cess methods. This will be an instance containing
a set of facts AccessedR(v1 . . . vn), where R is a re-
lation and v1 . . . vn are a subset of the values in the
domain of I such that R(v1 . . . vn) holds in I. The
content of relations AccessedR will be formed as a
limit of inductively-defined sets AccessedRi. In the
inductive process we will also build a set of elements
accessiblei. If Sch contains no schema constants, we
start the induction with relations AccessedR0 and
accessible0 empty. We then iterate the following
process until a fixpoint is reached:

accessiblei+1 = accessiblei [
[

R a relation
jarity(R)

⇡j(AccessedRi)

and

AccessedRi+1 = AccessedRi [
[

(R,{j1,...,jm})
there is a method on R with inputs j1, . . . , jm

{v1 . . . vn|R(v1 . . . vn) in I, vj1 . . . vjm 2 accessiblei}

Above ⇡j(AccessedRi) denotes the projection of
AccessedRi on the j

th position. For a finite in-
stance, this induction will reach a fixpoint after |I|
iterations, where |I| denotes the number of facts
in I. For an arbitrary instance the union of these
instances over all i will be a fixpoint.

Assuming Sch does include schema constants, we
modify the definition by starting with accessible0
consisting of the schema constants, rather than be-
ing empty.

Above we consider AccPart(I) as a database in-
stance for the schema with relations accessible and
AccessedR. Below we will sometimes refer to the
values in the relation accessible as the accessible val-
ues of I.

Example 4.4. Suppose our schema has a relation
Related of arity 2, with an access method mtRelated
with input on the first position of Related. The
schema has exactly one schema constant “Jones”.

Let instance I consist of facts

{Related(“Jones”, “Kennedy”),Related(“Kennedy”, “Evans”),
Related(“Smith”, “Thompson”)}

We construct the accessible part of I. We begin by
computing:

AccessedRelated0 = ;, accessible0 = {“Jones”}

That is, initially the accessible part contains no
facts and the only accessible constant is the schema
constant “Jones”.

We can now apply the inductive rules to get after
one iteration:

AccessedRelated1 = {(“Jones”, “Kennedy”)}
accessible1 = {“Jones”, “Kennedy”}.

and after a second iteration:

AccessedRelated2 =

{(“Jones”, “Kennedy”), (“Kennedy”, “Evans”)}
accessible2 = {“Jones”, “Kennedy”, “Evans”}

At this point, we have reached a fixpoint, so the
accessible part of I consists of facts

{AccessedRelated(“Jones”, “Kennedy”),
AccessedRelated(“Kennedy”, “Evans”)}

The accessible values of I are

{“Jones”, “Kennedy”, “Evans”}

/

Query Q is said to be access-determined over Sch
if for all instances I and I

0 satisfying the constraints
of Sch with AccPart(I) = AccPart(I 0) we haveQ(I) =
Q(I 0). If a query is not access-determined, it is ob-
vious that it cannot be reformulated through any
plan, since any plan can only read tuples in the ac-
cessible part.

Example 4.5. We return to the setting of Exam-
ple 4.1, where we have a Profinfo relation contain-
ing information about faculty, including their last
names, o�ce number, and employee id, but with
only an access method mtProfinfo that requires giv-
ing an employee id as an input. We consider again
the queryQ asking for ids of faculty named “Smith”,
where “Smith” is a schema constant.
We show that Q is not access-determined. For

this, take I to be any instance that contains ex-
actly one tuple, with lastname “Smith”, but with an
employee id that is not one of the schema constants.
Let I 0 be the empty instance. The accessible parts
of I and I

0 are empty, since in both cases when we
enter all the constants we know about in mtProfinfo,
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we get the empty response. But Q has an output
on I but no output on I

0.
I and I

0 witness that Q is not access-determined.
From this we see that Q can not be reformulated by
any plan using only mtProfinfo. /

We now show that access-determinacy reduces to
a query containment. Given a schema Sch with con-
straints ⌃ and access methods, we form a schema
AcSch$(Sch) that has only integrity constraints.
AcSch$ will contain two copies of every relation
in Sch, with the copy of R denoted as R

0. The
constraints of AcSch$ will include all constraints
⌃ of Sch, a copy ⌃0 of the constraints on the new
relations, and also the following additional axioms,
which we call accessibility axioms. The first set of
axioms, which we call forward accessibility axioms,
are as follows (universal quantifiers omitted):

^

im

accessible(xji) ^R(x1 . . . xn) !

R
0(x1 . . . xn) ^

^

i

accessible(xi)

Above, R is a relation of Sch having an access method
with input positions j1 . . . jm.

The second set of axioms, backward accessibility
axioms, just reverses the roles of R and R

0:

^

im

accessible(xji) ^R
0(x1 . . . xn) !

R(x1 . . . xn) ^
^

i

accessible(xi)

where again R is a relation of Sch having an access
method with input positions j1 . . . jm.

Intuitively, the primed and unprimed copies are
a way of writing a statement about two instances.
The relation accessible represents the common ac-
cessible values of the two instances. The axioms
state that both instances satisfy the constraints,
and ensure that their accessible parts are the same.
The notation AcSch$(Sch) emphasizes that we have
constraints from primed to unprimed and vice versa.

As before, we extend the priming notation to
queries, letting Q

0 be obtained from Q by replac-
ing each relation R by R

0. The query containment
for access-determinacy is then Q ✓AcSch$(Sch) Q

0.
Analogously to the vocabulary-based case, we can
show that this query containment captures the pro-
posed determinacy property, access-determinacy.

We can also show that whenever the query con-
tainment for access-determinacy holds, we can ex-
tract a plan that reformulates Q:

Theorem 4.1: For any CQ Q and access schema
Sch with constraints in FO, the query containment
for access-determinacy holds if and only if there
is an RA-plan reformulating Q (over instances of
Sch). ⌅

The proof of Theorem 4.1 uses another refinement
of interpolation. Theorem 4.1 only talks about dis-
covering whether a plan exists. There is a variation
that says we can find the plan given a suitable proof,
analogously to the vocabulary-based setting.

4.2 Variation: plans without negation
When we defined the language of RA-plans,we

argued that it forms a natural counterpart to rela-
tional algebra in the setting where the interface to
data is given by a set of access methods. The ana-
log of 9+, 6= formulas (equivalent to USPJ

6= queries)
in the setting of plans are the USPJ

6=-plans men-
tioned earlier, where we do not allow relational alge-
bra di↵erence in any expressions within commands.
We will now consider the problem of reformulating
a query as a USPJ

6=-plan.
We need a variation of determinacy correspond-

ing to a plan that only uses “accessible data” and
only uses it monotonically. We say Q is access-
monotonically-determined over Sch if whenever we
have instances I and I

0 satisfying the constraints
of Sch with every fact of AccPart(I) contained in
AccPart(I 0), then Q(I) ✓ Q(I 0).

The query containment corresponding to access-
monotonic-determinacy is simple: we take the same
queries Q,Q

0 as with access-determinacy, but we
include only the forward accessibility axioms.

It is easy to verify that the query containment
captures access-monotonic-determinacy. And once
again, we can take a proof of the query containment
and extraction a reformulation, using the appropri-
ate interpolation algorithm:

Theorem 4.2: For any CQ Q and access schema
Sch containing constraints specified in FO, there
is a USPJ

6=-plan reformulating Q (over instances
in Sch) if and only if the query containment for
access-monotonic-determinacy holds if and only ifQ
is access-monotonically-determined over Sch. Fur-
thermore, for every tableau proof witnessing the
query containment, we can extract a USPJ

6=-plan
that reformulates Q. ⌅

4.3 More variations on restrictions based
on access methods

Recall that for vocabulary-based restrictions, there
was a variation of the technique for existential re-
formulation: we are looking for a reformulation and
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allow it to use negation, but only at the atomic level.
There is a similar variation for plans that “only use
negation at the atomic level”. The definition of such
plans is a bit technical, since in the plan language
simply restricting query middleware commands to
only use atomic negation is not enough. The defi-
nitions and the details of the reformulation method
can be found in [9, 4].

In our plans we assumed that an access method
on relation R returns all the matching tuples on
R. Web service access methods may impose result
limits, setting an upper bound on the number of
matching tuples returned. Another variation of the
method, described in [1], shows how to find refor-
mulations with access methods that include result
bounds.

5. DISCUSSION
We have presented a few theorems that are rep-

resentative of the reduction to query containment.
In this section we go through some of the implica-
tions of the results. This will include a discussion
of the main theoretical advantage of the technique,
the immediate prospects of applying the results in
practice, and remarks on the history of the topic.

5.1 Querying over interfaces
Reformulation is a very broad topic, with still

many aspects untouched. Dimensions of the prob-
lem include:

• The logical operators allowed in the target of
reformulation. In this article we have looked at
three flavors of reformulation depending on the
operators allowed. In “first-order” or “relational-
algebra” reformulation, negation is allowed in
the target. In “monotone” or “positive-existential”
reformulation, we want a reformulation that
does not use negation. In between is “existen-
tial reformulation”, in which we allow nega-
tion, but not nested. Surely there are many
more possibilities for the allowed operators.

• The notion of interface. Reformulation is about
synthesizing an implementation with a given
interface. Here we have dealt with only two,
but there are many notions of data interface
that can be considered.

• The class of constraints. Integrity constraints
are implicit in any analysis of reformulation.
In the case of reformulation over views, the
constraints are just the view definitions. But
one can consider much broader or more re-
stricted classes of constraints, and the class
considered will impact the algorithms.

• The reasoning system used to verify that a re-
formulation exists. For constraints that are
dependencies, the natural reasoning system for
proving query containments for reformulation
is the chase. But other proof systems can be
used even in the case of dependencies, and
more general proof systems need to be used
once one goes beyond dependencies. We men-
tioned tableau and resolution as proof systems
in some of our results, but there are many
proof systems that can be applied.

The majority of prior work has focused on one
spot within the space:

• the interface is given by views
• the constraints consist of view definitions and/or
weakly-acyclic dependencies

• the target is a monotone query;
• the reasoning system is the chase.

This case is of course important in practice, and it
is attractive because it allows intuitive algorithms
like the Chase & Backchase (C&B) [16, 14, 26].
The biggest impact of the work presented here is
a common framework for exploring a much wider
space. This has a conceptual benefit, and provides,
at least in principle, reformulation algorithms for
classes that have not been considered in the past.

There are many other kinds of data interfaces
that could be considered e.g. web interfaces that
allow one to send SQL commands; keyword base
interfaces. And for other data models there are still
further possibilities. The broader framework pre-
sented here could be useful for generalizing refor-
mulation to new contexts.

5.2 Practical aspects
The approach based on reduction to query con-

tainment has an advantage in its generality. But
does it provide better algorithms in practice?

Suppose we specialize this framework to the most
well-studied setting: a vocabulary-based interface,
the target being USPJ

6= queries (“monotone queries”,
for short) and constraints that are dependencies
where the chase process [22] terminates. If we use
the chase as our proof system, and look at the al-
gorithm that results from applying the machinery,
what we obtain is a variation of the C&B algorithm
mentioned above. The framework by itself only tells
us how to find one reformulation. For finding a
good reformulation, one needs a way of searching
through the space of proofs, and then selecting the
best one. When constraints are dependencies, there
are additional optimizations for e�ciently searching
the search space, and these have been incorporated
into the C&B [16]. In the same way, traditional
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algorithms for finding negation-free rewritings over
CQ views [18, 27] include important techniques for
e�ciently enumerating the space of rewritings. One
does not get this “for free” from the interpolation
framework.

Let us now stick to the vocabulary-based setting,
searching for monotone reformulations, but let our
constraints be disjunctive dependencies, rules with
disjunction in the head. One can use an extension
of the chase, the “disjunctive chase” [13] as a proof
system. Specializing our framework using interpola-
tion to this setting, one gets a variation of the C&B
using disjunction [12]. However, there are other
proof systems that one can apply, such as tableau
proofs or resolution, and applying the framework
with these will give di↵erent rewritings than those
provided by the C&B. Preliminary results [3] show
that the interpolation-based approach on top of res-
olution can give much more succinct reformulations
than the approach using the disjunctive chase.

When the constraints go beyond disjunctive de-
pendencies, we know of no competitor to the ap-
proach via interpolation. But to make use of the
technique here may require more complex theorem
proving techniques. Similarly, if we look at finding
general first-order reformulations over views, rather
than monotone rewritings, we can still apply the
technique to reduce to theorem proving, but the
theorem proving problem is undecidable in general
[15], so we may need to make use of incomplete
or non-terminating methods. Further, to find a
good reformulation, one needs access to multiple
proofs from a theorem prover, and a way to search
through these proofs: theorem provers do not have
such APIs at present.

One of the simplest practical application of the
frameworks is in the case of access methods and
integrity constraints in the form of dependencies
with terminating chase. In a data integration set-
ting, these constraints may relate local sources that
have access methods to an integrated schema. They
may also restrict the local sources. Given a query
(e.g. over an integrated schema), the access meth-
ods, and the constraints, the variant of the approach
given in Subsection 4.2 can be applied to determine
whether a USPJ

6=-plan can be generated, and if so
synthesize a plan. We have applied the framework
to a number of application settings, ranging from
web services [7] to more traditional database access
methods [5, 6].

5.3 Algorithms and semantics
Finally, we want to mention a general “lesson

learned” from this line of work, concerning the in-

terplay of algorithms and semantics.
There is a long history of algorithmic work for

rewriting queries over restricted interfaces. Exam-
ples include the work of Levy, Mendelzon, Sagiv,
and Srivastava [17], leading to the well known bucket
[18] and MiniCon [27] algorithms. The C&B is an-
other example of a clever algorithm for finding re-
formulations, in the more general setting of queries
over a subset of the relations with respect to in-
tegrity constraints [16, 14, 26].

A parallel line of research deals with character-
izing queries that can be rewritten in certain ways,
relating the syntactic restrictions in the target lan-
guage and semantic properties of the source query.
Examples in this line are the homomorphism preser-
vation theorem (see [28]), which states that a first-
order formula can be rewritten as a UCQ exactly
when it is preserved under homomorphism. In
databases, the semantic line includes the work of
Segoufin and Vianu [29] and the subsequent TODS
paper of Nash, Segoufin, and Vianu [25]. They de-
fined the notion of determinacy we used in Section
3, and showed that it characterizes queries that have
relational algebra reformulations.

Another message of this work is that the semantic
and algorithmic lines are connected. The semantic
approach gives a clean way to see that certain re-
formulations exists. But it can be converted to an
algorithmic technique, applicable not only to view-
based reformulation, but to reformulation with in-
tegrity constraints and access methods. We think
that reformulation gives a nice example of how ex-
pressiveness results and algorithmic methods can
interact.

6. CONCLUSION
We have presented an overview of a recipe for

query reformulation over interfaces. It involves two
components: a reduction to query containment prob-
lems, and then the use of interpolation algorithms
applied to proofs of a containment. We have given
an idea of the generality of the framework, showing
it is applicable to di↵erent kinds of interfaces and
di↵erent kinds of logical operators in the reformu-
lation target.

A more detailed look at reformulation can be
found in Toman and Weddell’s book [30], or in the
book that takes the perspective presented here, [4].
For the reader interested primarily in the case of
TGD constraints, the paper [9] gives a shorter overview.
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