(gems of pods and test-of-time talk) **The Semiring Framework for Database Provenance** (: hindsight is great! :)

Val Tannen University of Pennsylvania

	Collaborators	
T of T award	TJ Green Grigoris Karvounarakis	LogicBlox LogicBlox
G of PODS paper	L	
ORCHESTRA	Zack Ives TJ, Grigoris	University of Pennsylvania
Other core papers	Nate Foster Yael Amsterdamer Daniel Deutch Tova Milo Sudeepa Roy Yuval Moskovitch	Cornell University Bar-Ilan University Tel Aviv University Tel Aviv University Duke University Tel Aviv University
Recent work	Erich Grädel	RWTH Aachen
Much gratitude	Peter Buneman	University of Edinburgh

Binary trust

* Sue and Val are noted zoologists.

** Zack is a noted *computational* zoologist

Binary trust

* Sue and Val are noted zoologists.

****** Zack is a noted *computational* zoologist

5/15/2017

Access control

Pub < Conf < Sec < TSec

Confidence scores (non-binary trust)

A simple model for data pricing

Do it once and use it repeatedly: provenance

Label (annotate) input items abstractly with provenance tokens.Provenance tracking: propagate expressions (involving tokens) (to annotate intermediate data and, finally, outputs)

Track two distinct ways of using data items by computation primitives:

- jointly (this alone is basically like keeping a log)
- **alternatively** (doing both is essential; think trust)

Input-output compositional; Modular (in the primitives)

Later, we want to **evaluate** the provenance expressions to obtain binary trust, access control, confidence scores, data prices, etc.

Algebraic interpretation for RDB

Set X of provenance tokens.

Space of annotations, provenance expressions Prov(X)

Prov(*X*)-relations:

every tuple is annotated with some element from Prov(X).

Binary operations on Prov(X):

- corresponds to joint use (join, cartesian product),
- + corresponds to alternative use (union and projection).

Special annotations:

"Absent" tuples are annotated with **0**.

1 is a "neutral" annotation (data we do not track).

K-Relational algebra

Algebraic laws of $(Prov(X), +, \cdot, 0, 1)$? More generally, for annotations from a structure $(K, +, \cdot, 0, 1)$?

K-relations. Generalize RA+ to (positive) K-relational algebra.

Desired optimization equivalences of *K*- relational algebra iff $(K, +, \cdot, 0, 1)$ is a **commutative semiring**.

Generalizes SPJU or UCQ or non-rec. Datalog set semantics $(\mathbb{B}, \lor, \land, \bot, \top)$ bag semantics $(\mathbb{N}, +, \cdot, 0, 1)$ c-table-semantics [IL84] (BoolExp(X), \lor, \land, \bot, \top) event table semantics [FR97,Z97] $(\mathcal{P}(\Omega), \cup, \cap, \emptyset, \Omega)$

What is a commutative semiring?

An algebraic structure $(K, +, \cdot, 0, 1)$ where:

- *K* is the domain
- + is associative, commutative, with 0 identity
- is associative, with 1 identity
- distributes over +
- $a \cdot 0 = 0 \cdot a = 0$
- • is also **commutative**

Unlike ring, no requirement for inverses to +

semiring

Provenance: abstract semiring annotation

Val's notes

mouse	gray	r
mouse	red	S
rat	gray	t

Keep X={ p,q,r,s,t } abstract.

Diagnostic for wrong answers; Deletion propagation.

E.g., *r=s=0*

Provenance polynomials

 $(\mathbb{N}[X], +, \cdot, 0, 1)$ is the commutative semiring freely generated by X (universality property involving homomorphisms)

Provenance polynomials are **PTIME**-computable (data complexity). (query complexity depends on language and representation) ORCHESTRA provenance (graph representation) about **30%** overhead

Monomials correspond to logical derivations (proof trees in non-rec. Datalog)

Provenance reading of polynomails:

output tuple has provenance three derivations of the tuple

 $2r^2 + rs$

- two of them use *r*, twice,
- the third uses *r* and *s*, once each

Specialize provenance for access control

(A, min, max, 0, Pub) where A = Pub < Conf < Sec < TSec < 0

 $f: X \to \mathbb{A}$ f(p)=f(q)= Pub f(r)=f(s)= TSec f(t)= Conf

 $eval(f): \mathbb{N}[X] \rightarrow \mathbb{A}$ eval(f)(pr+qt)=Conf eval(f)(ps)=TSec

Specialize provenance for confidence scores

 $\mathbb{V} = ([0,1], \max, \cdot, 0, 1)$ the Viterbi semiring

 $f: X \to [0,1]$ f(p)=f(q)=0.9 f(r)=0.6 f(s)=0.1 f(t)=0.8

 $eval(f): \mathbb{N}[X] \rightarrow \mathbb{V}$ eval(f)(pr+qt)=0.72 eval(f)(ps)=0.09

Some application semirings

 $(\mathbb{B}, \wedge, \vee, \top, \bot)$ binary trust $(\mathbb{N}, +, \cdot, 0, 1)$ multiplicity (number of derivations) (A, min, max, 0, Pub) access control $\mathbb{V} = ([0,1], \max, \cdot, 0, 1)$ Viterbi semiring (MPE) *confidence scores* $\mathbb{T} = ([0, \infty], \min, +, \infty, 0)$ tropical semiring (shortest paths) *data pricing* $\mathbb{F} = ([0,1], \max, \min, 0, 1)$ "fuzzy logic" semiring

Two kinds of semirings in this framework

Provenance semirings, e.g.,

($\mathbb{N}[X], +, \cdot, 0, 1$) provenance polynomials [GKT07] (Why(X), \cup , \bigcup , \emptyset , { \emptyset }) witness why-provenance [BKT01]

Application semirings, e.g.,

(A, min, max, 0, Pub) access control [FGT08]

 $\mathbb{V} = ([0,1], \max, \cdot, 0, 1)$ Viterbi semiring (MPE) [GKIT07]

Provenance specialization relies on

- Provenance semirings are freely generated by provenance tokens
- Query commutation with semiring homomorphisms

Query commutation with homomorphisms

query in *QL* homomorphism $h: K_1 \rightarrow K_2$

QL = RA+, Datalog [GKT07]

and extensions [FGT08, GP10, ADT11a, T13, DMT15, GUKFC16, T17]

A Hierarchy of Provenance Semirings [G09, DMRT14]

A Hierarchy of Provenance Semirings [G09, DMRT14]

A menagerie of provenance semirings

(Which(X), \cup , \cup^* , \emptyset , \emptyset^*) sets of contributing tuples "Lineage" (1) [CWW00]

(Why(X), \cup , \bigcup , \emptyset , { \emptyset }) sets of sets of ... Witness why-provenance [BKT01]

(PosBool(X), \land , \lor , \top , \bot) minimal sets of sets of... Minimal witness whyprovenance [BKT01] also "Lineage" (2) used in probabilistic dbs [SORK11]

 $(Trio(X), +, \cdot, 0, 1)$ bags of sets of ... "Lineage" (3) [BDHT08,G09]

 $(\mathbb{B}[X],+,\cdot,0,1)$ sets of bags of ... Boolean coeff. polynomials [G09]

(Sorp(X),+, \cdot , 0, 1) minimal sets of bags of ... absorptive polynomials [DMRT14]

 $(\mathbb{N}[X], +, \cdot, 0, 1)$ bags of bags of... universal provenance polynomials [GKT07]

5/15/2017

From RA+ to Datalog

Immediate consequence operator *F* of a Datalog program. Incorporates the edb predicates, maps idb predicates to idb predicates.

It's expressible in RA+. E.g., transitive closure $F(T) = E \cup \pi_{1,3}(E \bowtie T)$

Generalize to F: $(K-Rel)^n \rightarrow (K-Rel)^n$ (n=# of idb predicates)

Solve certain (systems) of least fixed point equations over K-relations. T = F(T)

Equivalently:

- introduce unknowns Z for the annotations of idb tuples
- solve system of fixed point equations over *K*;

right-hand sides are polynomials in K[Z].

Additional structure on *K* for these to have (unique) solutions?

W-continuous semirings

Semirings *K* such that the immediate consequence operator of any Datalog program has a least fixpoint on *K*-relations.

Naturally ordered when

 $x \le y$ iff there exists z s.t. x+z = y

is an order relation (all semirings seen here are naturally ordered)

 ω -complete also $x_0 \le x_1 \le \dots \le x_n \le \dots$ have l.u.b.'s (sup's)

a-continuous moreover + and · preserve those l.u.b.'s

Among our examples

Many of the semirings that interest us \mathbb{B} , \mathbb{T} , \mathbb{V} , \mathbb{A} , \mathbb{F} are already ω -continuous.

 $(\mathbb{N}, +, \cdot, 0, 1)$ is not, but its "completion" $(\mathbb{N}^{\infty} = \mathbb{N} \cup \{\infty\}, +, \cdot, 0, 1)$ is.

For provenance, the completion of $\mathbb{N}[X]$ is not $\mathbb{N}^{\infty}[X]$. Instead of (finite) polynomials we need (possibly infinite)

formal power series.

They form an ω -continuous semiring $\mathbb{N}^{\infty}[[X]]$. Monomials still correspond to derivations trees. (Even transitive closure has infinitely many derivation trees if E has loops.)

The completion of $\mathbb{B}[X]$ is $\mathbb{B}[[X]]$.

Absorptive polynomials

Most informative provenance semiring for Datalog: $(\mathbb{N}^{\infty}[[X]], +, \cdot, 0, 1)$ (Infinite power series have finite representations as systems of polynomial equations.)

Absorption $a + a \cdot b = a$

Absorptive polynomials Sorp(X): boolean coefficients but only minimal degree monomials $\frac{x^2y + xy + y^2 + xz}{xy + y^2 + xz} \rightarrow xy + y^2 + xz$

Absorptive power series same as absorptive polynomials!

Why? Order monomials by degree of each variable. In this infinite poset all antichains are finite! (Dickson's Lemma)

Sorp(X) is already ω -continuous: provides provenance polynomials for Datalog.

So is PosBool(X), but Sorp(X) provenance also supports tropical and Viterbi semiring applications

Further aspects of the framework

Extension to tree data (Nested Relational Calculus, structural recursion on trees, unordered XQuery) [FGT08]

Study of CQ/UCQ on provenance-annotated relations [G09]

Extension to aggregates (poly-size overhead) [ADT11a]

Poly-size provenance for Datalog (circuits; PosBool(X), Sorp(X)...) [DMRT14]

Extension to data-dependent finite state processes [DMT15]

Connections to semiring monad [FGT08, T13] to semimodules [ADT11a] to tensor products [ADT11a, DMT15]

Negative information; non-monotone operations (difference)

Boolean expressions [IL84]. Limited.

Add a binary operation corresponding to difference m-semirings (common gen. of set and bag difference) [GP10] spm-semirings (OPTIONAL in SPARQL) [GUKFC16]

Encode difference by aggregation [ADT11a]

Different equational theories, different algebraic optimizations [ADT11b]

Still not clear how to track **negative information**. useful: non-answers (why not?), insertion propagation.

Logical model checking ("provenance of ... truth?") negation as duality (NNFs), logical games ongoing work with Grädel and Ives [T16, T17]

Current targets

ANALYTICS COMPUTATIONS

"Fine-grained provenance for linear algebra operators" Yan, T., **Ives** TaPP 16

DISTRIBUTED SYSTEMS/NETWORK PROVENANCE

"Time-aware provenance for distributed systems", Zhou, Ding, **Haeberlen, Ives, Loo** TaPP 11

"Diagnosing missing events in distributed systems with negative provenance", **Wu, Zhao**, **Haeberlen,** Zhou, **Loo** SIGCOMM 14

STATIC ANALYSIS OF SOFTWARE

"On abstraction refinement for program analyses in Datalog" Zhang, Mangal, Grigore, Naik PLDI 14

Framework references (I) *

[GKT07]

"Provenance semirings" Green, Karvounarakis, Tannen PODS 07.

[GKIT07]

"Update exchange with mappings and provenance" Green, Karvounarakis, Ives, Tannen VLDB 07.

[FGT08]

"Annotated XML: queries and provenance" Foster, Green, Tannen PODS 08.

[G09]

"Containment of conjunctive queries on annotated relations" Green ICDT 09.

[GP10]

"On database query languages for K-relations", Geerts, Poggi J Appl. Logic 2010.

* See also companion paper in PODS 2017 proceedings.

Framework references (II)

[ADT11a]

"Provenance for aggregate queries", Amsterdamer, Deutch, Tannen PODS 11.

[ADT11b]

"On the limitations of provenance for queries with difference", Amsterdamer, Deutch, Tannen TaPP 11

[T13]

"Provenance propagation in complex queries" Tannen Buneman Festschrift 2013

[DMRT14] *"Circuits for Datalog provenance"*, Deutch, Milo, Roy, T. ICDT 14.

[DMT15] *"Provenance-based analysis of data-centric processes"* Deutch, Moskovitch, Tannen VLDB J. 2015

Framework references (III)

[GUKFC16]

"Algebraic structures for capturing the provenance of SPARQL queries" Geerts, Unger, Karvounarakis, Fundulaki, Christophides JACM 2016

[T16] "About the provenance of truth" Tannen Simons Inst. Website 16 https://simons.berkeley.edu/talks/val-tannen-2016-12-09

[T17]

"Provenance analysis for FOL model checking" Tannen SIGLOG News 2017

Other references

[IL84]

"Incomplete information in relational databases" Imieliński, Lipski JACM 1984

[FR97]

"A probabilistic relational algebra" Fuhr, Röllecke TOIS 1997

[Z97]

"Query evaluation in probabilistic relational databases" Zimányi DDS 1997

[CWW00]

"Tracing the lineage of view data in a warehousing environment" Cui, Widom, Wiener TODS 2000

[BKT01]

"Why and where: a characterization of data provenance" Buneman, Khanna, Tan ICDT 2001

[BDHTW08]

"Databases with uncertainty and lineage" Benjelloun, Das Sarma, Halevy, Theobald, Widom VLDB J. 2008

[SORK11]

"Probabilistic databases" Suciu, Olteanu, Ré, Koch SLDM 2011

5/15/2017

PODS 2017

