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´ We had a paper with Ron in PODS 2004

´ Back then I was a Ph.D. student, and asked Ron whether I 
could do an internship in IBM Almaden
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funding issues 
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The need for a formal definition

´ The solution: applied as Hispanic

´ The issue: How Hispanic I am?

´ Is there a precise definition of the notion of being Hispanic?

´ The final solution: The IBM Ph.D. fellowship



The old data exchange problem

´ The first systems for restructuring and translating data were 
built several decades ago 

´ EXPRESS (1977): A data extraction, processing, and restructuring 
system 

´ This problem is particularly relevant today 

´ There is a need for a simple, yet general, solution to it
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The data exchange problem

Source schema Target schema

How do we specify the 
relationship between 

source and target data?

What is a good 
(declarative) 

language for this?

How do we materialize 
a target instance?

What is a good 
materialization?

Can we do this 
materialization 

efficiently?
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The data exchange problem

Worker(name) Emp(name)

Worker(x) → Emp(x)

name

Ron

John

Paul

name

Ron

John

Paul

name

Ron

John

Paul

Ringo

What is a good 
materialization?

What do we allow in 
this rule language?
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A solution to the problem

Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, Lucian Popa. 
Data Exchange: Semantics and Query Answering. ICDT 2003  

This article proposed a simple, elegant and general solution 

´ It has a big impact (1000+ citations in Google scholar)



A mapping language

Given: source schema S and a target schema T with no relation 
names in common 

´ A source-to-target tuple-generating dependency (st-tgd) is a 
formula of the form: 

∀x∀y   𝜑(x,y) → ∃z  𝜓(x,z) 
   

where  𝜑(x,y) and  𝜓(x,z) are conjunctions of atoms over S 
and T, respectively
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A definition of a mapping

´ A mapping M is just a tuple (S, T, ∑ST)

´ An instance of S is called a source instance, while an instance of 
T is called a target instance

´ ∑ST specifies the relationship between source and target data

´ What is the semantics of a mapping?

´ When is a target instance considered to be a valid 
materialization for a source instance under M?



A semantics for mappings

A target instance J is a solution for a source instance I under a 
mapping M = (S, T, ∑ST) if: 

(I,J) satisfies ∑ST under the usual 

semantics of first-order logic
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Assume we have a mapping specified by Worker(x) → Emp(x) and 
instances: 

I = { Worker(Ron), Worker(John), Worker(Paul) }

J1 = { Emp(Ron), Emp(John), Emp(Paul) }

J2 = { Emp(Ron), Emp(John) }

J1 is a solution for I:  (I, J1) ⊨ ∀x Worker(x) → Emp(x) 

J2 is not a solution for I: and (I, J2) ⊭ ∀x Worker(x) → Emp(x) 
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A semantics for mappings

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z) 

Worker

Ron 100K

John 90K

Paul 70K

Emp

Ron D1

John D2

Paul D3

Ringo D1



What is a good solution? 

The classical notions of null value and homomorphism are used 
to solve this issue 

´ Target instances are allowed to contain constants and nulls 

´ Homomorphisms are used to define a notion of most general 
solution
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Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z) 

Worker

Ron 100K

John 90K

Paul 70K

Emp

Ron ⊥1

John ⊥2

Paul ⊥3



The notion of homomorphism

Consider two instances J1 and J2 of the same schema

Consider a function h from the set of constants and nulls to the 
set of constants and nulls



The notion of homomorphism

Consider two instances J1 and J2 of the same schema

Consider a function h from the set of constants and nulls to the 
set of constants and nulls

h is a homomorphism from J1 to J2 if



The notion of homomorphism

Consider two instances J1 and J2 of the same schema

Consider a function h from the set of constants and nulls to the 
set of constants and nulls

h is a homomorphism from J1 to J2 if

´ h(c) = c for every constant c



The notion of homomorphism

Consider two instances J1 and J2 of the same schema

Consider a function h from the set of constants and nulls to the 
set of constants and nulls

h is a homomorphism from J1 to J2 if

´ h(c) = c for every constant c

´ if R(a1, ..., an) is a fact in J1, then R(h(a1), ..., h(an)) is a fact in J2
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The notion of universal solution

Given a mapping M and a source instance I 

A solution J for I under M is a universal solution if: 

for every solution K for I under M,  

there exists a homomorphism from J to K
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Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z) 

Worker

Ron 100K

John 90K

Paul 70K

Emp

Ron ⊥1

John ⊥2

Paul ⊥3

Emp

Ron D1

John D2

Paul D3

Emp

Ron ⊥

John ⊥

Paul ⊥

Emp

Ron ⊥1

John ⊥2

Paul ⊥3

Ringo ⊥4



Computing universal solutions efficiently

The last ingredient: a polynomial-time algorithm for computing 
universal solutions  

The well-known notion of chase can be used to compute 
universal solutions 

´ Existential variables in st-tgds are replaced by fresh nulls
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Computing universal solutions efficiently

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z) 

Worker

Ron 100K

John 90K

Paul 70K

Emp
Ron ⊥1

Paul ⊥3

John ⊥2
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Lessons learned 

´ Framework has to be simple 

´Syntax and semantics of mappings are simple 

´ Framework has to be general enough to be of practical 
interest 

´Based on realistic assumptions
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Lessons learned 

´ Main notions have to be well formalized

´ It is important to have a precise definition of what a valid 
translation of a source instance is

´ Do not reinvent the wheel: use well-known and widely-
studied concepts, bring tools from other areas

´Syntax and semantics of mappings are based on first-order 
logic

´Universal solutions are defined in terms of homomorphisms 
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A semantics for target queries

´ How to evaluate a query Q over an instance I is well 
understood 

´ Q(I) is used to denote the answer to Q over I 

´ This notion is used to define the answer to a target query with 
respect to a source instance given a mapping



A semantics for target queries

Given a mapping M, a source instance I and a query Q over the 
target schema 

The set of certain answers of Q with respect to I given M is 
defined as:

certainM(Q,I) = ∩ Q(J)

J is a solution for I under M
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Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z) and 
the target query Q(u) = ∃v Emp(u,v)

Worker

Ron 100K

John 90K

Paul 70K
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Paul ⊥3

Ringo ⊥4

Answer to Q =  
{ Ron, John, Paul, Ringo }



A semantics for target queries

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z) and 
the target query Q(u) = ∃v Emp(u,v)
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A semantics for target queries

Consider a mapping specified by Worker(x,y) → ∃z Emp(x, z) and 
the target query Q(u) = ∃v Emp(u,v)

Worker

Ron 100K

John 90K

Paul 70K

certainM(Q,I) =  
{ Ron, Jonh, Paul }



Computing certain answers efficiently

Given a mapping M, a source instance I and a universal solution 
J for I under M 

For every union of conjunctive queries Q: 

certainM(Q,I)  =  { a | a ∈ Q(J) and a only mentions constants }
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Why this approach was so influential?

The simple and well-defined framework for data exchange open 
many directions for further research

´ Design of efficient algorithms for computing universal solutions 
(minimal ones)

´ Design of efficient query answering algorithms for target 
positive queries

´ Identification of more expressive query languages 
(inequalities, negation and aggregation)

´ Use of source and target integrity constraints

´ Optimization of mappings
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Why this approach was so influential?

The simple and well-defined framework for data exchange open 
many directions for further research:

´ Use of more expressive mapping languages

´ Study of different notions of solutions and semantics for query 
answering (OWA versus CWA)

´ Development of data exchange settings in other data 
models: XML, graph databases, probabilistic databases

´ Development of mapping operators
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The need for mapping operators

Philip A. Bernstein.  
Applying Model Management to Classical Meta Data Problems. 
CIDR 2003 

´ Once a formal definition of mapping is given, these operators 
can be formally defined and studied



The composition operator

´ S1, S2 and S3 denote pairwise disjoint schemas  

´ Instances of Sk are denoted as Ik (k = 1, 2, 3) 

´ M12 and M23 denote mappings from S1 to S2 and S2 to S3, 
respectively



The composition operator

The composition of M12 with M23 is defined as a mapping         M12 
∘ M23 such that: 
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The composition operator

The composition of M12 with M23 is defined as a mapping         M12 
∘ M23 such that: 

 

I3 is a solution for I1 under M12 ∘ M23

if and only if

there exists I2 such that  

I2 is a solution for I1 under M12 and  

I3 is a solution for I2 under M23
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A mapping language for the 
composition operator

´ What is the right language to express the composition 
operator?

´ Are st-tgds closed under composition?

´ If M12 and M23 are specified by sets of st-tgds, can also M12 ∘ M23 
be specified by a set of st-tgds?
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A mapping language for the 
composition operator

Having a formal definition of mappings these questions can     be 
answered

´ st-tgds are not closed under composition

´ There exist mappings M12 and M23 specified by sets of st-tgds, such 
that M12 ∘ M23 cannot be specified by a set of st-tgds

´ There exists a mapping language that is appropriate for 
composition



The power of composition

Consider a mapping M12 specified by the following st-tgds: 

and a mapping M23 specified by the following st-tgds:

Node(x) → ∃u Paint(x, u)

Edge(x, y) → Arc(x, y)

Paint(x,u) → Color(u)

Arc(x,y) ∧ Paint(x,u) ∧ Paint(y,u) → Error(x) ∧ Error(y)
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Unless P = NP, the previous mapping M12 ∘ M23 cannot be defined 

in first-order logic

What does it need to be added to st-tgds to capture the 
composition of two mappings?



Adding second-order quantification

Unless P = NP, the previous mapping M12 ∘ M23 cannot be defined 

in first-order logic

What does it need to be added to st-tgds to capture the 
composition of two mappings?

´ Fagin’s theorem gives us a good idea of what needs to be 
added: NP = ∃SO
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The language of second-order tgds

         

         ∀x [ Node(x) → Color(f(x)) ] ∧

         ∀x∀x [ Edge(x,y) ∧ f(x)=f(y) → Error(x) ∧ Error(y) ]( )∃f



The language of second-order tgds

A simple extension of st-tgds gives rise to a mapping language 
that is appropriate to define the composition: 

These dependencies are called second-order st-tgds                
(SO tgds)

         

         ∀x [ Node(x) → Color(f(x)) ] ∧

         ∀x∀x [ Edge(x,y) ∧ f(x)=f(y) → Error(x) ∧ Error(y) ]( )∃f
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The language of second-order tgds

It is the right language for specifying the composition of 
mappings defined by st-tgds

´ The composition of a sequence of mappings specified by sets 
of st-tgds can be specified by an SO tgd

´ SO tgds are closed under composition

´ For every SO tgd  𝜑, there exists a sequence of mappings 
specified by sets of st-tgds such that its composition is 
specified by  𝜑
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The language of second-order tgds

Besides, it has (almost) the same good properties as st-tgds for 
data exchange

´ Universal solutions are defined in the same way

´ There is a polynomial-time algorithm (based on the chase) for 
computing  universal solutions

´ Certain answers to union of conjunctive queries can be 
computed by using universal solutions
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Lessons learned

´ Having a simple and formal definition of mappings is a 
key ingredient to study mapping operators

´ Use well-known and widely-studied concepts 

´ A simple form of second-order quantification gives rise to a 
simple yet powerful mapping language that is appropriate 
to define the composition operator



Thanks Ron for many well-defined and 
inspiring concepts!


