
Foundations of Data
Exchange and Metadata
Management
Marcelo Arenas

Ron Fagin Special Event - SIGMOD/PODS 2016

The need for a formal definition

´ We had a paper with Ron in PODS 2004

´ Back then I was a Ph.D. student, and asked Ron whether I
could do an internship in IBM Almaden

The need for a formal definition

´ We had a paper with Ron in PODS 2004

´ Back then I was a Ph.D. student, and asked Ron whether I
could do an internship in IBM Almaden

´ He was very positive about the idea, but there were some
funding issues

The need for a formal definition

´ The solution: applied as Hispanic

The need for a formal definition

´ The solution: applied as Hispanic

´ The issue: How Hispanic I am?

The need for a formal definition

´ The solution: applied as Hispanic

´ The issue: How Hispanic I am?

´ Is there a precise definition of the notion of being Hispanic?

The need for a formal definition

´ The solution: applied as Hispanic

´ The issue: How Hispanic I am?

´ Is there a precise definition of the notion of being Hispanic?

´ The final solution: The IBM Ph.D. fellowship

The old data exchange problem

´ The first systems for restructuring and translating data were
built several decades ago

´ EXPRESS (1977): A data extraction, processing, and restructuring
system

´ This problem is particularly relevant today

´ There is a need for a simple, yet general, solution to it

The data exchange problem

Source schema Target schema

The data exchange problem

Source schema Target schema

The data exchange problem

Source schema Target schema

The data exchange problem

Source schema Target schema

The data exchange problem

Source schema Target schema

How do we specify the
relationship between

source and target data?

The data exchange problem

Source schema Target schema

How do we specify the
relationship between

source and target data?

What is a good
(declarative)

language for this?

The data exchange problem

Source schema Target schema

How do we specify the
relationship between

source and target data?

What is a good
(declarative)

language for this?

How do we materialize
a target instance?

The data exchange problem

Source schema Target schema

How do we specify the
relationship between

source and target data?

What is a good
(declarative)

language for this?

How do we materialize
a target instance?

What is a good
materialization?

The data exchange problem

Source schema Target schema

How do we specify the
relationship between

source and target data?

What is a good
(declarative)

language for this?

How do we materialize
a target instance?

What is a good
materialization?

Can we do this
materialization

efficiently?

The data exchange problem

Worker(name) Emp(name)

The data exchange problem

Worker(name) Emp(name)

The data exchange problem

Worker(name) Emp(name)

Worker(x) → Emp(x)

The data exchange problem

Worker(name) Emp(name)

Worker(x) → Emp(x)

name

Ron

John

Paul

The data exchange problem

Worker(name) Emp(name)

Worker(x) → Emp(x)

name

Ron

John

Paul

name

Ron

John

Paul

The data exchange problem

Worker(name) Emp(name)

Worker(x) → Emp(x)

name

Ron

John

Paul

name

Ron

John

PaulWhat do we allow in
this rule language?

The data exchange problem

Worker(name) Emp(name)

Worker(x) → Emp(x)

name

Ron

John

Paul

name

Ron

John

Paul

What is a good
materialization?

What do we allow in
this rule language?

The data exchange problem

Worker(name) Emp(name)

Worker(x) → Emp(x)

name

Ron

John

Paul

name

Ron

John

Paul

name

Ron

John

Paul

Ringo

What is a good
materialization?

What do we allow in
this rule language?

The data exchange problem

Worker(name, salary) Emp(name, dept)

The data exchange problem

Worker(name, salary) Emp(name, dept)

?

The data exchange problem

Worker(name, salary) Emp(name, dept)

name salary

Ron 100K

John 90K

Paul 70K

?

The data exchange problem

Worker(name, salary) Emp(name, dept)

name salary

Ron 100K

John 90K

Paul 70K

name dept

Ron

?John

Paul

?

A solution to the problem

A solution to the problem

Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, Lucian Popa.
Data Exchange: Semantics and Query Answering. ICDT 2003

This article proposed a simple, elegant and general solution

´ It has a big impact (1000+ citations in Google scholar)

A mapping language

Given: source schema S and a target schema T with no relation
names in common

´ A source-to-target tuple-generating dependency (st-tgd) is a
formula of the form:

∀x∀y 𝜑(x,y) → ∃z 𝜓(x,z)

where 𝜑(x,y) and 𝜓(x,z) are conjunctions of atoms over S
and T, respectively

A mapping language

´ A mapping from S to T is specified by a set ∑ST of st-tgds

A mapping language

´ A mapping from S to T is specified by a set ∑ST of st-tgds

S = { Worker(·) }

T = { Emp(·) }

∑ST = {∀x Worker(x) → Emp(x) }

A mapping language

´ A mapping from S to T is specified by a set ∑ST of st-tgds

S = { Worker(·) }

T = { Emp(·) }

∑ST = {∀x Worker(x) → Emp(x) }

S = { Worker(·,·) }

T = { Emp(·,·) }

∑ST = {∀x∀y Worker(x,y) → ∃z Emp(x, z) }

A definition of a mapping

´ A mapping M is just a tuple (S, T, ∑ST)

´ An instance of S is called a source instance, while an instance of
T is called a target instance

´ ∑ST specifies the relationship between source and target data

A definition of a mapping

´ A mapping M is just a tuple (S, T, ∑ST)

´ An instance of S is called a source instance, while an instance of
T is called a target instance

´ ∑ST specifies the relationship between source and target data

´ What is the semantics of a mapping?

A definition of a mapping

´ A mapping M is just a tuple (S, T, ∑ST)

´ An instance of S is called a source instance, while an instance of
T is called a target instance

´ ∑ST specifies the relationship between source and target data

´ What is the semantics of a mapping?

´ When is a target instance considered to be a valid
materialization for a source instance under M?

A semantics for mappings

A target instance J is a solution for a source instance I under a
mapping M = (S, T, ∑ST) if:

(I,J) satisfies ∑ST under the usual

semantics of first-order logic

A semantics for mappings

Assume we have a mapping specified by Worker(x) → Emp(x) and
instances:

I = { Worker(Ron), Worker(John), Worker(Paul) }

J1 = { Emp(Ron), Emp(John), Emp(Paul) }

J2 = { Emp(Ron), Emp(John) }

A semantics for mappings

Assume we have a mapping specified by Worker(x) → Emp(x) and
instances:

I = { Worker(Ron), Worker(John), Worker(Paul) }

J1 = { Emp(Ron), Emp(John), Emp(Paul) }

J2 = { Emp(Ron), Emp(John) }

J1 is a solution for I: (I, J1) ⊨ ∀x Worker(x) → Emp(x)

A semantics for mappings

Assume we have a mapping specified by Worker(x) → Emp(x) and
instances:

I = { Worker(Ron), Worker(John), Worker(Paul) }

J1 = { Emp(Ron), Emp(John), Emp(Paul) }

J2 = { Emp(Ron), Emp(John) }

J1 is a solution for I: (I, J1) ⊨ ∀x Worker(x) → Emp(x)

J2 is not a solution for I: and (I, J2) ⊭ ∀x Worker(x) → Emp(x)

A semantics for mappings

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z)

A semantics for mappings

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z)

Worker

Ron 100K

John 90K

Paul 70K

A semantics for mappings

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z)

Worker

Ron 100K

John 90K

Paul 70K

A semantics for mappings

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z)

Worker

Ron 100K

John 90K

Paul 70K

Emp

Ron D1

John D2

Paul D3

A semantics for mappings

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z)

Worker

Ron 100K

John 90K

Paul 70K

Emp

Ron D1

John D1

Paul D1

A semantics for mappings

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z)

Worker

Ron 100K

John 90K

Paul 70K

Emp

Ron D1

John D2

Paul D3

Ringo D1

What is a good solution?

The classical notions of null value and homomorphism are used
to solve this issue

´ Target instances are allowed to contain constants and nulls

´ Homomorphisms are used to define a notion of most general
solution

Solutions with null values

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z)

Worker

Ron 100K

John 90K

Paul 70K

Solutions with null values

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z)

Worker

Ron 100K

John 90K

Paul 70K

Emp

Ron null

John null

Paul null

Solutions with null values

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z)

Worker

Ron 100K

John 90K

Paul 70K

Emp

Ron ⊥1

John ⊥2

Paul ⊥3

The notion of homomorphism

Consider two instances J1 and J2 of the same schema

Consider a function h from the set of constants and nulls to the
set of constants and nulls

The notion of homomorphism

Consider two instances J1 and J2 of the same schema

Consider a function h from the set of constants and nulls to the
set of constants and nulls

h is a homomorphism from J1 to J2 if

The notion of homomorphism

Consider two instances J1 and J2 of the same schema

Consider a function h from the set of constants and nulls to the
set of constants and nulls

h is a homomorphism from J1 to J2 if

´ h(c) = c for every constant c

The notion of homomorphism

Consider two instances J1 and J2 of the same schema

Consider a function h from the set of constants and nulls to the
set of constants and nulls

h is a homomorphism from J1 to J2 if

´ h(c) = c for every constant c

´ if R(a1, ..., an) is a fact in J1, then R(h(a1), ..., h(an)) is a fact in J2

The notion of homomorphism

Emp

Ron D1

John ⊥4

Ringo D2

Paul D1

Emp

Ron ⊥1

John ⊥2

Paul ⊥3

The notion of homomorphism

Emp

Ron D1

John ⊥4

Ringo D2

Paul D1

Emp

Ron ⊥1

John ⊥2

Paul ⊥3

h(Ron) = Ron h(⊥1) = D1

h(John) = John h(⊥2) = ⊥4

h(Paul) = Paul h(⊥3) = D1

The notion of homomorphism

Emp

Ron D1

John ⊥4

Ringo D2

Paul D1

Emp

Ron ⊥1

John ⊥2

Paul ⊥3

h(Ron) = Ron h(⊥1) = D1

h(John) = John h(⊥2) = ⊥4

h(Paul) = Paul h(⊥3) = D1

The notion of homomorphism

Emp

Ron D1

John ⊥4

Ringo D2

Paul D1

Emp

Ron ⊥1

John ⊥2

Paul ⊥3

h(Ron) = Ron h(⊥1) = D1

h(John) = John h(⊥2) = ⊥4

h(Paul) = Paul h(⊥3) = D1

The notion of homomorphism

Emp

Ron D1

John ⊥4

Ringo D2

Paul D1

Emp

Ron ⊥1

John ⊥2

Paul ⊥3

h(Ron) = Ron h(⊥1) = D1

h(John) = John h(⊥2) = ⊥4

h(Paul) = Paul h(⊥3) = D1

The notion of universal solution

Given a mapping M and a source instance I

A solution J for I under M is a universal solution if:

for every solution K for I under M,

there exists a homomorphism from J to K

The notion of universal solution

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z)

Worker

Ron 100K

John 90K

Paul 70K

Emp

Ron ⊥1

John ⊥2

Paul ⊥3

Emp

Ron D1

John D2

Paul D3

Emp

Ron ⊥

John ⊥

Paul ⊥

Emp

Ron ⊥1

John ⊥2

Paul ⊥3

Ringo ⊥4

The notion of universal solution

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z)

Worker

Ron 100K

John 90K

Paul 70K

Emp

Ron ⊥1

John ⊥2

Paul ⊥3

Emp

Ron D1

John D2

Paul D3

Emp

Ron ⊥

John ⊥

Paul ⊥

Emp

Ron ⊥1

John ⊥2

Paul ⊥3

Ringo ⊥4

Computing universal solutions efficiently

The last ingredient: a polynomial-time algorithm for computing
universal solutions

The well-known notion of chase can be used to compute
universal solutions

´ Existential variables in st-tgds are replaced by fresh nulls

Computing universal solutions efficiently

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z)

Worker

Ron 100K

John 90K

Paul 70K

Emp

Computing universal solutions efficiently

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z)

Worker

Ron 100K

John 90K

Paul 70K

Emp

Computing universal solutions efficiently

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z)

Worker

Ron 100K

John 90K

Paul 70K

Emp
Ron ⊥1

Computing universal solutions efficiently

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z)

Worker

Ron 100K

John 90K

Paul 70K

Emp
Ron ⊥1

Computing universal solutions efficiently

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z)

Worker

Ron 100K

John 90K

Paul 70K

Emp
Ron ⊥1

John ⊥2

Computing universal solutions efficiently

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z)

Worker

Ron 100K

John 90K

Paul 70K

Emp
Ron ⊥1

John ⊥2

Computing universal solutions efficiently

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z)

Worker

Ron 100K

John 90K

Paul 70K

Emp
Ron ⊥1

Paul ⊥3

John ⊥2

Computing universal solutions efficiently

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z)

Worker

Ron 100K

John 90K

Paul 70K

Emp
Ron ⊥1

Paul ⊥3

John ⊥2

Lessons learned

Lessons learned

´ Framework has to be simple

´Syntax and semantics of mappings are simple

Lessons learned

´ Framework has to be simple

´Syntax and semantics of mappings are simple

´ Framework has to be general enough to be of practical
interest

´Based on realistic assumptions

Lessons learned

´ Main notions have to be well formalized

Lessons learned

´ Main notions have to be well formalized

´ It is important to have a precise definition of what a valid
translation of a source instance is

Lessons learned

´ Main notions have to be well formalized

´ It is important to have a precise definition of what a valid
translation of a source instance is

´ Do not reinvent the wheel: use well-known and widely-
studied concepts, bring tools from other areas

Lessons learned

´ Main notions have to be well formalized

´ It is important to have a precise definition of what a valid
translation of a source instance is

´ Do not reinvent the wheel: use well-known and widely-
studied concepts, bring tools from other areas

´Syntax and semantics of mappings are based on first-order
logic

Lessons learned

´ Main notions have to be well formalized

´ It is important to have a precise definition of what a valid
translation of a source instance is

´ Do not reinvent the wheel: use well-known and widely-
studied concepts, bring tools from other areas

´Syntax and semantics of mappings are based on first-order
logic

´Universal solutions are defined in terms of homomorphisms

And this is not all …

The fundamental problem of answering target queries was also
considered

And this is not all …

The fundamental problem of answering target queries was also
considered

Worker

Ron 100K

John 90K

Paul 70K

And this is not all …

The fundamental problem of answering target queries was also
considered

Worker

Ron 100K

John 90K

Paul 70K

And this is not all …

The fundamental problem of answering target queries was also
considered

Worker

Ron 100K

John 90K

Paul 70K

Emp

Ron D1

John D2

Paul D3

And this is not all …

The fundamental problem of answering target queries was also
considered

Worker

Ron 100K

John 90K

Paul 70K

Emp

Ron D1

John D2

Paul D3

How do we answer
a target query?

And this is not all …

The fundamental problem of answering target queries was also
considered

Worker

Ron 100K

John 90K

Paul 70K

Emp

Ron D1

John D2

Paul D3

Emp

Ron ⊥1

John ⊥2

Paul ⊥3

How do we answer
a target query?

And this is not all …

The fundamental problem of answering target queries was also
considered

Worker

Ron 100K

John 90K

Paul 70K

Emp

Ron D1

John D2

Paul D3

Emp

Ron ⊥1

John ⊥2

Paul ⊥3

Emp

Ron ⊥1

John ⊥2

Paul ⊥3

Ringo ⊥4

How do we answer
a target query?

And this is not all …

The fundamental problem of answering target queries was also
considered

Worker

Ron 100K

John 90K

Paul 70K

Emp

Ron D1

John D2

Paul D3

Emp

Ron ⊥1

John ⊥2

Paul ⊥3

Emp

Ron ⊥1

John ⊥2

Paul ⊥3

Ringo ⊥4

Emp

Ron ⊥

John ⊥

Paul ⊥

How do we answer
a target query?

A semantics for target queries

´ How to evaluate a query Q over an instance I is well
understood

´ Q(I) is used to denote the answer to Q over I

´ This notion is used to define the answer to a target query with
respect to a source instance given a mapping

A semantics for target queries

Given a mapping M, a source instance I and a query Q over the
target schema

The set of certain answers of Q with respect to I given M is
defined as:

certainM(Q,I) = ∩ Q(J)

J is a solution for I under M

A semantics for target queries

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z) and
the target query Q(u) = ∃v Emp(u,v)

A semantics for target queries

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z) and
the target query Q(u) = ∃v Emp(u,v)

Worker

Ron 100K

John 90K

Paul 70K

A semantics for target queries

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z) and
the target query Q(u) = ∃v Emp(u,v)

Worker

Ron 100K

John 90K

Paul 70K

A semantics for target queries

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z) and
the target query Q(u) = ∃v Emp(u,v)

Worker

Ron 100K

John 90K

Paul 70K

Emp

Ron D1

John D2

Paul D3

A semantics for target queries

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z) and
the target query Q(u) = ∃v Emp(u,v)

Worker

Ron 100K

John 90K

Paul 70K

Emp

Ron D1

John D2

Paul D3

Answer to Q =
{ Ron, John, Paul }

A semantics for target queries

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z) and
the target query Q(u) = ∃v Emp(u,v)

Worker

Ron 100K

John 90K

Paul 70K

A semantics for target queries

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z) and
the target query Q(u) = ∃v Emp(u,v)

Worker

Ron 100K

John 90K

Paul 70K

Emp

Ron ⊥1

John ⊥2

Paul ⊥3

A semantics for target queries

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z) and
the target query Q(u) = ∃v Emp(u,v)

Worker

Ron 100K

John 90K

Paul 70K

Emp

Ron ⊥1

John ⊥2

Paul ⊥3

Answer to Q =
{ Ron, John, Paul }

A semantics for target queries

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z) and
the target query Q(u) = ∃v Emp(u,v)

Worker

Ron 100K

John 90K

Paul 70K

A semantics for target queries

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z) and
the target query Q(u) = ∃v Emp(u,v)

Worker

Ron 100K

John 90K

Paul 70K

Emp

Ron ⊥1

John ⊥2

Paul ⊥3

Ringo ⊥4

A semantics for target queries

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z) and
the target query Q(u) = ∃v Emp(u,v)

Worker

Ron 100K

John 90K

Paul 70K

Emp

Ron ⊥1

John ⊥2

Paul ⊥3

Ringo ⊥4

Answer to Q =
{ Ron, John, Paul, Ringo }

A semantics for target queries

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z) and
the target query Q(u) = ∃v Emp(u,v)

Worker

Ron 100K

John 90K

Paul 70K

A semantics for target queries

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z) and
the target query Q(u) = ∃v Emp(u,v)

Worker

Ron 100K

John 90K

Paul 70K

certainM(Q,I) =
{ Ron, Jonh, Paul }

Computing certain answers efficiently

Given a mapping M, a source instance I and a universal solution
J for I under M

For every union of conjunctive queries Q:

certainM(Q,I) = { a | a ∈ Q(J) and a only mentions constants }

Why this approach was so influential?

The simple and well-defined framework for data exchange open
many directions for further research

Why this approach was so influential?

The simple and well-defined framework for data exchange open
many directions for further research

´ Design of efficient algorithms for computing universal solutions
(minimal ones)

Why this approach was so influential?

The simple and well-defined framework for data exchange open
many directions for further research

´ Design of efficient algorithms for computing universal solutions
(minimal ones)

´ Design of efficient query answering algorithms for target
positive queries

Why this approach was so influential?

The simple and well-defined framework for data exchange open
many directions for further research

´ Design of efficient algorithms for computing universal solutions
(minimal ones)

´ Design of efficient query answering algorithms for target
positive queries

´ Identification of more expressive query languages
(inequalities, negation and aggregation)

Why this approach was so influential?

The simple and well-defined framework for data exchange open
many directions for further research

´ Design of efficient algorithms for computing universal solutions
(minimal ones)

´ Design of efficient query answering algorithms for target
positive queries

´ Identification of more expressive query languages
(inequalities, negation and aggregation)

´ Use of source and target integrity constraints

Why this approach was so influential?

The simple and well-defined framework for data exchange open
many directions for further research

´ Design of efficient algorithms for computing universal solutions
(minimal ones)

´ Design of efficient query answering algorithms for target
positive queries

´ Identification of more expressive query languages
(inequalities, negation and aggregation)

´ Use of source and target integrity constraints

´ Optimization of mappings

Why this approach was so influential?

The simple and well-defined framework for data exchange open
many directions for further research:

Why this approach was so influential?

The simple and well-defined framework for data exchange open
many directions for further research:

´ Use of more expressive mapping languages

Why this approach was so influential?

The simple and well-defined framework for data exchange open
many directions for further research:

´ Use of more expressive mapping languages

´ Study of different notions of solutions and semantics for query
answering (OWA versus CWA)

Why this approach was so influential?

The simple and well-defined framework for data exchange open
many directions for further research:

´ Use of more expressive mapping languages

´ Study of different notions of solutions and semantics for query
answering (OWA versus CWA)

´ Development of data exchange settings in other data
models: XML, graph databases, probabilistic databases

Why this approach was so influential?

The simple and well-defined framework for data exchange open
many directions for further research:

´ Use of more expressive mapping languages

´ Study of different notions of solutions and semantics for query
answering (OWA versus CWA)

´ Development of data exchange settings in other data
models: XML, graph databases, probabilistic databases

´ Development of mapping operators

Metadata management

S1 S2

M12

Metadata management

S1 S2

S3

M12

M23

Metadata management

S1 S2

S3

M12

M23

Metadata management

S1 S2

S3

M12

M23

?

Metadata management

S1 S2

S3

M12

M23
M13

= M12 ∘ M23

Metadata management

S1 S2

M12

Metadata management

S1 S2

M12

M14

S4

Metadata management

S1 S2

M12

M14

S4

Metadata management

S1 S2

M12

M14

S4
?

Metadata management

S1 S2

M12

M14

S4

M14
-1

Metadata management

S1 S2

M12

M14

S4

M14
-1

M14
-1 ∘ M12

Metadata management

S1 S2

S3

M12

M23
M14

S4

M14
-1

M14
-1 ∘ M12

Metadata management

S1 S2

S3

M12

M23
M14

S4

M14
-1

M14
-1 ∘ M12

(M14
-1 ∘ M12)∘ M23

The need for mapping operators

Philip A. Bernstein.  
Applying Model Management to Classical Meta Data Problems.
CIDR 2003

The need for mapping operators

Philip A. Bernstein.  
Applying Model Management to Classical Meta Data Problems.
CIDR 2003

´ Once a formal definition of mapping is given, these operators
can be formally defined and studied

The composition operator

´ S1, S2 and S3 denote pairwise disjoint schemas

´ Instances of Sk are denoted as Ik (k = 1, 2, 3)

´ M12 and M23 denote mappings from S1 to S2 and S2 to S3,
respectively

The composition operator

The composition of M12 with M23 is defined as a mapping M12
∘ M23 such that:

The composition operator

The composition of M12 with M23 is defined as a mapping M12
∘ M23 such that:

I3 is a solution for I1 under M12 ∘ M23

The composition operator

The composition of M12 with M23 is defined as a mapping M12
∘ M23 such that:

I3 is a solution for I1 under M12 ∘ M23

if and only if

The composition operator

The composition of M12 with M23 is defined as a mapping M12
∘ M23 such that:

I3 is a solution for I1 under M12 ∘ M23

if and only if

there exists I2 such that

I2 is a solution for I1 under M12 and

I3 is a solution for I2 under M23

A mapping language for the
composition operator

´ What is the right language to express the composition
operator?

A mapping language for the
composition operator

´ What is the right language to express the composition
operator?

´ Are st-tgds closed under composition?

A mapping language for the
composition operator

´ What is the right language to express the composition
operator?

´ Are st-tgds closed under composition?

´ If M12 and M23 are specified by sets of st-tgds, can also M12 ∘ M23
be specified by a set of st-tgds?

A mapping language for the
composition operator

Having a formal definition of mappings these questions can be
answered

A mapping language for the
composition operator

Having a formal definition of mappings these questions can be
answered

´ st-tgds are not closed under composition

A mapping language for the
composition operator

Having a formal definition of mappings these questions can be
answered

´ st-tgds are not closed under composition

´ There exist mappings M12 and M23 specified by sets of st-tgds, such
that M12 ∘ M23 cannot be specified by a set of st-tgds

A mapping language for the
composition operator

Having a formal definition of mappings these questions can be
answered

´ st-tgds are not closed under composition

´ There exist mappings M12 and M23 specified by sets of st-tgds, such
that M12 ∘ M23 cannot be specified by a set of st-tgds

´ There exists a mapping language that is appropriate for
composition

The power of composition

Consider a mapping M12 specified by the following st-tgds:

and a mapping M23 specified by the following st-tgds:

Node(x) → ∃u Paint(x, u)

Edge(x, y) → Arc(x, y)

Paint(x,u) → Color(u)

Arc(x,y) ∧ Paint(x,u) ∧ Paint(y,u) → Error(x) ∧ Error(y)

Adding second-order quantification

Unless P = NP, the previous mapping M12 ∘ M23 cannot be defined

in first-order logic

What does it need to be added to st-tgds to capture the
composition of two mappings?

Adding second-order quantification

Unless P = NP, the previous mapping M12 ∘ M23 cannot be defined

in first-order logic

What does it need to be added to st-tgds to capture the
composition of two mappings?

´ Fagin’s theorem gives us a good idea of what needs to be
added: NP = ∃SO

The language of second-order tgds

The language of second-order tgds

 ()∃f

The language of second-order tgds

 ∀x [Node(x) → Color(f(x))] ∧

 ∀x∀x [Edge(x,y) ∧ f(x)=f(y) → Error(x) ∧ Error(y)]()∃f

The language of second-order tgds

A simple extension of st-tgds gives rise to a mapping language
that is appropriate to define the composition:

These dependencies are called second-order st-tgds
(SO tgds)

 ∀x [Node(x) → Color(f(x))] ∧

 ∀x∀x [Edge(x,y) ∧ f(x)=f(y) → Error(x) ∧ Error(y)]()∃f

The language of second-order tgds

It is the right language for specifying the composition of
mappings defined by st-tgds

The language of second-order tgds

It is the right language for specifying the composition of
mappings defined by st-tgds

´ The composition of a sequence of mappings specified by sets
of st-tgds can be specified by an SO tgd

The language of second-order tgds

It is the right language for specifying the composition of
mappings defined by st-tgds

´ The composition of a sequence of mappings specified by sets
of st-tgds can be specified by an SO tgd

´ SO tgds are closed under composition

The language of second-order tgds

It is the right language for specifying the composition of
mappings defined by st-tgds

´ The composition of a sequence of mappings specified by sets
of st-tgds can be specified by an SO tgd

´ SO tgds are closed under composition

´ For every SO tgd 𝜑, there exists a sequence of mappings
specified by sets of st-tgds such that its composition is
specified by 𝜑

The language of second-order tgds

Besides, it has (almost) the same good properties as st-tgds for
data exchange

The language of second-order tgds

Besides, it has (almost) the same good properties as st-tgds for
data exchange

´ Universal solutions are defined in the same way

The language of second-order tgds

Besides, it has (almost) the same good properties as st-tgds for
data exchange

´ Universal solutions are defined in the same way

´ There is a polynomial-time algorithm (based on the chase) for
computing universal solutions

The language of second-order tgds

Besides, it has (almost) the same good properties as st-tgds for
data exchange

´ Universal solutions are defined in the same way

´ There is a polynomial-time algorithm (based on the chase) for
computing universal solutions

´ Certain answers to union of conjunctive queries can be
computed by using universal solutions

Lessons learned

Lessons learned

´ Having a simple and formal definition of mappings is a
key ingredient to study mapping operators

Lessons learned

´ Having a simple and formal definition of mappings is a
key ingredient to study mapping operators

´ Use well-known and widely-studied concepts

´ A simple form of second-order quantification gives rise to a
simple yet powerful mapping language that is appropriate
to define the composition operator

Thanks Ron for many well-defined and
inspiring concepts!

