
Factorized Databases
http://www.cs.ox.ac.uk/projects/FDB/

Dan Olteanu Maximilian Schleich

Department of Computer Science, University of Oxford

ABSTRACT
This paper overviews factorized databases and their ap-
plication to machine learning. The key observation un-
derlying this work is that state-of-the-art relational query
processing entails a high degree of redundancy in the
computation and representation of query results. This
redundancy can be avoided and is not necessary for sub-
sequent analytics such as learning regression models.

1. INTRODUCTION
Succinct data representations have been devel-

oped across many fields including computer science,
statistics, applied mathematics, and signal process-
ing. Such representations are employed for instance
for storing and transmitting otherwise large amounts
of data, and for speeding up data analysis [22].

In this paper we overview recent developments
on factorized databases, which are succinct loss-
less representations of relational data. They exploit
laws of relational algebra, in particular the distribu-
tivity of the Cartesian product over union that un-
derlies algebraic factorization, and data and com-
putation sharing to reduce redundancy in the rep-
resentation and computation of query results. The
relationship between a flat, tabular representation
of a relation as a set of tuples and an equivalent fac-
torized representation is on a par with the relation-
ship between logic functions in disjunctive normal
form and their equivalent circuits.

Factorized databases naturally capture existing
relational decompositions proposed in the literature:
lossless decompositions defined by join dependen-
cies, as investigated in the context of normal forms
in database design [1], conditional independence in
Bayesian networks [18], minimal constraint networks
in constraint satisfaction [7], factorizations of prove-
nance polynomials of query results [15] used for ef-
ficient computation in probabilistic databases [12,
20], and product decompositions of relations as stud-
ied in the context of incomplete information [13].

In the following we first exemplify the benefits of
factorizing query results. We then discuss factor-
izations for various classes of queries, quantify the
succinctness gap between factorized and standard
tabular representations for results of conjunctive
queries and survey worst-case optimal algorithms
for computing factorized representations of query
results [16, 17]. We then briefly mention the case of
queries with aggregates and order-by clauses [3] and
discuss in more detail their application to learning
regression models over factorized databases [19, 14].

2. A FACTORIZATION EXAMPLE
Figure 1(a) depicts three relations and their natu-

ral join. Branch records the location, products and
daily inventory of each branch store in the chain.
There are many products per location and many
inventories per product. Competition records the
competitors (e.g., the distance to competitor stores)
of a store branch at a given location, with several
competitors per location. Sales records daily sales
offered by the store chain for each product.

The join result exhibits a high degree of redun-
dancy. The value l1 occurs in 12 tuples, each value
c1 and c2 occurs in six tuples and they are paired
with the same tuples of values for the other at-
tributes. Since l1 is paired in Competition with
c1 and c2 and in Branch with p1 and p2, the Carte-
sian product of {c1, c2} and {p1, p2} occurs in the
join result. We can represent this product symbol-
ically as {c1, c2} × {p1, p2} instead of materializing
it. If we systematically apply this observation, we
obtain an equivalent factorized representation of the
entire join result that is much more compact than
its flat representation. Each tuple in the flat join
result is represented once in the factorization and
can be constructed by following one branch of each
union and all branches of each product. The flat
join result in Figure 1(a) has 90 values (18 tuples of
5 values each), while the equivalent factorized join
result in Figure 1(d) only has 20 values.
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Figure 1: (a) Database with relations Branch(Location, Product, Inventory), Competi-
tion(Location, Competitor), Sales(Product, Sale), where the attribute names are abbreviated;
(b) Hypergraph of the natural join of the relations; (c) Variable order ∆ defining one possible
nesting structure of the factorized join result given in (d). The union s3 ∪ s4 is cached under
the first occurrence of p2 and referenced (via a dotted edge) from the second occurrence of p2.

Figure 1(c) depicts the nesting structure of our
factorized join result as a partial order ∆ on the
query variables: The factorization is a union of L-
values occurring in both Competitors and Branch.
For each L-value l, it is a product of the union of
C-values paired with l in Competitors and of the
union of P -values paired with l in Branch and with
S-values in Sales. That is, given l, the C-values are
independent of the P -values and can be stored sep-
arately. The factorization saves computation and
space as it avoids the materialization of the prod-
uct of the unions of C-values and of P -values for a
given L-value. The same applies to the unions of
S-values and of I-values under each P -value. Fur-
ther saving is brought by caching expressions: The
union of S-values S34 = s3 ∪ s4 from Sales occurs
with the P -value p2 regardless of which L-values p2

is paired with in Branch, so we can store the first
occurrence of S34 and refer to it using a pointer �S34

from every subsequent occurrence of p2. Like prod-
uct factorization, caching is enabled by conditional
independence: The variable S is independent of its
ancestor L given its parent P . We encode it using
a function key that maps each variable A to the
set of its ancestors on which A and its descendants
depend; this is given next to each variable in ∆.

Different variable orders are possible. We seek
those variable orders that fully exploit the inde-
pendence among variables and lead to succinct fac-
torizations. Branching and caching are indicators
of good variable orders. The total orders have no

branching and caching, so they define factorizations
with no asymptotic saving over flat representations.

For our join and any database, a factorized join
result can be computed in linear time (modulo a
log factor in the database size). In contrast, there
are databases for which the flat join result requires
cubic computation time, e.g., databases with one L
and P -value and n distinct C, S, and I-values.

SQL aggregates can be computed in one pass over
the factorized join result. For instance, to compute
the aggregate sum(1) that computes the cardinality
of the join result, we interpret each data value as 1
and turn unions into sums and products into mul-
tiplication. To compute sum(P*C) that sums over
all multiplications of products and competitors (as-
suming they are numbers), we turn all values except
for P and C into 1, unions into sums, and products

into multiplications (the result of (1+1) in the first

line is cached and reused in the second line):

1 · (c1 + c2) · [p1 · (1 + 1) · (1 + 1) + p2 · 1 · (1+1) ]+

1 · [p2 · (1+1) · 1 + p3 · 1 · 1] · (c3 + c4).

Learning regression models requires the compu-
tation of a family of aggregates sum(X1*. . .*Xn)

for any tuple of (not necessarily distinct) variables
(X1, . . . , Xn), such as the above aggregate sum(P*C).

We may also compute aggregates with group-by
clauses. Our factorized join result supports group-
ing by any set of variables that sit above all others
in the variable order ∆, e.g., group by {L,C, P}.
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3. QUERY FACTORIZATION
As exemplified in Section 2, factorized represen-

tations of relational data use Cartesian products
to capture the independence in the data, unions to
captures alternative values for an attribute, and ref-
erences to capture caching.

Definition 3.1. A factorized representation is a
list (Di)i∈[m], where each Di is a relational alge-
bra expression over a schema Σ and has one of the
following forms:
• ∅, representing the empty relation over Σ,
• 〈〉, representing the relation consisting of the

nullary tuple, if Σ = ∅,
• a, representing the relation {(a)} with one tu-

ple having one data value (a), if Σ = {A} and
the value a ∈ Dom(A),
• ⋃j∈[k]Ej , representing the union of the rela-

tions represented by Ej , where each Ej is an
expression over Σ,
• ×j∈[k]Ej , representing the Cartesian product

of the relations represented by Ej , where each
Ej is an expression over schema Σj such that
Σ is the disjoint union of all Σj .
• a reference �E to an expression E over Σ.

The expression Di may contain references to Dk for
k > i and is referenced at least once if i > 1. 2

Definition 3.1 allows arbitrarily-nested factorized
representations. In this paper, we focus on factor-
ized representations of query results whose nesting
structures are given by orders on query variables.

Definition 3.2. Given a join query Q, a vari-
able depends on another variable if they occur in
the same relation symbol in Q.

A variable order ∆ for Q is a pair (T, key).
• T is a rooted forest with one node per variable

in Q such that the variables of each relation
symbol in Q lie along the same root-to-leaf
path in T .
• The function key maps each variable A to the

subset of its ancestor variables in T on which
the variables in the subtree rooted at A de-
pend, i.e., for every variable B that is a child
of a variable A, key(B) ⊆ key(A) ∪ {A}. 2

If two variables A and B in Q depend on each
other, then the choice of A-values may restrict the
choice of B-values in a factorization of Q’s result
and we need to represent explicitly their possible
combinations. If they are independent, then the
set of A-values can be represented separately from
the set of B-values and their combinations are only
expressed symbolically. The succinctness of factor-
ized representations lies in the exploitation of con-

ditional independence between variables. In a vari-
able order, this is reflected in branching, i.e., a vari-
able has several children, and caching, i.e., a vari-
able has ancestors that are not keys.

Example 3.3. The key information in the vari-
able order ∆ in Figure 1(c) is given next to each
variable. The variable L is an ancestor of S, yet
it is not in key(S) since S does not depend on it.
We can thus cache the unions of S-values for a P -
value and refer to them for each occurrence of that
P -value. ∆ also features branching: C and P are
children of L, while S and I are children of P . This
means that for a given L-value (P ), we can store
symbolically the product of the unions of C-values
and of P -values (and respectively of S and I).

Consider now the cyclic bowtie join query over
relations R1, . . . , R6 and a variable order for it:

A E

B D

CR2 R5

R3 R6

R1 R4 C

A

B

E

D

∅

{C}

{A,C}

{C}

{C,E}
For each variable, its keys coincide with its ances-

tors, so there is no saving due to caching. There are
however two branches under C, each of them defin-
ing a triangle query. For each C-value c we can thus
compute and store the set of triangles {(c, A,B) |
R1(A, c), R2(A,B), R3(B, c)} for the left branch sep-
arately from the set of triangles {(c, E,D) | R4(c, E),
R5(E,D), R4(c,D)} for the right branch. 2

Among the known classes of variable orders [17,
6], we consider here the most general class called
d-trees. They are another syntax for hypertree de-
compositions of the join hypergraph [17].

3.1 Succinctness and Computation Time
The construction of variable orders is guided by

the joins, their selectivities, and input cardinalities.
They can lead to factorizations of greatly varying
sizes, where the size of a representation (flat or
factorized) is defined as the number of its values.
Within the class of factorizations over variable or-
ders, we can find the worst-case optimal ones and
also compute them in worst-case optimal time:

Theorem 3.4 ([2, 11, 17]). Given a join query
Q, for every database D, the result Q(D) admits

• a flat representation of size O(|D|ρ∗(Q));
• a factorized representation of size O(|D|fhtw(Q)).

There are classes of databases D for which the
above size bounds are tight.

There are worst-case optimal join algorithms to
compute the join result in these representations.
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factorize (variable order ∆, varMap, ranges[(starti, endi)i∈[r]])

if (∆ = (∆j)j∈[k]) return ×j∈[k] factorize(∆j , varMap, ranges[(starti, endi)i∈[r]]);

A = var(∆); E∆ = ∅; context = πkey(A)(varMap);

if (key(A) 6= anc(A)) { �E∆ = cacheA[context]; if �E∆ 6= 0 return �E∆; }

foreach a ∈ ⋂i∈[r],A∈Schema[Ri]
πA(Ri[starti, endi]) do {

foreach i ∈ [r] do find ranges Ri[start
′
i, end

′
i] ⊆ Ri[starti, endi] s.t. πA(Ri[start

′
i, end

′
i]) = a;

switch(∆) :
leaf node A :

E∆ = E∆ ∪ a;
inner node A(∆j)j∈[k] :

foreach j ∈ [k] do E∆j= factorize(∆j , varMap× a, ranges[(start′i, end
′
i)i∈[r]]);

if (∀j ∈ [k] : E∆j 6= ∅) E∆ = E∆ ∪
(
a× (×j∈[k]E∆j )

)
;

}
if (key(A) 6= anc(A)) cacheA[context] = �E∆;

return E∆;

Figure 2: Grounding a variable order ∆ over a database (R1, . . . , Rr). The parameters of the
initial call are ∆, an empty variable map, and the full range of tuples for each relation.

The measures ρ∗(Q) and fhtw(Q) are the frac-
tional edge cover number and the fractional hyper-
tree width respectively. We know that

1 ≤ fhtw(Q) ≤ ρ∗(Q) ≤ |Q|
and the gap between them can be as large as |Q|,
which is the number of relations in Q. The frac-
tional hypertree width is fundamental to problem
tractability with applications spanning constraint
satisfaction, databases, matrix operations, logic, and
probabilistic graphical models [9].

Example 3.5. The join query in Section 2 is acy-
clic and has fhtw = 1 and ρ∗ = 3. The bowtie query
has fhtw = 3/2, which already holds for each of its
two triangles, and ρ∗ = 3, which is the sum of the
ρ∗ values of the two triangles. 2

3.2 Worst-case Optimal Join Algorithms
Worst-case optimal join algorithms for flat query

results have been developed only recently [11]. At
their outset is the observation that the classical
relation-at-a-time query plans are suboptimal since
their flat intermediate results may be larger than
the flat query result [2]. To attain worst-case op-
timality, a new breed of join algorithms has been
proposed that avoids intermediate results [11]. This
monolithic recipe is however an artifact of the flat
representation and not necessary for optimality: Us-
ing factorized intermediate results, optimality can

be achieved by join-at-a-time query plans [6]. Such
plans explore breadth-first the factorized space of
assignments for query variables and can compute
the join result in both factorized and flat form. An
equivalent depth-first exploration leads to a mono-
lithic worst-case optimal algorithm [17].

Figure 2 gives a worst-case optimal monolithic
(depth-first) algorithm that computes the ground-
ing E∆ of a variable order ∆ over an input database.
If ∆ is a variable order for a join query, then E∆

is the factorized join result. As discussed in Sec-
tion 3.3, ∆ may also be a variable order for conjunc-
tive queries with group-by and order-by clauses.

In case ∆ is a forest, we construct a product of
the factorizations over its trees. We next discuss
the case where ∆ is a tree with root variable A.

The relations are assumed sorted on their attribu-
tes following a depth-first pre-order traversal of ∆.
Each call takes a range defined by start and end
indices in each relation. Initially, these ranges span
the entire relations. Once the root A is mapped to a
value a in the intersection of possible A-values from
the relations with attribute A, then these ranges
are narrowed down to those tuples with value a for
A. We may further narrow down these ranges using
mappings for variables below A in ∆ at higher re-
cursion depths. Each A-value a in this intersection
is the root of a factorization fragment over ∆. (Fol-
lowing Definition 3.1, a stands for relation {(a)}.)
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We first check whether the factorization we are
about to compute has been already computed. If
this is the case, we simply return a reference to it
from cache. If not, we compute it and place its ref-
erence in the cache. The key for the cache is the
context of A, i.e., the current mapping of the vari-
ables in key(A). The current variable mappings are
kept in varMap. Caching is useful when key(A) is
strictly contained in anc(A), since this means that
the factorization fragments over the variable order
rooted at A are repeated for every distinct combi-
nation of values for variables in anc(A) \ key(A).

If ∆ is a leaf node, then we construct a union of
all mappings a of A. If it is an inner node, then
for each mapping a we recurse to each child and
construct a factorization that is a product of a and
the factorizations at children.

This algorithm defaults to LeapFrog TrieJoin [23]
if ∆ is a path where key(A) = anc(A) for each
variable A in ∆, i.e., when there is no branching
and no sharing. The resulting factorization is a trie.

The key operation dictating the time complexity
of this algorithm is the intersection of the arrays of
ordered values defined by the relation ranges. This
takes time linear in the size of the smallest array
(modulo log factor) [23].

3.3 Beyond Join Queries
The above framework is immediately extensible

to queries with projections [16, 17] and order-by and
group-by clauses [3] by appropriately restricting the
variable orders of the factorized query results.

Projection. If a variable is projected away, then
all variables depending on it now depend on each
other. Following Definition 3.2, all dependent vari-
ables need to lie along the same path in the variable
order. For instance, if we project away the variable
P in our running example, then the variables S and
I, which used to be independent given P , become
dependent on each other. This restricts the pos-
sible variable orders of factorizations of the query
result, possibly decrease the branching factor in the
variable order, and likely increases the factorization
size. Variable orders and their widths can be de-
fined for conjunctive queries in immediate analogy
to the case of join queries [16, 17].

Group-By and Order-By. For a relation rep-
resenting a query result R, grouping by a set G of
variables partitions the tuples of R into groups that
agree on the G-value. Ordering R by a list O of
variables sorts R lexicographically on the variables
in the order given by O, where for each variable in
O the sorting is in ascending or descending order.

Given a factorized representation R over a vari-
able order, we can enumerate the tuples in the re-
lation represented by R in no particular order with
constant delay, i.e., the time between listing two
consecutive tuples is independent of the number of
tuples and thus constant under data complexity.

Group-by and order-by clauses require however
to enumerate the tuples in some desired order as
given by the explicit order O or by the group G so
that all tuples with the same G-value are listed con-
secutively and can be aggregated. Constant-delay
enumeration following an order O or a group G is
not supported by arbitrary variable orders, but by
those obeying specific constraints on the variables
in G or O.

Theorem 3.6 ([3]). Given a factorized repre-
sentation of a relation R over a variable order ∆, a
set G of group-by variables, and a list O of order-by
variables.

The tuples within each G-group in R can be enu-
merated with constant delay if and only if each vari-
able of G is either root in ∆ or a child of another
variable of G.

The tuples in R can be enumerated with constant
delay in sorted lexicographic order by O if and only
if each variable X of O is either root in ∆ or a child
of a variable appearing before X in O.

In other words, constant-delay enumeration of tu-
ples within a group holds exactly when the group-by
variables are above the other variables in the vari-
able order ∆. For an order-by list O, the condition
is stronger: there is a topological order of the vari-
ables in ∆ that has O as prefix. Theorem 3.6 as-
sumes that the values within each union are sorted.
This is the case in the FDB system for factorized
query processing [4] and the F system for factorized
learning of regression models [19].

Example 3.7. The variable order ∆ from Fig-
ure 1(c) supports constant-delay tuple enumeration
for the following sets of group-by variables: {L},
{L,C}, {L,P}, {L,C, P}, {L,P, I}, {L,P, I, S},
{L,C, P, S}, {L,C, P, I}, and {L,C, P, S, I}; and
for the lists of order-by variables (with any vari-
able in ascending or descending order) that can be
constructed from the above sets such that they are
prefixes of a topological order of ∆. 2

There are two strategies for a factorized compu-
tation of a conjunctive query Q with order-by or
group-by clauses. We derive a variable order ∆ with
minimum width that satisfies all constraints for the
joins, projection, and order-by or group-by clauses.
Then, given ∆ and the input database, we compute
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the factorized query result. Alternatively, we derive
a variable order ∆′ for the join of Q and compute
the factorized join result. We then restructure ∆′

and its factorization to support projection, group-
ing, and ordering[3]. The second strategy may be
preferred if the join is very selective so the restruc-
turing is not expensive.

Aggregates. We consider SQL aggregates based
on expressions in the semiring (N[∆],+, ·, 0, 1) of
polynomials with variables from ∆ and coefficients
from N [8], e.g., sums over expressions 2 · X and
X · Y for variables X and Y .

Theorem 3.8 (Generalization of [3, 19]).
Given a variable order ∆ and a factorized repre-
sentation E over ∆. Any SQL aggregate of the
form sum(X), min(X), or max(X), where X is an
expression in the semiring (N[∆],+, ·, 0, 1), can be
computed in one pass over E.

If ∆ supports constant-delay enumeration for a
group-by clause G, then Theorem 3.8 applies to
SQL aggregates with group-by G clause.

The algorithm in Figure 2 can be extended to
compute aggregates on top of joins without the need
to first materialize the factorized join result [19]: In-
stead of creating factorization fragments and possi-
bly caching them, we compute (and possibly cache)
the result of computing the aggregates on them and
propagate these aggregates up through recursion.
Since the aggregates we consider are distributive,
we compute them at a variable in the variable or-
der using the aggregates at its children.

Our earlier worst-case optimal factorization al-
gorithm for conjunctive queries [17] coupled with
one-pass aggregates and group-by clauses [3] can be
recovered via the recent framework of Functional
Aggregate Queries (FAQ) [9]. Both approaches are
dynamic programming algorithms with the same
runtime complexity. While FAQ is bottom-up, the
factorization algorithm is top-down (memoized).

4. LEARNING REGRESSION MODELS
We show in this section how to learn polyno-

mial regression models over factorized databases,
generalizing earlier work on linear regression [19].
The core computation underlying the construction
of such models concerns a set of aggregates with
semiring expressions such as those from Theorem 3.8.

4.1 Polynomial Regression
We consider the setting where a polynomial re-

gression model is learned over a training dataset
defined by a query over a database:

{(y(1), x
(1)
1 , . . . , x(1)

n ), . . . , (y(m), x
(m)
1 , . . . , x(m)

n )}.

The values y(i) are the labels and the values x
(i)
j are

the features. We assume that the intercept of the
model is captured by one feature with value 1. All
values are real numbers.

Polynomial regression models predict the value
of the label based on a linear function of parame-
ters and feature interactions, which are products of
features. A polynomial regression model with all
feature interactions up to degree d is given by:

hθ(x) =

d∑

t=1

n∑

k1=1

· · ·
n∑

kt=kt−1

θ(k1,...,kt)xk1 · . . . · xkt .

The case of d = 1 corresponds to linear regression.
For each model hθ, we define a set I such that

each K ∈ I corresponds to the feature interaction of
parameter θK in hθ. For example, by substituting
K by (1, 3), the parameter θ(1,3) corresponds to the
interaction term x1 ·x3. For the model given above:

I =
⋃

t∈[d]

{(k1, .., kt) | ∀1 ≤ k1 ≤ . . . ≤ kt ≤ n}.

Given the training dataset, the goal is to fit the
parameters θ(k1,...,kt) of the model so as to minimize
the error of an objective function. We consider the
popular least squares regression objective function:

E(θ) =
1

2

m∑

i=1

(hθ(x
(i))− y(i))2 + λR(θ).

R(θ) is a regularization term used to overcome model
overfitting, and λ determines its weight in E(θ).
Examples of regularization terms are: λ

∑
J∈I θ

2
J

(Ridge); λ
∑
J∈I |θJ | (Lasso); and λ1

∑
J∈I |θJ | +

λ2

∑
J∈I θ

2
J (Elastic-Net). For uniformity in our

equations, we treat the label y as a feature but with
a predefined parameter -1.

We use batch gradient descent (BGD) [5] to learn
the model. BGD repeatedly updates the model pa-
rameters in the direction of the gradient to decrease
the error given by the objective function E(θ) and
to eventually converge to the optimal value:

∀J ∈ I : θJ := θJ − α
δ

δθJ
E(θ),

δ

δθJ
E(θ) =

m∑

i=1

hθ(x
(i))

∏

j∈J
x

(i)
j + λ

δ

δθJ
R(θ),

where the learning rate α determines the size of each
convergence step. We use j ∈ J to iterate over the
elements in tuple J .

In standard BGD, each convergence step scans
the training dataset and computes the sum aggre-
gate, then updates the parameters, and repeats this
process until convergence. This is inefficient be-
cause a large bulk of the computation is repeated
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across the convergence steps. A rewriting of the
sum aggregate can avoid the redundant work and
make it very competitive.

4.2 Rewriting the Update Program
BGD has two logically independent tasks: The

computation of the sum aggregate and convergence
of the parameters. The data-dependent part is the
sum aggregate SJ , where J,K = (k1, . . . , kt) ∈ I:

SJ =
m∑

i=1




d∑

t=1

n∑

k1=1

· · ·
n∑

kt=kt−1

θK
∏

k∈K
x

(i)
k


∏

j∈J
x

(i)
j

We can explicate the cofactor of θK in SJ :

SJ =
d∑

t=1

n∑

k1=1

· · ·
n∑

kt=kt−1

θK × Cofactor[K,J ]

where Cofactor[K,J ] =
m∑

i=1

∏

k∈K
x

(i)
k

∏

j∈J
x

(i)
j .

For linear regression, t = p = 1 and the cofactors
are sums over products of two features.

Remarkably, the data-dependent computation is
captured fully by the cofactors, which are completely
decoupled from the parameters. Therefore, this re-
formulation enables us to compute cofactors once
and perform parameter convergence directly on the
matrix of cofactors, whose size is independent of
the data size m. This is crucial for performance as
we do not require one pass over the entire training
dataset for each convergence step.

The matrix of cofactors has desirable properties:

Proposition 4.1. ([19]) Given a query Q, data-
base D, where the query result Q(D) has schema
σ = (Ai)i∈[n]. Let Cofactor be the cofactor matrix
for learning a polynomial regression model hθ using
BGD over Q(D).

The cofactor matrix has the following properties:
1. Cofactor is symmetric:

∀K,J ∈ I : Cofactor[K,J ] = Cofactor[J,K].

2. Cofactor computation commutes with union:
Given a disjoint partitioning D =

⋃
j∈[p](Dj) and

cofactors (Cofactorj)j∈[p] over (Q(Dj))j∈[p], then

∀K,J ∈ I : Cofactor[K,J ] =

p∑

j=1

Cofactorj [K,J ].

3. Cofactor computation commutes with projec-
tion: Given a feature set L ⊆ σ and cofactor matrix
CofactorL for the training dataset πL(Q(D)), then

∀K,J ∈ I( s.t. ∀k ∈ K, j ∈ J : Ak, Aj ∈ L) :

CofactorL[K,J ] = Cofactor[K,J ].

The symmetry property implies that we only need
to compute one half of the cofactor matrix.

Commutativity with union means that the cofac-
tor matrix for the union of several training datasets
is the entry-wise sum of the cofactor matrices of
these training datasets. This property is key to the
efficiency of our approach, since we can locally com-
pute partial cofactors over different partitions of the
training dataset and then add them up. It is also
desirable for concurrent computation, where partial
cofactors can be computed on different cores.

The commutativity with projection implies that
we can compute any regression model that consists
of a subset of the parameters in the cofactor ma-
trix. During convergence, we simply ignore from
the matrix the columns and rows for the irrele-
vant parameters. This is beneficial if some features
are necessary for constructing the dataset but ir-
relevant for learning, e.g., relation keys supporting
the join such as location in our training dataset in
Figure 1(a). It is also beneficial for model selec-
tion, a key challenge in machine learning centered
around finding the subset of features that best pre-
dict a test dataset. Model selection is a laborious
and time-intensive process, since it requires to learn
independently parameters corresponding to subsets
of the available features. With our reformulation,
we first compute the cofactor matrix for all features
and then perform convergence on top of the cofactor
matrix for the entire lattice of parameters indepen-
dently of the data. Besides choosing the features
after cofactor computation, we may also choose the
label and fix its parameter to -1.

The commutativity with projection is crucial for
computing the most succinct factorization of the
training dataset, since it does not restrict the choice
of variable order and allows to retain the join vari-
ables in the variable order. Projecting away join
variables from the variable order may break the
conditional independence of other variables and in-
crease the size of the factorization. Once the factor-
ization is constructed, we may decide to only com-
pute cofactors for a subset of the features.

4.3 Factorized Computation of Cofactors
There are several flavors for factorized cofactor

computation [19, 14]: over the (non-)materialized
factorized dataset or via an optimized SQL query.
The materialized flavor is sketched in this section
and the SQL flavor is presented in detail in Sec-
tion 4.4. The underlying idea of all these flavors is
that the algebraic factorization used to factorize the
training dataset can be mirrored in the factorized
computation of the cofactors.
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I1 = i1 + i2

S1 = s1 + s2

I2 = i3

S2 = s3 + s4

I3 = i4 I4 = i5 S3 = s5

C1 = c1 + c2 C2 = c3 + c4

I5 = 2I1
S4= 2S1

I6 = 2I2
S5= S2

I7 = 2I3
S6= S2

I8 = I4
S7= S3

P1= 4p1 + 2p2
I9 = I5 + I6
S8= S4 + S5

P2 = 2p2 + 1p3
I10= I7 + I8
S9 = S6 + S7

P3 = 2P1

I11 = 2I9
S10= 2S8

C3 = 6C1

P4 = 2P2

I12 = 2I10
S11= 2S9

C4 = 3C2

L1 = 12l1 + 6l2
P5 = P3 + P4

I13 = I11 + I12
S12= S10 + S11

C5 = C3 + C4

θL θP θI θS θC

ΣT 12l1 + 6l2 2(4p1 + 2p2) + 2(2p2 + p3) 4(i1 + i2 + i3 + i4) + 2i5 4(s1 + s2 + s3 + s4) + 2s5 6(c1 + c2) + 3(c3 + c4)

ΣL 12l21 + 6l22 l1P3 + l2P4 l1I11 + z2I12 l1S10 + l2S11 l1C3 + l2C4

ΣP ΣZ/θP 2(4p21 + 2p22) + 2(2p22 + p23) 2(p1I5 + p2(I6 + I7) + p3I8) 2(p1S4 + p2(S5 + S6) + p3S7) P1C1 + P2C2

ΣI ΣL/θI ΣP /θI 4(i21 + i22 + i23 + i24) + 2i25 2(I1S1 + I2S2 + I3S2 + I4S3) I9C1 + I10C2

ΣS ΣL/θS ΣP /θS ΣI/θS 4(s21 + s22 + s23 + s24) + 2s25 S8C1 + S9C2

ΣC ΣL/θC ΣP /θC ΣI/θC ΣS/θC 6(c21 + c22) + 3(c23 + c24)

Figure 3: (Top) The factorized join annotated with constant (counts) and linear (weighted
sums) aggregates used for cofactor computation. (Bottom) Cofactor matrix based on the
annotated factorized join (Column for intercept T not shown, the value for ΣT /ΘT is 18). For
any model, the convergence of model parameters is run on top of this matrix.

Example 4.2. Based on our running example in
Figure 1(a), consider a linear regression model with
all variables as features (the label can be decided
later). The cofactor Cofactor[(P ), (I)] is the sum
of products of features P and I. If this aggregate
is computed over the factorized join result in Fig-
ure 1(d), then we can exploit the algebraic factor-
ization rules

n∑

i=1

x→ x · n and
n∑

i=1

x · ai → x ·
n∑

i=1

ai

to obtain

Cofactor[(P ), (I)] = 2p1 · 2(i1 + i2) + 2p2 · 2i3 +

2p2 · 2i4 + 2p3 · i5,
where the coefficients are the number of C-values
that are paired with P -values and I-values. Simi-
larly, we can factorize the pairs of values of inde-
pendent features as follows:

r∑

i=1

s∑

j=1

(xi · yj)→ (
r∑

i=1

xi) · (
s∑

j=1

yj).

For features P and C, the cofactor would then be:

Cofactor[(P ), (C)] = (4p1 + 2p2)(c1 + c2) +

(2p2 + p3)(c3 + c4).

For a factorization E representing a relation R,
we compute the cofactors at the root of E using co-
factors at children. They require the computation
of constant (degree 0) aggregates corresponding to
the number of tuples in R; linear (degree 1) aggre-
gates for each feature A of E, which are sums of
all A-values, weighted by the number of times they
occur in R; and quadratic (degree 2) aggregates,
which are products of values and/or linear aggre-
gates, or of quadratic and constant aggregates. We
call all these aggregates the regression aggregates for
linear regression models [19].

Figure 3 displays the factorized join result, anno-
tated with the constant (circles) and linear aggre-
gates (rectangles), and an excerpt of the cofactor
matrix, whose elements are quadratic aggregates.
The 〈1〉 at the top of the factorization represents
the intercept of the model. This can be obtained by
extending each relation with one attribute T with
value 1. The variable orders for the query would
then have the variable T as root. 2

We generalize the factorized computation of co-
factors to polynomial regression models of arbitrary
degree d. The difference to the linear case is that
the cofactors are for more features due to feature
interactions and thus the degrees of regression ag-
gregates increase as well. For a given model of de-
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gree d, the highest-degree aggregates have degree
2d. We construct high-degree aggregates by com-
bining lower-degree aggregates, following the fac-
torization rules from Example 4.2.

We can compute the cofactors in one pass over a
factorized query result.

Proposition 4.3. ([3, 19]) The cofactors of any
polynomial regression model can be computed in one
pass over any factorized representation.

An immediate implication is that the redundancy
in the flat join result is not necessary for learning:

Theorem 4.4. The parameters of any polynomial
regression model of degree d can be learned over a
query Q and database D in time O(n2d ·|D|fhtw(Q)+
n2d · s), where n is the number of features and s is
the number of convergence steps.

Theorem 4.4 is a direct corollary of Propositions
3.4 and 4.3. Under data complexity, this becomes
O(|D|fhtw(Q)) and coincides with the time needed to
compute the factorized query result. For comput-
ing join queries, this is worst-case optimal within
the class of factorized representations over variable
orders. The factor n2d is the total number of re-
gression aggregates needed to learn hθ. In con-
trast, the data complexity of any regression learner
taking a flat join result as input would be at best
O(|D|ρ∗(Q)). Furthermore, state-of-the-art learners
typically do not decouple parameter convergence
from data-dependent computation, so their total
runtime to learn hθ is O(n2d · |D|ρ∗(Q) · s).

4.4 Factorized Computation in SQL
A SQL encoding of factorized computation of co-

factors has two desirable properties. It can be com-
puted by any relational database system and is thus
readily deployable in practice with a small imple-
mentation overhead. It leverages secondary-storage
mechanisms and thus works for databases that do
not fit in memory. For lack of space, we focus on
learning over a join query Qin (i.e., no projections).

Our approach has two steps. We first rewrite Qin
into an (α-)acyclic query Qout over possibly cyclic
subqueries. Since cyclic queries are not factorizable,
we materialize them to new relations. To attain the
overall complexity from Theorem 4.4, this material-
ization requires a worst-case optimal join algorithm
like LeapFrog TrieJoin [23]. We then generate a
SQL query that encodes the factorized computation
of the regression aggregates over Qout.

Rewriting queries with cycles. Figure 4 gives
the rewriting procedure. It works on a variable or-
der ∆ of Qin. The set QS is a disjoint partitioning

rewrite(variable order ∆)
QS = ∅; A = var(∆);
if (∆ = A(∆j)j∈[k]) QS =

⋃
j∈[k] rewrite(∆j);

QA = relations(key(A) ∪ {A});
if ( 6 ∃Q ∈ QS s.t. QA ⊆ Q) return QS ∪ {QA}
else return QS

Figure 4: Rewriting a join query over vari-
able order ∆ into an acyclic join query over
possibly cyclic subqueries.

of the set of relations of Qin into sets of relations
or partitions. Each partition QA is a join query
defined by the set key(A) ∪ {A} of variables. This
partition is materialized to a relation with the same
name QA. The materialization simplifies the vari-
able order of Qin to that of an acyclic query Qout
equivalent to Qin. In case Qin is already acyclic,
then each partition has one relation and hence Qout
is syntactically equal to Qin.

Example 4.5. Let us consider the bowtie join
query and its variable order from Example 3.3. We
apply the rewriting algorithm. When we reach leaf
B in the left branch, we create the join query QB
over the relations {R1, R2, R3} and add it to QS.
When we return from recursion to variable A, we
create the query QA over the same relations, so we
do not add it to QS. We proceed similarly in the
right branch: We create the join queryQD over rela-
tions {R4, R5, R6} and add it to QS. The queries at
E and C are not added to QS. Whereas the original
query and the two subqueriesQB andQD are cyclic,
the rewritten query Qout is the join of QB and QD
on C and is acyclic. The triangle queries QB and
QD cannot be computed worst-case optimally with
traditional relational query plans [2], but we can use
specialized engines to compute them [23].

The join query in Figure 1(a) is already acyclic.
Using its variable order from Figure 1(c), we obtain
one identity query per relation. 2

SQL query generation. The algorithm in Fig-
ure 5 generates one SQL query that computes all
regression aggregates (thus including the cofactors)
of a polynomial regression model. It takes as in-
put an extended variable order ∆, which has one
extra node per database relation placed under its
lowest variable. The query is then constructed in a
top-down traversal of ∆.

For a variable order ∆ with root A, we materialize
a relation Atype over the schema (An, Ad), where An
is an identifier for A and Ad encodes the degrees of
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factorize-sql (extended variable order ∆)

switch(∆) :
leaf node R :

CREATE TABLE Rtype(Rn, Rd); INSERT INTO Rtype VALUES (R, 0);
let
deg(G∆) = Rd, lineage(G∆) = (Rn, Rd), agg(G∆) = 1

in
G∆ = SELECT schema(R), lineage(G∆), deg(G∆), agg(G∆) FROM R,Rtype;

inner node A(∆j)j∈[k] :
CREATE TABLE Atype(An, Ad);
foreach 0 ≤ i ≤ 2d do INSERT INTO Atype VALUES (A, i);
foreach j ∈ [k] do G∆i = factorize-sql(∆j);
let
deg(G∆) =

∑
j∈[k] deg(G∆j ) +Ad, lineage(G∆) = (lineage(G∆1), . . . , lineage(G∆k

), An, Ad),

agg(G∆) = sum(power(A,Ad) ∗
∏
j∈[k] agg(G∆j ))

in
G∆ = SELECT key(A), lineage(G∆), deg(G∆), agg(G∆)

FROM G∆1
NATURAL JOIN . . . G∆k

, Atype
WHERE deg(G∆) ≤ 2d GROUP BY key(A), lineage(G∆), deg(G∆);

return G∆;

Figure 5: Generation of one SQL query for computing all regression aggregates used to build
a polynomial model over an acyclic query with extended variable order ∆.

the aggregates over A. Atype has 2d+ 1 tuples, one
for each degree from zero to 2d.

We generate a query G∆, which computes the
regression aggregates for the factorization over ∆.
G∆ is a natural join of the queries (G∆j

)j∈[k] con-
structed for the children of A and an inequality join
with relation Atype. The query computes all aggre-
gates (agg(G∆)) of degree (deg(G∆)) up to 2d along
with the lineage of their computation. These aggre-
gates are computed by combining aggregates com-
puted at children and for A. The lineage is given by
columns with indices n and d. It is a relational en-
coding of the set I of indexes of feature interactions
as given in Section 4.1. Furthermore, the query re-
tains the variables in key(A) which are to be joined
on in queries constructed for the ancestors of A.

For a leaf node representing an input relation R,
the type relation Rtype has only one tuple (R, 0) and
the generated query G∆ is a product of R and Rtype.
We add a copy of column Rd to represent the degree
deg(G∆) and we set agg(G∆) equal to 1. These
additions allow us to treat all nodes uniformly.

For simplicity of exposition, we accommodate the
intercept T as described in Example 4.2, where each
relation is extended with one extra attribute T with
value 1. T is used as a root node for any variable
order, so variable orders cannot be forests.

Example 4.6. We show how to generate the SQL
query for computing the regression aggregates for
any polynomial regression model of degree d over
the acyclic join in Figure 1(a). The queries con-
structed at different nodes in the variable order ∆
in Figure 1(c), now extended with three relation
nodes, are given in Figure 6.

For the path leading to the Sales node, we gen-
erate the queries QSales, QS , and QP for the nodes
Sales, S, and respectively P .

The query QSales constructed at node Sales com-
putes the product of Sales and Salestype and adds
the degree and aggregate columns.

Variable S only has Sales as child. Its query
QS computes inequality join on QSales and Stype
to limit the combinations of aggregates to those of
degree at most 2d. It also propagates the lineage
from QSales and Stypes and keeps the variable P
because it is in its key: key(S) = {P}.

The query QP constructed at variable P com-
putes the natural join of queries QS and QI and the
inequality join with Ptype on degree. This query also
computes the aggregates (Pagg) with degree (Pdeg)
up to 2d and their lineage (columns with indexes n
and d). The query keeps the variable L because it
is in its key: key(P ) = {L}. 2
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CREATE TABLE QSales AS

SELECT P, S Salesn, Salesd,

(Salesd) AS Salesdeg, 1 AS Salesagg
FROM Sales, Salestype;

CREATE TABLE QS AS

SELECT P, Salesn, Salesd, Sn, Sd,

(Salesdeg + Sd) AS Sdeg,

sum(power(S, Sd) ∗ Salesagg) AS Sagg
FROM QSales, Stype

WHERE (Salesdeg + Sd) <= 2d

GROUP BY P, Salesn, Salesd,

Sn, Sd, Sdeg

CREATE TABLE QP AS

SELECT L, In, Id, Branchn, Branchd,

Sn, Sd, Salesn, Salesd, Pn, Pd,

(Ideg + Sdeg + Pd) AS Pdeg,

sum(power(P, Pd) ∗ Iagg ∗ Sagg) AS Pagg
FROM QI NATURAL JOIN QS , Ptype

WHERE (Ideg + Sdeg + Pd) <= 2d

GROUP BY L, In, Id, Branchn, Branchd,

Sn, Sd, Salesn, Salesd, Pn, Pd, Pdeg

Figure 6: Queries generated by the algorithm
in Figure 5 at nodes Sales, S, and P in the ex-
tended variable order of the rewritten query.
In each of these queries, the aggregate, de-
gree, and lineage columns are color-coded.

5. CONCLUSION AND FUTURE WORK
Factorized databases are a fresh look at the prob-

lem of computing and representing results to rela-
tional queries. So far, we addressed the worst-case
optimal computation of factorized results for con-
junctive queries under various factorized represen-
tation systems for relational data [17], the charac-
terization of the succinctness gap between sizes of
factorized and flat representations of query results
and their provenance polynomials [16], and the fac-
torized computation of aggregates [3], such as those
needed for learning polynomial regression models
over database joins [19].

These theoretical results form the foundation of
the FDB system for query factorization [4, 3], and
of the F system for learning regression models over
factorized queries [19, 14].

We next discuss directions of future research.
Practical considerations. We have recently

implemented an early prototype for learning regres-
sion models and preliminary benchmarks are very
encouraging. For linear regression models, our pro-
totype F can achieve up to three orders of mag-
nitude performance speed-up over state-of-the-art
systems R, Python StatsModels, and MADlib [19].
This performance gap can be further widened by ac-
commodating systems aspects such as compilation
of high-level code that only depends on the fixed set
of features and not on the arbitrarily large data.

We are currently designing and implementing a
second, more robust version of our in-memory query
engine FDB for factorized databases, whose focus is
on a cache-friendly representation and computation
and the exploitation of many-cores architectures.

Beyond polynomial regression. The princi-
ples behind F are applicable to learning statisti-
cal models beyond least-squares polynomial regres-
sion models (with various regularizers) using gra-
dient descent. It works for any model where the
derivatives of the objective function are expressible
in a semiring with multiplication and summation
operations. It also works for classification, such as
boosted trees and k-nearest neighbors, and other
optimization algorithms, such as Newton optimiza-
tion and coordinate descent. The semirings are nec-
essary, since factorization relies on the commutativ-
ity and distributivity laws of semirings.

Distributed Factorized Computation. Mas-
sively parallel query processing incurs a high net-
work communication cost [21]. This cost has been
analyzed theoretically for the Massively-Parallel Co-
mmunication model, with several recent results on
communication optimality for join queries [10].

Since factorized databases were specifically de-
signed for succinct and lossless representations of
relational data, a natural idea would be to reduce
the communication cost by shuffling factorized, in-
stead of flat, data between computation rounds.
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