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1. INTRODUCTION
Over the last decade, there has been an enor-

mous increase in the volume of data that is being
stored, processed and analyzed. In order to im-
prove the performance of query processing on such
amounts of data, many modern data management
systems (e.g. Spark [23, 28], Hadoop [13, 9, 24], and
others [19, 14]) have resorted to the power of paral-
lelism to speed up computation. Parallelism enables
the distribution of computation for data-intensive
tasks into hundreds, or even thousands of machines,
and thus significantly reduces the completion time
for several crucial data processing tasks.

In this paper, we present a survey on recent re-
sults [18, 4, 5, 17] that study the computational
complexity of mulitway join processing in such mas-
sively parallel systems. Our goal is twofold. First,
we introduce a simple theoretical model, called the
MPC (Massively Parallel Computation) model, that
allows us to rigorously analyze the computational
complexity of various parallel algorithms for query
processing. Second, using the MPC model as a the-
oretical tool, we show how we can design novel algo-
rithms and techniques for multiway join processing,
and how we can prove their optimality through tight
lower bounds. Our analysis provides a deeper un-
derstanding of how much synchronization, commu-
nication and data load is required when we compute
a multiway join query, and informs of what is pos-
sible to achieve under specific system constraints.

Organization. We first present the MPC model
in Section 2. Equipped with the model, we describe
and rigorously analyze the behavior of several al-
gorithms for the natural join query (Section 3) and
the triangle query (Section 4). These two queries
cover most of the techniques and algorithms we use
for general multiway join queries, which we subse-
quently describe in Sections 5 and 6. We conclude
in Section 7 by discussing some key takeaways of
our results.

2. THE MPC PARALLEL MODEL
We introduce here the Massively Parallel Com-

putation model, or MPC. We will use MPC to an-
alyze the parallel complexity of various multiway
join algorithms, as well as prove lower bounds on
the amount of communication and synchronization.

In the MPC model, computation is performed by
a cluster of pmachines using a shared-nothing archi-
tecture. The shared-nothing paradigm is widely ap-
plied in modern big data management systems [25].
The computation proceeds in rounds: each round
consists of some local computation followed by global
exchange of data between the machines. At the end
of each round, the machines have to synchronize,
i.e. wait for all machines to finish before proceed-
ing to the next round.

The input data of size m (in tuples) is initially
evenly distributed among the p machines, i.e. each
machine stores m/p data (this captures how input
relations are typically distributed in a distributed
file system like HDFS [22]). After the computation
is complete, the output result is present in the union
of the output of the p machines.

The complexity of an algorithm in the MPCmodel
is characterized by two parameters:

number of rounds (r) This parameter captures
the number of synchronization points that an
algorithm requires during execution. A smaller
number of rounds means that the algorithm
can run with less synchronization.

maximum load (L) This parameter is defined as
the maximum amount of data that a machine
can receive at any round during computation.
A smaller load means that data is more evenly
distributed, and the amount of data commu-
nicated is smaller.

An ideal algorithm uses a single round (r = 1)
and distributes the data evenly without any repli-
cation, hence achieving maximum load L = m/p.
Since this is rarely possible, algorithms for query
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processing need to use more rounds, have an in-
creased maximum load, or both. An algorithm with
load L = m does not exploit data parallelism at all,
since we can send all input data to a single machine
and do processing locally. In general, for the prob-
lems we will discuss in this paper, the load will be
of the form L = m/p1�", for some 0  " < 1; we
call the parameter " the space exponent. The chal-
lenge is to identify the optimal tradeo↵ between the
number of rounds and maximum load for various
computational tasks.

Other Parallel Models. There has been a plethora
of parallel computation models proposed over the
years [1, 15, 11]. The MPC model is closer to the
BSP model [26], which also describes synchronous
computation; the main di↵erence is that MPC ig-
nores the computation cost as a parameter, and fo-
cuses instead on the amount of data communicated
at each machine.

3. JOINS IN PARALLEL
We first present how we can compute a natural

join between two binary relations,

J(x, y, z) = R(x, y), S(y, z).

Let m
R

,m
S

be the sizes of R,S respectively, and
assume that initially both R and S are uniformly
distributed on the p machines in the cluster; thus,
the input load per machine is m/p, with m = m

R

+
m

S

. We discuss several algorithms that all work
using a single round, and analyze in detail the load
L they can achieve.

3.1 Hash Join
Let h be a random hash function that maps at-

tribute values (U) to the domain [p] = {1, · · · , p}.
To partition the tuples, every machine iterates over
its local tuples and sends every tuple R(a, b) to ma-
chine h(b), and every tuple S(c, d) to machine h(c).
After receiving the tuples, each machine computes
the join locally. This basic one-round algorithm was
pioneered since the earliest parallel database sys-
tems [10] and can be found today in virtually all
parallel join implementations [9, 19, 7, 29, 27].

Load Analysis. Since we are distributing m tu-
ples over p machines, one may hope the load to be
m/p; unfortunately, this is not always the case. We
rule out bad hash functions with many collisions:
there is a lot of work on designing good hash func-
tions and we assume to have one. In particular,
we will assume that h is a perfectly random hash
function: this means that h is drawn uniformly at
random from the set of hash functions that map the

universe U to [p]. Such a hash function guarantees
that (i) for any value v 2 U and every hash bucket
s 2 [p], P (h(x) = s) = 1/p, and (ii) for any distinct
values v1, v2, . . ., the hash buckets h(v1), h(v2), . . .
are independent [20, pp.107].1

Observation 1. The expected load for any ma-
chine s is m/p, since each input tuple in R or S
is sent to the machine with probability 1/p over the
random choices of the hash function.

Define the degree d
i

of a value v
i

2 U as the
number of tuples R(x, y) or S(y, z) with y = v. We
say that the value is skewed if its degree is > m/p.

Observation 2. If the input has a skewed value,
then for any choice of hash function h, there exists
an overloaded machine with load > m/p. Indeed, all
input tuples having the skewed value must be hashed
to the same machine, which becomes overloaded.

Thus, the ideal load is m/p, but if the input is
skewed then the load exceedsm/p. It turns out that
the converse also holds: if the database is skew-free,
then the maximum load is O(m/p) with high prob-
ability. However, in the rigorous analysis we must
pay an additional ln(p) factor, either by allowing
the load to grow to ln(p) ·m/p, or by requiring the
maximum degree to be < m/(p · ln(p)). The rest of
this subsection provides the full formal analysis, for
readers interested in the detailed argument.

Suppose U = {v1, . . . , vN} is the universe of pos-
sible values; let d

i

= 0 if v
i

does not occur in the
input. The input size is m =

P
i

d
i

.

Theorem 3.1. [6, 12] Let X1, . . . , XN

2 {0, 1}
be independent and identically distributed (i.i.d.) ran-
dom variables such that P (X

i

= 1) = 1/p. Let
d = maxN

i=1 di. Then, for any � � 0:

P

 
NX

i=1

d
i

X
i

� (1 + �)m/p

!
 exp

✓
�m

pd
h(�)

◆

where h(�) = (1 + �) ln(1 + �)� �.

We use Theorem 3.1 to analyze the load of the
Hash Join algorithm. Fix some machine, and de-
note X

i

the random variable that is 1 if the value
v
i

is hashed to that server, and 0 otherwise. Then
P (X

i

= 1) = 1/p, and the load at that machine isP
i

d
i

X
i

. The probability that the maximum load
L, over all machines, exceeds the expected loadm/p

1
In practice, we can choose a good enough hash func-

tion, for example by having a fixed function h0, choosing

a random seed r, and define h(v) = h0(v xor r).
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by a factor 1 + � follows from Theorem 3.1 and the
union bound:

P (L > (1 + �)m/p)  p exp

✓
�m

pd
h(�)

◆

The main result for Hash Join follows:

Proposition 3.2. The maximum load L for the
Hash Join algorithm is bounded as follows:

(1) If d = 1 (the degree of every value is 1), then

for any � < 1, P (L > (1 + �)m/p)  p exp(�m�

2

3p );
this probability decreases exponentially fast in the
input size m.

(2) If d  m/(3p ln(p)), then for any � > 1,
P (L > (1 + �)m/p)  p1��; this probability de-
creases polynomially in the number of machines p.

(3) If d  m/p, P (L > ln(p)m/p)  p�1; this
probability also decreases polynomially in the num-
ber of machines p.

Proof. Item (1) follows from the fact that for
� < 1, we have that h(�) � �2/3. Item (2) follows
from h(�) � �/3 and p exp(� ln(p)�) = p1��. Item
(3) follows from setting 1 + � = ln p. Then, since
(1+�) ln(1+�)�� > 2(1+�) whenever ln(1+�) > 3,
we have p exp(�2 ln(p)) = p�1.

Even though the above analysis is for the case of
a simple join, all algorithms in this paper that use
one or more hash functions to partition data val-
ues into buckets can also be analyzed in a similar
way, using a generalization of Theorem 3.1. The
main takeaway is that skew-free input means that
the maximum load is close to the expected load; on
the other hand, skewed input can cause the maxi-
mum load to be much larger than the expected load.
The particular threshold that determines when a
value becomes skewed depends on (i) the query, and
(ii) the sizes of the relations.

3.2 Broadcast Join
A simple join algorithm that is immune to skew

is the Broadcast Join, where each machine broad-
casts all its local S-tuples to all other machines.
There is no need to reshu✏e R, and after the com-
munication step all machines can compute the join
locally. This algorithm is also implemented in sev-
eral systems [21], and performs best when the size
of S is much smaller than that of R. The load is
m

R

/p+m
S

, regardless of whether the data is skewed
or not; this becomes O(m/p) whenm

S

= O(m
R

/p).

3.3 Cartesian Join
The worst behavior for the Hash Join algorithm

occurs when both R and S exhibit worst-case skew,
i.e. they have a single y-value. Then the algorithm

1

p
x

p
z

column h
z

(w)

row h
x

(v)

Figure 1: Depiction of the Cartesian Join al-
gorithm. The p machines are organized into
a p

x

⇥ p
z

rectangle.

will send all tuples of R and S to the same ma-
chine, whose load will be L = m. In this case, the
join degenerates to a cartesian product: R(x)⇥S(z)
(we drop the attribute y since it is constant), and
requires a di↵erent algorithm.

Let p
x

, p
z

be two integers such that p
x

· p
z

= p;
we call these numbers shares [2]. We organize the
p machines into a p

x

⇥ p
z

rectangle, where each
server is uniquely identified by a pair of numbers
(i, j) 2 [p

x

]⇥ [p
z

] (see Figure 1). Let h
x

, h
z

be two
random hash functions with domains [p

x

] and [p
z

]
respectively. The Cartesian Join works as follows.
Initially, it sends every tuple R(v) to all machines
of the form (h

x

(v), ⇤), and every tuple S(w) to all
machines (⇤, h

z

(w)). In other words the algorithm
broadcasts R(v) to the entire row h

x

(v), and broad-
casts S(w) to the entire column h

z

(w), as seen in
Figure 1. After the communication step, each ma-
chine computes the cartesian product of its local
tuples. The algorithm is correct, because every an-
swer (v, w) of the cartesian product will be in the
output of some machine, namely the machine at
(h

x

(v), h
z

(w)). There is no skew, since every data
value has degree 1 (R and S are sets).

Load Analysis. Since R is partitioned into p
x

buckets, each machine receives O(m
R

/p
x

) tuples
from R, and similarly O(m

S

/p
z

) tuples from S. The
load is then

L =
m

R

p
x

+
m

S

p
z

� 2

✓
m

R

m
S

p
x

p
z

◆1/2

= 2

✓
m

R

m
S

p

◆1/2

where equality holds when the two terms m
R

/p
x

,
m

S

/p
z

are equal. This implies that the optimal
values for p

x

, p
z

are:

p
x

=

✓
p
m

R

m
S

◆1/2

p
z

=

✓
p
m

S

m
R

◆1/2

When m
R

= m
S

, the algorithm organizes the p ma-
chines in a

p
p⇥p

p square. Otherwise, it allocates
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more shares to the larger relation. Since we have to
ensure that p

x

, p
z

� 1, if m
R

< m
S

/p, we set p
x

=
1, p

z

= p, in which case the algorithm degenerates
to the Broadcast Join (R is broadcast) and the load
becomes O(m

S

/p). Similarly, if m
S

< m
R

/p, we
set p

x

= p, p
z

= 1 and the load becomes O(m
R

/p).
The load of the Cartesian Join will be:

L = O

 
max

(
m

R

p
,
m

S

p
,

✓
m

R

m
S

p

◆1/2
)!

(1)

We should note that so far we have ignored any
rounding issues for the (integer) shares; rounding
is challenging problem in practice, and we refer the
reader to [8] for further discussion.

Lower Bound. It is easy to see that the above
allocation of shares is optimal. We will provide a
brief sketch of the argument. Suppose that machine
j receives m

R,j

,m
S,j

tuples from R and S respec-
tively. Then, it can output at most m

R,j

· m
S,j


(m

R,j

+ m
S,j

)2/4 = L2
j

/4 tuples. Since we have
p machines, the total output

P
j

L2
j

/4 must be at
least m

R

m
S

. Therefore,

m
R

m
S


X

j

L2
j

/4 
X

j

L2/4 = pL2/4

where the last inequality follows from L = max
j

L
j

.
Thus, L � 2(m

R

m
S

)1/2/p1/2.

3.4 Skew Join
All algorithms discussed so far achieve the opti-

mal load only if the data has no skew. To achieve
the optimal load in the case of skew, we follow a dif-
ferent approach: we treat the heavy (skewed) and
light (non-skewed) values separately.

Heavy Hitters. Recall that the analysis of the
Hash Join algorithm fails if some value y = v oc-
curs more than m/p times in R and S, in which
case we say it is a heavy hitter. We explain briefly
how to compute these values. Fix a machine, and
call a local value v a candidate if its local degree
is > m/p2. Each machine computes its candidates
and their local degrees. All candidates are broad-
cast to all machines, and then each machine com-
putes the global degrees of all candidates by adding
up the local degrees; the heavy hitters are those
candidates with a global degree > m/p. Although
we need one round to compute the heavy hitters, we
will not count this step towards the total number
of communication rounds, because the size of data
exchange is much smaller, and in many cases the
heavy hitters are known already.

The Skew Join Algorithm. Let H be the set of
heavy hitters, and dR

h

, dS
h

be the degrees of y = h in

R(x, y) and S(y, z) respectively. Notice that value
h may be skewed only in R, or only in S, or in both.
Skew Join computes in parallel (1) the join on the
light hitters, and (2) the join on the heavy hitters.

The light hitters are computed using the Hash
Join; Proposition 3.2 tells us that the load will be
O(ln(p)m/p) = Õ(m/p); we will use Õ to hide any
logarithmic factors. For the heavy hitters, we assign
to each value h 2 H an exclusive group of p

h

ma-
chines such that p =

P
h

p
h

, which we use to com-
pute the residual query corresponding to the heavy
hitter value y = h. The residual query q[h/x] is ob-
tained by substituting x with the constant h; in this
case, it is the cartesian product R(x, h) ⇥ S(h, z).
According to Eq. (1), we can compute q[h/x] with

load L
h

= max{dR
h

/p
h

, dS
h

/p
h

,
�
dR
h

dS
h

/p
h

�1/2}. Since
the maximum load is L = max

h

L
h

, to minimize L
we choose the p

h

to make all L
h

equal:

p
h

= p ·max

(
dR
h

m
R

,
dS
h

m
S

,
dR
h

dS
hP

j

dR
j

dS
j

)

The maximum load of Skew Join becomes:

L = Õ

0

@max

8
<

:
m

R

p
,
m

S

p
,

sP
h

dR
h

dS
h

p

9
=

;

1

A

By extending the argument from the previous sec-
tion, it can be shown that this load is optimal, given
the degree distribution for dR

h

, dS
h

.

Discussion. We end this section by discussing two
special cases of interest. The first is when there is
a single heavy hitter h which occurs in all tuples in
R and in S, in other words dR

h

= m
R

, dS
h

= m
S

.
In this case p

h

= p, and Skew Join degenerates
to a Cartesian Join. In this scenario of extreme
skew, the speedup is reduced from linear (Õ(m/p))
to sublinear (Õ(m/p1/2)). The second special case
is when the skew is one-sided, i.e. when only val-
ues in R are skewed. Then dS

h

 m
S

/p for all h,
and the reader can verify that the load becomes
Õ(max{m

R

/p,m
S

/p}) = Õ(m/p). In other words,
a join with one-sided skew is no more expensive than
a skew free-join, and has linear speedup.

4. TRIANGLES IN PARALLEL
Our next query is the triangle query:

�(x, y, z) = R(x, y), S(y, z), T (z, x).

We denote the sizes of R,S, T by m
R

,m
S

,m
T

re-
spectively. A traditional parallel query execution
engine typically computes the triangle query in two
rounds. In the first round, it computes the natu-
ral join U = R(x, y), S(y, z) using the parallel Hash
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2

x

y

z

S(b, c) ! (⇤, h
y

(b), h
z

(c))

R(a, b) ! (h
x

(a), h
y

(b), ⇤)

T (c, a) ! (h
x

(a), ⇤, h
z

(c))

(h
x

(a), h
y

(b), h
z

(c))

Figure 2: Depiction of the HC algorithm for
the triangle query. The p machines are orga-
nized into a p

x

⇥ p
y

⇥ p
z

cube.

Join algorithm. In the second round, it joins the
intermediate relation U(x, y, z) with T (z, x) using
again a parallel Hash Join. The issue with such
an execution strategy is that the intermediate re-
lation U can be much larger than the input, and
shu✏ing U to join with T can be a costly operation
in terms of communication. Motivated by this, we
present here two one-round algorithms that com-
pute �: one for skew-free input, and the other for
skewed data.

4.1 The HyperCube Algorithm
The HyperCube (HC) algorithm was first intro-

duced by Afrati and Ullman [2] in the MapReduce
context, with the name Shares. It first organizes
the p machines into a 3-dimensional cube (one di-
mension per variable). Let p

x

, p
y

, p
z

be the sizes
of the dimension for variables x, y, z respectively,
called shares. Each machine is represented by a
distinct point in P = [p

x

] ⇥ [p
y

] ⇥ [p
z

]. Since we
have p available machines, we have p

x

· p
y

· p
z

 p.
The algorithm makes use of three hash functions

h
x

, h
y

, h
z

, which map values from the domain U to
[p

x

], [p
y

], [p
z

] respectively. During the communi-
cation phase of the first round, each tuple R(a, b)
is sent to all machines of the form (h

x

(a), h
y

(b), ⇤).
Notice that every tuple is replicated p

z

times, since
it is sent to p

z

machines. We distribute the tuples
from S, T similarly: S(b, c) is sent to (⇤, h

y

(b), h
z

(c))
and T (c, a) to (h

x

(a), ⇤, h
z

(c)). The communication
pattern is depicted in Figure 2. During the compu-
tation phase, each machine simply performs a local
computation of the query � on the data fragments
it has received.

The correctness of the algorithm comes from the
fact that any output triangle �(a, b, c) will be com-
puted and output on the machine with coordinates
(h

x

(a), h
y

(b), h
z

(c)), since that machine will have
all necessary input data sent to it.

Load Analysis. The above algorithm works in one
round, and outputs the correct result. We next an-
alyze how to choose the shares and how to compute
the maximum load L.

We first focus on how R is distributed. The key
observation is that R is partitioned into p

x

·p
y

buck-
ets. Assuming that R is skew-free (here this means
that the degree of each x-value is  m

R

/p
x

and of
each y-value  m

R

/p
y

), each bucket will be of ap-
proximately the same size, and thus the load sent
to a machine will be Õ(m

R

/(p
x

p
y

)). Similarly, the
load for S will be Õ(m

S

/(p
y

p
z

)), and for T it will
be Õ(m

T

/(p
x

p
z

)). The total load L will be at least
the maximum of the three quantities. To find the
optimal shares, we can construct an optimization
problem, where the objective is to minimize L un-
der the constraints that L � m

R

/(p
x

·p
y

) (similarly
for S, T ), and also p

x

· p
y

· p
z

 p.
In order to solve the above optimization program,

we transform it into a linear program (LP) by tak-
ing logarithms with base p on both sides. Let � =
log

p

L and e
i

= log
p

p
i

for i = {x, y, z}. Since
p
i

= pei , we call e
i

the share exponent. The LP
takes the following form:

minimize �

subject to e
x

+ e
y

+ � � log
p

m
R

e
y

+ e
z

+ � � log
p

m
S

e
x

+ e
z

+ � � log
p

m
T

e
x

+ e
y

+ e
z

 1

e
x

, e
y

, e
z

,� � 0

The solution of the above LP obtains the best pos-
sible share exponents for the particular sizes of the
input relations for the skew-free case. By using the
principle of LP duality, the optimal load can also
be expressed as the maximum value of the follow-
ing (non-linear) optimization problem:

maximize

✓
mu

R

R

mu

S

S

mu

T

T

p

◆1/(u
R

+u

S

+u

T

)

subject to u
R

+ u
S

 1

u
S

+ u
T

 1

u
R

+ u
T

 1

u
R

, u
S

, u
T

� 0

The vector (u
R

, u
S

, u
T

) forms a fractional edge pack-
ing of the query �; we will explain in the next sec-
tion how this notion is defined for any multiway
join query. By examining the vertices of the poly-
tope formed by the edge packings, we can show that
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the optimal load is:

L = Õ

✓
max

⇢
m

R

p
,
m

S

p
,
m

T

p
,
(m

R

m
S

m
T

)1/3

p2/3

�◆

The first three terms are obtained through the edge
packings (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively,
while the last term through (1/2, 1/2, 1/2).

Discussion. To keep the discussion simple, let us
consider the case where m

R

< m
S

= m
T

= m.
There are two cases:

• p < m/m
R

. In this case, the optimal packing
is either (0, 1, 0), or (0, 0, 1), and the load be-
comes Õ(m/p). To achieve this linear speedup,
the HC algorithm allocates shares p

x

= p
y

=
1, p

z

= p, i.e. it performs a parallel Hash Join
of S, T on z, and broadcasts R.

• p � m/m
R

. In this case, the optimal packing
is (1/2, 1/2, 1/2), and the load becomes L =
(m

R

m
S

m
T

)1/3/p2/3. To achieve this load, the
HC algorithm allocates shares as follows: p

x

=
p
y

= (m
R

/m)1/3p1/3, p
z

= (m/m
R

)2/3p1/3.

In the case where all input relations have the
same size, i.e. m

R

= m
S

= m
T

= m, the shares
are equal: p

x

= p
y

= p
z

= p1/3, and the load be-
comes Õ(m/p2/3). The speedup now is not linear;
however, as we will see in Section 5, this is the best
we can hope for among one-round algorithms.

4.2 Triangles with Skew
The HC algorithm is optimal only for skew-free

data. But how do we define skewed values (heavy
hitters) for the triangle? For the sake of simplicity,
assume that all relations have size equal to m. A
value for x, y or z is a heavy hitter if it has degree
> m/p1/3 for any of the two relations it belongs;
otherwise, it is light. To achieve optimal load for
skewed data, we follow the same approach as the
Skew Join algorithm, by treating heavy and light
values separately.

The algorithm will deal with the light values by
running the vanilla HC algorithm, achieving maxi-
mum load Õ(m/p2/3). To handle the heavy hitters,
we distinguish two cases.

Case 1. In this case, we handle the tuples that have
values with degree � m/p in at least two variables.
Without loss of generality, suppose that both x, y
are heavy in at least one of the two relations they
belong to. The observation is that there are at most
2p such heavy values for each variable, and hence
we can send all tuples in R with both x, y heavy
(at most 4p2) to all machines. Then, it remains to
compute the query S0(y, z), T 0(z, x), where x and y

can take only p values. We can do this by running
the standard Hash Join algorithm; since the degree
of z-values will be at most p for each relation, there
is no skew and the maximum load will be Õ(m/p).

Case 2. In this case, we handle the remaining out-
put: this includes the tuples where one value has
degree � m/p1/3, and the other values have degree
 m/p. Without loss of generality, assume that we
want to compute the query for the x-values that
are heavy in either R or T . Observe that there are
at most 2p1/3 such heavy hitters. If H

x

denotes the
set of heavy hitter values for variable x, the residual
query q[h/x] for each h 2 H

x

is:

q[h/x] = R(h, y), S(y, z), T (z, h)

which is equivalent to computing the query q
x

(y, z) =
R0(y), S(y, z), T 0(z) with input sizes dR

h

,m, dT
h

re-
spectively. As with the Skew Join, we allocate an
exclusive group of p

h

servers to compute q[h/x] for
each h 2 H

x

. Having Case 1 ensures that the input
to the residual query is skew-free, hence the load L

h

for a particular value h is given by:

L
i

= O

0

@max

8
<

:
m

p
h

,

s
dR
h

dT
h

p
h

9
=

;

1

A

We can now set p
h

similar to how we chose the
values for the Skew Join:

p
h

= p ·max

(
1

p1/3
,

dR
h

dS
hP

j2H
x

dR
j

dS
j

)

This assignment obtains the following load:

L = Õ

0

@max

8
<

:
m

p2/3
,

sP
h

dR
h

dS
h

p

9
=

;

1

A

Summing up all the cases, we obtain that the load
of the 1-round algorithm for computing triangles is:

Õ

0

@max

8
<

:
m

p2/3
,

sP
h

dR
h

dS
h

p
,

sP
h

dR
h

dT
h

p
,

sP
h

dS
h

dT
h

p

9
=

;

1

A

The above algorithm is optimal for computing tri-
angles in one round when the degree distribution is
given. Observe that in the case of extreme skew,
the load increases from Õ(m/p2/3) in the skew-free
case to Õ(m/p1/3).

5. GENERAL JOINS IN ONE ROUND
We have seen so far how to analyze parallel al-

gorithms for computing the join and triangle query.
In this section, we generalize our techniques to com-
pute general multiway join queries in one round.
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5.1 The General HyperCube Algorithm
The algorithm we present here is a generalization

of the HyperCube algorithm for triangles. We will
consider a multiway join query without projections,
called also a full conjunctive query:

q(x1, . . . , xk

) = S1(x̄1), . . . , S`

(x̄
`

)

Throughout this section, the size of relation S
j

will
be m

j

. The HC algorithm assigns to each vari-
able x

i

, where i = 1, . . . , k, a share p
i

, such thatQ
k

i=1 pi = p. Each machine is then represented by
a distinct point y 2 P, where P = [p1]⇥ · · ·⇥ [p

k

];
in other words, machines are mapped into points of
a k-dimensional hypercube.

During communication, we use k independently
chosen hash functions h

i

: U ! [p
i

] and send each
tuple t of relation S

j

(x
i1 , . . . , xi

a

) to all machines
in the destination subcube of t:

D(t) = {y 2 P | 8m 2 [a] : h
i

m

(t[i
m

]) = y
i

m

}

Then, each machine locally computes the query q
for the subset of the input that it has received.

The correctness of the HC algorithm follows from
the observation that, for every potential output tu-
ple (a1, . . . , ak), machine (h1(a1), . . . , hk

(a
k

)) con-
tains all the necessary information to decide whether
it belongs in the answer or not. Observe also that
the choice of p1, . . . , pk gives a di↵erent parametriza-
tion of the HC algorithm. To analyze the load of
the HC algorithm for a particular choice of shares,
we will use a generalization of Proposition 3.2.

Definition 5.1. Let p = (p1, . . . , pk) be a vector
of shares. If for every relation S

j

and every tuple
of values t over A ✓ x̄

j

the degree of t in S
j

is at
most m

j

/
Q

x

i

2A

p
i

, we say that the input is skew-
free w.r.t. p.

Proposition 5.2. Let p = (p1, . . . , pk) be shares
of the HC algorithm. If the input is skew-free w.r.t
p, the maximum load is (with high probability)

Õ

 
max

j

m
jQ

i:x
i

2S

j

p
i

!

The above analysis provides us with a tool to
choose the best shares for the HC algorithm. Re-
call from Section 4 that we can write p

i

= pei , where
e
i

2 [0, 1] is called the share exponent for x
i

, and let
� = log

p

L. Then, we compute the optimal shares

by optimizing the following LP:

minimize �

subject to
X

i2[k]

�e
i

� �1

8j 2 [`] :
X

x

i

2S

j

e
i

+ � � log
p

(m
j

)

8i 2 [k] :e
i

� 0, � � 0 (2)

Observe that this is the general form of the LP in
Section 4. We can now describe our main result on
the performance of the HC algorithm. A fractional
edge packing of a query q is a non-negative weight
assignment u = (u1, . . . , uj

) to each relation S
j

such
that for every variable x

i

,
P

j:x
i

2S

j

u
j

 1. Let

pk(q) be the set of all edge packings for q.

Theorem 5.3 (Upper Bound [4]). Given a
query q and p machines, let e = (e1, . . . , ek) be the
optimal solution to (2). Let p

i

= pei , and sup-
pose that the input data is skew-free w.r.t. to p =
(p1, . . . , pk). Then the HC algorithm with shares p
achieves w.h.p.

L = Õ

0

@ max
u2pk(q)

 Q
`

j=1 m
u

j

j

p

!1/
P

j

u

j

1

A

.

A case of special interest is when all input rela-
tions have the same cardinalities, i.e. m1 = m2 =
· · · = m

`

= m. In this case the load is Õ(m/p1/⌧
⇤
).

Here, ⌧⇤ is the fractional edge packing number, de-
fined as ⌧⇤ = max

u2pk(q)
P

j

u
j

.

5.2 Optimality
The HC algorithm is optimal (up to logarithmic

factors) among one-round algorithms. Indeed, we
can show that there exists a family of skew-free in-
puts with maximum degree one (called matching
databases) such that no one-round algorithm can
achieve a bound better than the one in Theorem 5.3.

Theorem 5.4 (Lower Bound [5]). Given a
query q, any (randomized) algorithm that computes
q correctly in one round with p machines must have
maximum load

L = ⌦

0

@ max
u2pk(q)

 Q
`

j=1 m
u

j

j

p

!1/
P

j

u

j

1

A

5.3 Dealing with Skew
If the input data is not skew-free with respect

to the optimal share allocation, the HC algorithm
does not achieve the optimal anymore. Instead, we
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have to use techniques described in the previous
two sections to deal with skew, by separating the
heavy and light hitters and considering the resid-
ual queries. We refer the interested reader to [5]
for further details on how to approach general join
queries. It still remains an open problem to find
a load-optimal one-round algorithm for any input,
where optimality in this case is defined with respect
to a fixed degree distribution of the input.

6. BEYOND ONE ROUND
In this section, we discuss the analysis of multi-

way join algorithms for multiple rounds. Through-
out this section, we assume that all input relations
have the same size m.

6.1 A Worst-Case Lower Bound
We first present a lower bound for the best pos-

sible load of any multi-round algorithm. Atserias,
Grohe, and Marx [3] have shown the following re-
sult, known as the AGM bound: if all input relations
have size  m, then the size of the query is  m⇢

⇤
,

where ⇢⇤ is the fractional edge covering number of
the query q. Moreover, the AGM bound is tight,
in the sense that there exists a “worst case” in-
put database with relation sizes  m, on which the
query returns an answer of size m⇢

⇤
. The fractional

edge covering number is defined as the maximum
value of

P
j

u
j

, where the numbers u
j

� 0 are as-
sociated to the input relations R

j

, and must sat-
isfy the following conditions, for every variable x

i

:P
j:x

i

2R

j

u
j

� 1.

Theorem 6.1 ([17]). Let q be a join query.
Then, there exists a family of instances where re-
lations have the same size m, such that every MPC
algorithm that computes q with p machines using a
constant number of rounds requires load ⌦(m/p1/⇢

⇤
).

Proof Sketch. Assume that an algorithm A
computes q with load L in r rounds. Since each
machine receives at most r · L tuples from each re-
lation S

j

, we can use the AGM bound to argue that
the total number of output tuples will be at most
p(r · L)⇢⇤

. If the input database is the worst case
input (or close to it), then A must output m⇢

⇤
tu-

ples and therefore p(r · L)⇢⇤ � m⇢

⇤
, or equivalently

L � m/(rp1/⇢
⇤
).

For the triangle query, since ⇢⇤ = 3/2, any algo-
rithm with a constant number of rounds must use
load ⌦(m/p2/3). Notice that for the triangle query,
⌧⇤ = ⇢⇤ = 3/2, and thus we can use the 1-round
algorithm from the previous section to compute the
query on skew-free data with load Õ(m/p2/3).

Recall that m/p1/⌧
⇤
is the optimal load for one-

round algorithms and skew-free data, whilem/p1/⇢
⇤

is a lower bound for multi-round algorithms and ar-
bitrary data. In general, there is no relationship
between ⌧⇤ and ⇢⇤: for example, the join query has
⌧⇤ = 1 < ⇢⇤ = 2, while the queryR(x), S(x, y), T (y)
has ⌧⇤ = 2 > ⇢⇤ = 1.

The upper bound for multi-rounds and arbitrary
data is open, except for the case when all input
relations are binary: in this case ⌧⇤  ⇢⇤ and it has
been shown [16] that the optimal load is precisely
Õ(m/p1/⇢

⇤
). Intuitively, after using one round to

compute the query on the skew-free data fragment
with a load m/p1/⌧

⇤
, we can exploit the additional

rounds to compute the query on the skewed data
values with load m/p1/⇢

⇤
. We illustrate this idea

next on the triangle query.

6.2 The Triangle Revisited
Recall that the HC algorithm computes � on

skew-free data with load Õ(m/p2/3) in one round.
We will show here that we can compute the query
on arbitrary data using the same load in 2 rounds.
The main component is a parallel algorithm that
computes a semi-join query optimally in a single
round, independent of skew.

Proposition 6.2 ([17]). The semi-join query
q1(x, y) = R(x), S(x, y) can be computed in one
round with maximum load Õ(m/p). Query q2(x, y) =
R(x), S(x, y), T (y) can be computed in two rounds
with load Õ(m/p).

Proof Sketch. To compute q1 we use Skew Join,
outlined in Section 3.4. The data is skewed only
on one side, because R(x) is a set; therefore, Skew
Join has a load of Õ(m/p). To compute q2, in
the first round we compute the semi-join A(x, y) =
R(x), S(x, y): importantly, the size of the result is
no larger than m. In the second round, we compute
the semi-join q(x, y) = A(x, y), T (y). Both steps
have a load of Õ(m/p).

We now describe the 2-round algorithm for com-
puting � on arbitrary input data. Recall from Sec-
tion 4 that a value h is a heavy hitter if for some
relation the degree of h exceeds m/p1/3. For the
light values, we can run the HC algorithm in one
round and obtain load Õ(m/p2/3).

It remains to output the tuples for which at least
one variable has a heavy value. Without loss of gen-
erality, consider the case where variable x has heavy
values and observe that there are at most 2p1/3 such
heavy values for x (p1/3 for R and p1/3 for T ). For
each heavy value h, we assign an exclusive set of
p0 = p2/3 servers to compute the query q[h/x] =
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R(h, y), S(y, z), T (z, h), which is equivalent to com-
puting the residual query q0 = R0(y), S(y, z), T 0(z).
Recall that in the analysis of Section 4, it was ex-
pensive to compute this residual query in a sin-
gle round. However, by Proposition 6.2 using two
rounds we can compute each q0 with load Õ(m/p0) =
Õ(m/p2/3). We have thus shown:

Theorem 6.3. The triangle query � on input with
relation sizes equal to m can be computed by an
MPC algorithm in two rounds with Õ(m/p2/3) load,
under any input data distribution.

The 2-round algorithm achieves a better load than
any 1-round algorithm in the worst-case scenario.
Indeed, there exists an ⌦(m/p1/2) lower bound for
1-round algorithms on arbitrary data. By using
an additional round, we can beat this bound and
achieve a lower load. This confirms our intuition
that with more rounds we can reduce the maximum
load, even in the case of skewed data.

6.3 General Join Queries
Recall that every algorithm, regardless of the num-

ber of rounds, must have load ⌦(m/p1/⇢
⇤
). It is

currently not known whether this load is optimal
for general join queries, but it has been proven to
be optimal in [17, 16] for queries where all relations
have arity 2.

Our algorithm for computing the triangle query
suggests the following general strategy for comput-
ing an arbitrary query on arbitrary (possibly skewed)
data: (1) compute the query on the light hitters,
using one round and load Õ(m/p1/⌧

⇤
). (2) com-

pute the query on the heavy hitters using multiple
rounds. If ⌧⇤  ⇢⇤ and step (2) can be done with a
load of m/p1/⇢

⇤
, this algorithm is optimal.

Recall that ⌧⇤ and ⇢⇤ are the fractional edge pack-
ing number, and the fractional edge covering num-
ber of the query respectively. If all relations in the
query have arity 2, then the query hypergraph is a
graph, and in that case ⌧⇤  ⇢⇤. [17] described
an algorithm for step (2) with load Õ(m/p1/⇢

⇤
) for

chain queries and for cycles (including the algorithm
for the triangle query that we discussed earlier).
[16] described a non-trivial extension of this algo-
rithm to arbitrary queries where all relational sym-
bols have arity 2, still having load Õ(m/p1/⇢

⇤
). In

all these cases the algorithm consisting of steps (1)
and (2) is optimal, since ⌧⇤  ⇢⇤.

It is currently open how to compute optimally
queries when ⌧⇤ > ⇢⇤. If the optimal load is indeed
m/p1/⇢

⇤
, then we need an entirely new approach

to compute the query over the light hitters, with a
better load than the HC algorithm. To see such an

example, consider the query

q3(x1, x2, x3, y1,y2, y3) = R(x1, x2, x3), S1(x1, y1),

S2(x2, y2), S3(x3, y3), T (y1, y2, y3).

where ⌧⇤ = 3 and ⇢⇤ = 2. When applied to the light
hitters, the HC algorithm allocates equal shares of
p1/6 to all variables, thus the load is Õ(m/p1/3); this
load is also a lower bound for one round algorithms.
Yet for multiple rounds the best lower bound is
⌦(m/p1/⇢

⇤
) = ⌦(m/p1/2): it is open whether q3

can be computed with this load in multiple rounds.

7. CONCLUSION
In this paper, we presented recent results on the

communication cost of algorithms for computing
multiway join queries in modern big data analyt-
ics systems. We conclude by discussing some of the
key takeaways of our results.

1. The communication cost for 1-round join queries
can be reduced by using multi-dimensional hash-
partitioning. Each variable x is allocated a share
p
x

, and the values of x are hash partitioned into p
x

buckets. When all relations have the same size m,
then the optimal load of any 1-round algorithm is
O(m/p1/⌧

⇤
), where ⌧⇤ is the value of the optimal

fractional edge packing.

2. In any partitioning scheme of a relation R, the
expected number of tuples received by a machine is
the relation size divided by the number of buckets
into which it is partitioned. For example, for the tri-
angle query, R(x, y) is partitioned into p

x

p
y

= p2/3

buckets, hence the load is m/p2/3.

3. Skew occurs when a data value for some vari-
able x overflows one of its buckets. In a multi-
dimensional hash-partitioning scheme, tuples with
the same x-value are distributed to fewer buckets
than the entire relation, which makes the algorithm
quite resilient to skew. For example, in a triangle
query a value for variable x is skewed if it occurs
more than m/p1/3 times. For concrete numbers,
assuming p = 1000 machines, R is partitioned into
100 buckets, yet we can tolerate values with degree
up to m/10, much larger than the expected bucket
size ofm/100. There are at most 10 skewed x-values
(heavy hitters), regardless of the size of R.

4. Multiple communication rounds can be used
e↵ectively to compute queries over skewed data.
It is currently open what the optimal load of a
multi-round algorithm is. The best lower bound
is ⌦(m/p1/⇢

⇤
), and this bound is known to be opti-

mal for queries where all relations have arity 2 and
the same size.
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