Reflections on Schema Mappings, Data Exchange, and Metadata Management

Phokion G. Kolaitis

UC Santa Cruz & IBM Research - Almaden
A Very Brief History

- Data exchange is the oldest database problem. Bernstein - 2003
- Yet, data exchange was not formalized until around 2000.
- Data exchange was formalized using schema mappings.
 - Schema Mappings as Query Discovery
 Miller, Haas, Hernández - VLDB 2000
 - Clio: A Semi-Automatic Tool for Schema Mapping
 Hernández, Miller, Haas - SIGMOD 2001
 - Data Exchange: Semantics and Query Answering
 Fagin, K . . ., Miller, Popa - ICDT 2003
- Extensive study of data exchange and schema mappings during the past 15 years.
Roadmap

Part I: Schema Mappings and Data Exchange
 ▸ Algorithmic and structural properties.

Part II: Operations on Schema Mappings
 ▸ Composing and inverting schema mappings.

Part III: Understanding and Deriving Schema Mappings
 ▸ Data examples to understand/derive schema mappings.
Transform data structured under a source schema S into data structured a target schema T.
Definition: A schema mapping is a triple $\mathcal{M} = (S, T, \mathcal{W})$ with

- S is a source schema, T is a target schema,
- \mathcal{W} is a set of pairs (I, J) with I a source instance and J a target instance.

Syntactically, a schema mapping is a triple $\mathcal{M} = (S, T, \Sigma)$ with

- S is a source schema, T is a target schema,
- Σ is a set of constraints in some logical formalism expressing the relationship between S and T.

$$(I, J) \models \Sigma \text{ if and only if } (I, J) \in \mathcal{W}.$$

Definition: A solution for a source instance I with respect to \mathcal{M} is a target instance J such that $(I, J) \in \mathcal{W}$ (or, $(I, J) \models \Sigma$).
Algorithmic Problems for Schema Mappings

Let $\mathcal{M} = (\mathbf{S}, \mathbf{T}, \mathcal{W})$ be a fixed schema mapping.

Existence of Solutions Problem:

Given a source instance I,

- determine whether or not a solution for I w.r.t. \mathcal{M} exists;
- if so, compute a "good" solution for I w.r.t. \mathcal{M}.

Certain Answers Problem:

Let q be a fixed query over the target schema \mathbf{T}.

Given a source instance I,

- compute the certain answers of q on I w.r.t. \mathcal{M}

$$
\text{cert}(q, I, \mathcal{M}) = \bigcap \{ q(J) : J \text{ is a solution for } I \text{ w.r.t. } \mathcal{M} \}.
$$
Question: What is a "good" schema-mapping language?

Ideally, a "good" schema-mapping language should have

- sufficient expressive power to express interesting data-transformation tasks;
- tractable algorithmic behavior.

Fact: The existence-of-solutions problem is undecidable for schema mappings specified by first-order sentences.

- Reduction from the finite validity problem for FO.
Basic Tasks for a Schema-Mapping Language

- **Copy (Nicknaming):**
 \[\forall x_1, \ldots, x_n(P(x_1 \ldots, x_n) \rightarrow R(x_1, \ldots, x_n)) \]

- **Projection:**
 \[\forall x, y, z(P(x, y, z) \rightarrow R(x, y)) \]

- **Column Augmentation:**
 \[\forall x, y(P(x, y) \rightarrow \exists z R(x, y, z)) \]

- **Decomposition:**
 \[\forall x, y, z(P(x, y, z) \rightarrow R(x, y) \land T(y, z)) \]

- **Join:**
 \[\forall x, y, z(E(x, z) \land F(z, y) \rightarrow R(x, y, z)) \]

- **Combinations of the above, e.g.,**
 \[\forall x, y, z(E(x, z) \land F(z, y) \rightarrow \exists w T(x, y, z, w)) \]
Global-and-Local-As-View Constraints

Definition: A Global-and-Local-as-View (GLAV) constraint is a first-order sentence of the form

$$\forall x (\varphi(x) \rightarrow \exists y \psi(x, y)),$$

where

- $\varphi(x)$ is a conjunction of atoms over the source;
- $\psi(x, y)$ is a conjunction of atoms over the target.

Example:

$$\forall c, i, s \,(\text{ENROLLS}(s, c) \land \text{TEACHES}(i, c) \rightarrow \exists g \, \text{GRADES}(s, c, g))$$

Fact:
Each basic task (projection, decomposition, join, ...) can be expressed by a GLAV constraint.
GLAV, GAV, LAV Constraints and Mappings

- Global-and-Local-as-View (GLAV) constraint
 \[\forall x (\varphi(x) \rightarrow \exists y \psi(x, y)) \]

- Global-As-View (GAV) constraint
 \[\forall x (\varphi(x) \rightarrow R(x)), \text{ where } R \text{ is a target relation.} \]
 - Copy, Projection, Join

- Local-As-View (LAV) constraint
 \[\forall x (P(x) \rightarrow \exists y \psi(x, y)), \text{ where } P \text{ is a source relation.} \]
 - Copy, Column Augmentation, Decomposition

- A GLAV mapping is a schema mapping \(\mathcal{M} = (S, T, \Sigma) \), where \(\Sigma \) is a finite set of GLAV constraints.

- Similarly, for the notions of a GAV mapping and a LAV mapping.
Structural Properties of GLAV Mappings

Theorem (Fagin, K . . ., Miller, Popa - 2003)

Let $\mathcal{M} = (\mathcal{S}, \mathcal{T}, \Sigma)$ be a GLAV mapping.

- \mathcal{M} admits universal solutions
 For every source instance I, there is a solution J^* for I such that for every solution J for I, there is a homomorphism from J^* to J that is the identity on elements from I.
 - Moreover, such a J^* can be computed in polynomial time in the size of I via the chase procedure.

- \mathcal{M} allows for CQ-rewriting
 For every conjunctive query q over \mathcal{T}, there is a union q' of conjunctive queries over \mathcal{S} such that
 $$\text{cert}(q, I, \mathcal{M}) = q'(I).$$
 - In particular, the certain answers of q can be computed in polynomial time in the size of I.
Universal Solutions in Data Exchange

Diagram:
- Schema S
- Schema T
- Universal Solution
- Homomorphisms h_1, h_2, h_3
- Solutions J_1, J_2, J_3
Proposition:

- Every GLAV mapping M is closed under target homomorphisms
 If J is a solution for I and there is a homomorphism from J to J' that is the identity on elements of I, then J' is a solution for I.

- Every GAV mapping M is closed under target intersections
 If J and J' are solutions for I, then $J \cap J'$ is a solution for I.

- Every LAV mapping M is closed under unions
 If J is a solution for I and if J' is a solution for I', then $J \cup J'$ is a solution for $I \cup I'$.
Characterizing GAV and LAV Mappings

Theorem (ten Cate and K . . . - 2009)
Let $\mathcal{M} = (\mathcal{S}, \mathcal{T}, \mathcal{W})$ be a schema mapping. Then the following statements are equivalent:

1. \mathcal{M} is logically equivalent to a GAV mapping (respectively, \mathcal{M} is logically to a LAV mapping).

2. \mathcal{M} has the following properties:
 - \mathcal{M} admits universal solutions;
 - \mathcal{M} allows for CQ-rewriting;
 - \mathcal{M} is closed under target homomorphisms;
 - \mathcal{M} is closed under target intersections (respectively, \mathcal{M} is closed under unions).
Theorem (ten Cate and K . . . - 2009)
Let $\mathcal{M} = (\mathbf{S}, \mathbf{T}, \mathcal{W})$ be a schema mapping. Then the following statements are equivalent:

1. \mathcal{M} is logically equivalent to a GLAV mapping.
2. \mathcal{M} has the following properties:
 - \mathcal{M} admits universal solutions;
 - \mathcal{M} allows for CQ-rewriting;
 - \mathcal{M} is closed under target homomorphisms;
 - \mathcal{M} is n-modular, for some $n \geq 1$.

Definition
A schema mapping $\mathcal{M} = (\mathbf{S}, \mathbf{T}, \mathcal{W})$ is n-modular if whenever $(I, J) \notin \mathcal{W}$, there is some $I' \subseteq I$ such that $|I'| \leq n$ and $(I', J) \notin \mathcal{W}$.
Structural Characterizations: Summary

<table>
<thead>
<tr>
<th>Type of Schema-Mapping</th>
<th>Characterizing Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAV Mapping</td>
<td>admits universal solutions \ allows for CQ-rewriting \ closed under target homomorphisms \ closed under target intersections</td>
</tr>
<tr>
<td>LAV Mapping</td>
<td>admits universal solutions \ allows for CQ-rewriting \ closed under target homomorphisms \ closed under unions</td>
</tr>
<tr>
<td>GLAV Mapping</td>
<td>admits universal solutions \ allows for CQ-rewriting \ closed under target homomorphisms \ (n)-modular, for some (n \geq 1)</td>
</tr>
</tbody>
</table>
Managing Schema Mappings via Operators

- Schema mappings can be quite complex.
- Methods and tools are needed to automate or semi-automate schema-mapping management.

Metadata Management Framework - Bernstein 2003

Based on generic schema-mapping operators:
- Match operator
- Merge operator
- Composition operator
- Inverse operator.

- Extensive study of the Composition operator and the Inverse operator.
Problem:

- Given $M_{12} = (S_1, S_2, \Sigma_{12})$ and $M_{23} = (S_2, S_3, \Sigma_{23})$, derive a schema mapping $M_{13} = (S_1, S_3, \Sigma_{13})$ that is "equivalent" to the sequential application of M_{12} and M_{23}.

- M_{13} is a composition of M_{12} and M_{23}, denoted $M_{13} = M_{12} \circ M_{23}$.

- But, what does it mean to say that M_{13} is "equivalent" to the composition of M_{12} and M_{23}?
Semantics of Composition

- **Metadata Model Management** Bernstein - 2003
 - Composition is one of the fundamental operators
 - However, no precise semantics is given.

- **Composing Mappings among Data Sources** Madhavan and Halevy - 2003
 - First to propose a semantics for composition
 - Notion of composition relative to a class of queries
 - **CQ-composition**: relative to the class of conjunctive queries

- **Set-theoretic semantics of composition**
 Fagin, K . . ., Popa, Tan - 2004, Melnik - 2004
Set-theoretic Semantics of Composition

Recall that
- a syntactically specified $\mathcal{M} = (S, T, \Sigma)$
 is identified with
- the semantically specified $\mathcal{M} = (S, T, \mathcal{W}(\mathcal{M}))$, where
 $\mathcal{W}(\mathcal{M}) = \{(I, J) : (I, J) \models \Sigma\}$.

Definition (FKPT - 2004, Melnik - 2004)
A schema mapping $\mathcal{M}_{13} = (S_1, S_3, \Sigma_{13})$ is the composition $\mathcal{M}_{12} \circ \mathcal{M}_{23}$ of $\mathcal{M}_{12} = (S_1, S_2, \Sigma_{12})$ and $\mathcal{M}_{23} = (S_2, S_3, \Sigma_{23})$ if

$\mathcal{W}(\mathcal{M}_{13}) = \mathcal{W}(\mathcal{M}_{12}) \circ \mathcal{W}(\mathcal{M}_{23})$,

i.e.,
- $(I_1, I_3) \in \mathcal{W}(\mathcal{M}_{13})$
 if and only if
- there is some I_2 such that $(I_1, I_2) \in \mathcal{W}(\mathcal{M}_{12})$ and $(I_2, I_3) \in \mathcal{W}(\mathcal{M}_{23})$.
The Language of Composition

Questions:

- Is the language of GLAV constraints closed under composition?
 In other words:

- If \mathcal{M}_{12} and \mathcal{M}_{23} are GLAV mappings, is $\mathcal{M}_{12} \circ \mathcal{M}_{23}$ a GLAV mapping as well?

- If not, what is the *right* language for composing schema mappings?
The Language of Composition

Theorem (Fagin, K ..., Popa, Tan - 2004)

- GAV mappings are closed under composition.
- GLAV mappings are not closed under composition.
- In fact, there are GLAV mappings M_{12} and M_{23} whose composition $M_{12} \circ M_{23}$ is not expressible even in least fixed-point logic LFP.

Question:
What is the right language for composing GLAV mappings?
Towards the “Right” Language for Composition

Motivating Example:

- \mathcal{M}_{12}:
 $\forall e (\text{Emp}(e) \rightarrow \exists m \text{Rep}(e, m))$

- \mathcal{M}_{23}:
 $\forall e \forall m (\text{Rep}(e, m) \rightarrow \text{Mgr}(e, m))$
 $\forall e (\text{Rep}(e, e) \rightarrow \text{SelfMgr}(e))$

Theorem:

- The composition $\mathcal{M}_{12} \circ \mathcal{M}_{23}$ is not definable by any set (finite or infinite) of GLAV constraints.

- The composition $\mathcal{M}_{12} \circ \mathcal{M}_{23}$ is definable by the following Second-Order GLAV constraint:

 $\exists f (\forall e (\text{Emp}(e) \rightarrow \text{Mgr}(e, f(e))) \land$
 $\forall e (\text{Emp}(e) \land (e = f(e) \rightarrow \text{SelfMgr}(e))))$
Second Order GLAV Constraints

Definition: Let S be a source schema and T a target schema. A **Second-Order GLAV constraint** (SO GLAV) is a formula of the form:

$$\exists f_1 \cdots \exists f_n ((\forall x_1 (\varphi_1(x_1) \rightarrow \psi_1(x_1))) \land \cdots \land (\forall x_n (\varphi_n(x_1) \rightarrow \psi_n(x_n)))),$$

where

- Each f_i is a function symbol.
- Each φ_i is a conjunction of atoms from S and **equalities** of terms.
- Each ψ_i is a conjunction of atoms from T.

Example: $\exists f (\forall e (\text{Emp}(e) \rightarrow \text{Mgr}(e, f(e))) \land \forall e (\text{Emp}(e) \land (e = f(e) \rightarrow \text{SelfMgr}(e))))$
Data Exchange via Second-Order GLAV Constraints

Theorem (Fagin, K ..., Popa, Tan - 2004)

- SO GLAV mappings are closed under composition.
- The chase procedure can be extended to SO GLAV mappings; in particular, it produces universal solutions in polynomial time.
- Every SO GLAV mapping is the composition of finitely many GLAV mappings (in fact, just two).

Conclusion: SO GLAV constraints are the right language for the composition of GLAV mappings.

Note: SO GLAV constraints and the composition algorithm are used in the IBM InfoSphere Information Server.
Definition: A plain SO GLAV constraint is a SO GLAV constraint with no equalities and no nested function terms.

Theorem (Arenas, Pérez, Reutter, Riveros - 2013)
Plain SO GLAV constraints are the right language for the CQ-composition of GLAV mappings.

Open Problem 1:
- Is there a structural characterization of SO GLAV mappings?
- Is there a structural characterization of plain SO GLAV mappings?
Inverting Schema Mappings

Problem: Given a schema mapping M, find a schema mapping M^* that “undoes” what M did.
Exact Inverses of Schema Mappings

Definition: Fagin - 2006
\(M^* \) is an inverse of \(M \) if \(M \circ M^* = Id \), where \(Id \) is the identity schema mapping specified by copy constraints.

Note: Schema mappings may entail inherent information loss.

- Union Schema Mapping

\[
\forall x (P(x) \rightarrow Q(x)) \\
\forall x (R(x) \rightarrow Q(x))
\]

Fact: Inverses of GLAV mappings rarely exist.
Approximate Inverses of Schema Mappings

Several different approaches, including:

- **Quasi-inverse**
 Fagin, K . . ., Popa, Tan - 2007

- **Maximum Recovery**
 Arenas, Pérez, Riveros - 2008

- **Chase Inverse**
 Fagin, K . . ., Popa, Tan - 2011

Note:

- **Maximum recoveries** have better properties than other notions of approximate inverses do.

- In particular, every plain SO GLAV mapping has a maximum recovery (hence, so does every GLAV mapping).
Combining Composition and Inversion

Fact:

- The language for expressing maximum recoveries involves disjunctive constraints.
- No definitive notion of an inverse has emerged.

Open Problem 2:

- Find a useful notion of inverse and a language for expressing it, so that the language is closed under compositions and inversions of GLAV mappings.
Fact: Schema evolution can be analyzed using the composition operator and the inverse operator.
Schema Mappings Can Be Complex

Map 2:
for sm2x0 in S0.dummy_COUNTRY_4
 exists tm2x0 in S27.dummy_country_10, tm2x1 in S27.dummy_organiza_13
 where tm2x0.country_member_id=tm2x1.organization_id,
 satsf sm2x0.COUNTRY.AREA=tm2x0.country.area, sm2x0.COUNTRY.CAPITAL=tm2x0.country.capital,
 sm2x0.COUNTRY.CODE=tm2x0.country.id, sm2x0.COUNTRY.NAME=tm2x0.country.name,
 sm2x0.COUNTRY.POPULATION=tm2x0.country.population,

Map 3:
for sm3x0 in S0.dummy_GEO_RIVE_23, sm3x1 in S0.dummy_RIVER_24,
 sm3x2 in S0.dummy_PROVINCE_5
 where sm3x0.GEO_RIVER.RIVER=sm3x1.RIVER.NAME, sm3x2.PROVINCE.NAME=sm3x0.GEO_RIVER.PROVINCE,
 sm3x2.PROVINCE.COUNTRY=sm2x0.COUNTRY.CODE,
 exists tm3x0 in S27.dummy_river_24, tm3x1 in tm3x0.river.dummy_located_23,
 tm3x4 in S27.dummy_country_10, tm3x5 in tm3x4.country.dummy_province_9,
 tm3x6 in S27.dummy_organiza_13
 where tm3x4.country_member=tm3x6.organization.id, tm3x5.province.id=tm3x1.located.province,
 tm2x0.country.id=tm3x1.located.country,
 satsf sm2x0.COUNTRY.AREA=tm3x4.country.area, sm2x0.COUNTRY.CAPITAL=tm3x4.country.capital,
 sm2x0.COUNTRY.CODE=tm3x4.country.id, sm2x0.COUNTRY.NAME=tm3x4.country.name,
 sm2x0.COUNTRY.POPULATION=tm3x4.country.population, sm3x1.RIVER.LENGTH=tm3x0.river.length,
 sm3x0.GEO_RIVER.RIVER.COUNTRY=tm3x1.located.country, sm3x0.GEO_RIVER.PROVINCE=tm3x1.located.province,
 sm3x1.RIVER.NAME=tm3x0.river.name),

Map 4:
for sm4x0 in S0.dummy_GEO_ISLA_25, sm4x1 in S0.dummy_ISLAND_26,
 sm4x2 in S0.dummy_PROVINCE_5
 where sm4x0.GEO_ISLAND.ISLAND=sm4x1.ISLAND.NAME, sm4x2.PROVINCE.NAME=sm4x0.GEO_ISLAND.PROVINCE,
 sm4x2.PROVINCE.COUNTRY=sm2x0.COUNTRY.CODE,
 exists tm4x0 in S27.dummy_island_25, tm4x1 in tm4x0.island.dummy_located_25,
 tm4x4 in S27.dummy_country_10, tm4x5 in tm4x4.country.dummy_province_9,
 tm4x6 in S27.dummy_organiza_13
 where tm4x4.country_member=tm4x6.organization.id, tm4x5.province.id=tm4x1.located.province,
 tm2x0.country.id=tm4x1.located.country,
 satsf sm2x0.COUNTRY.AREA=tm4x4.country.area, sm2x0.COUNTRY.CAPITAL=tm4x4.country.capital,
 sm2x0.COUNTRY.CODE=tm4x4.country.id, sm2x0.COUNTRY.NAME=tm4x4.country.name,
 sm2x0.COUNTRY.POPULATION=tm4x4.country.population, sm4x1.ISLAND.AREA=tm4x0.island.area,
 sm4x1.ISLAND.COORDINATESLAT=tm4x0.island.latitude, sm4x0.GEO_ISLAND.COUNTRY=tm4x1.located.country,
 sm4x0.GEO_ISLAND.PROVINCE=tm4x1.located.province, sm4x1.ISLAND.COORDINATESLONG=tm4x0.island.longitude,
 sm4x1.ISLAND.NAME=tm4x0.island.name),

Map 5:
for sm5x0 in S0.dummy_GEO_SEA_19, sm5x1 in S0.dummy_SEA_20,
 sm5x2 in S0.dummy_PROVINCE_5
 where sm5x2.PROVINCE.NAME=sm5x0.GEO_SEA.PROVINCE, sm5x0.GEO_SEA.SEA=sm5x1.SEA.NAME,
 sm5x2.PROVINCE.COUNTRY=sm2x0.COUNTRY.CODE,
 exists tm5x0 in S27.dummy_sea_19, tm5x1 in tm5x0.sea.dummy_located_18,
 tm5x4 in S27.dummy_country_10, tm5x5 in tm5x4.country.dummy_province_9,
 tm5x6 in S27.dummy_organiza_13
 where tm5x4.country_member=tm5x6.organization.id, tm5x5.province.id=tm5x1.located.province,
 tm2x0.country.id=tm5x1.located.country,
 satsf sm2x0.COUNTRY.AREA=tm5x4.country.area, sm2x0.COUNTRY.CAPITAL=tm5x4.country.capital,
Understanding and Deriving Schema Mappings

Idea:
Use data examples to understand/derive schema mappings

Theme I: From Syntax to Semantics
Understand schema mappings using data examples.

Theme II: From Semantics to Syntax:
Derive schema mappings using data examples.
Data Examples and Universal Examples

Definition: Let $\mathcal{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ be a schema mapping.

- A data example for \mathcal{M} is a pair (I, J) such that J is a solution for I w.r.t. \mathcal{M} (i.e., $(I, J) \models \Sigma$).
- A universal example for \mathcal{M} is a pair (I, J) such that J is a universal solution for I w.r.t. \mathcal{M}.

Note: The space of data examples and the space of universal examples are typically infinite.

Question: Can a schema mapping $\mathcal{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ be captured by finitely many data examples or by finitely many universal examples?
From Syntax to Semantics: Unique Characterizations

Definition: Let $\mathcal{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ be a schema mapping, \mathbf{U} set of universal examples for \mathcal{M}, and \mathbf{C} a class of GLAV constraints.

- \mathbf{U} uniquely characterizes \mathcal{M} w.r.t. \mathbf{C} if for every schema mapping $\mathcal{M}' = (\mathbf{S}, \mathbf{T}, \Sigma')$ such that $\Sigma' \subseteq \mathbf{C}$ and \mathbf{U} is a set of universal examples for \mathcal{M}', we have that $\Sigma \equiv \Sigma'$.

Note:
- Unique characterizability via finitely many positive/negative examples implies unique characterizability via finitely many universal examples, but not vice-versa.
From Syntax to Semantics: Unique Characterizations

Theorem (Alexe, ten Cate, K . . . , Tan - 2011)

- Every LAV mapping is uniquely characterizable by a finite set of universal examples w.r.t. to LAV constraints.
- Criterion for a GAV mapping to be uniquely characterizable by a finite set of universal examples w.r.t. GAV constraints.
- The associated decision problem for GAV mappings is NP-complete.

Open Problem 3:

- Find criteria for a GLAV mapping to be uniquely characterizable by a finite set of universal examples w.r.t. GLAV constraints.
- What is the exact complexity of the associated decision problem for GLAV mappings?
From Semantics to Syntax: Derivations

Interactive Derivation and Refinement of Schema Mappings

- Fitting Algorithm - EIRENE System
 Alexe, ten Cate, K . . ., Tan - 2011

- Interacting Mapping Specification with Exemplar Tuples - IMS System
 Bonifati, Comignani, Coquery, Thion - 2017

Deriving Optimal Schema Mappings from Data Examples

- Cost Model for Optimal Repairs of Schema Mappings
 Gottlob and Senellart - 2010

- Cost Model for Mapping Selection via Data Examples
 Kimmig, Memory, Miller, Getoor - 2017
From Semantics to Syntax: Learning

Theorem (ten Cate, Dalmau, K . . . - 2012)
GAV mappings are efficiently learnable in Angluin’s model with membership and equivalence queries.

Active Learning of GAV Mappings

Open Problem 4:

- Learnability of LAV mappings.
- Learnability of GLAV mappings.
Topics Not Covered - Partial List

- Richer schema mappings:
 - Schema mappings with target constraints
 - Schema mappings with arithmetic constraints
 - Schema mappings with bi-directional constraints.

- Alternative notions of solutions - Libkin 2006
- Alternative notions of certain answers
- Beyond conjunctive queries (non-monotonic, aggregate)
- XML Data Exchange - Arenas and Libkin 2005
- Benchmarks
 - STBenchmark - Alexe, Tan, Velegrakis 2008
 - iBench - Arocena, Glavic, Ciucanu, Miller 2015
Synopsis

- Mature body of research during the past 15 years.
- A case study of logic in computer science, but also of logic from computer science.
- Theory and practice have informed each other.

Challenges and Outlook

- Several key technical problems remain open.
- Little penetration of advanced technical findings to practice.
- Benchmarks and open-source systems for data exchange need to be developed.