Foundations of Data Exchange and Metadata Management

Marcelo Arenas

Ron Fagin Special Event - SIGMOD/PODS 2016

We had a paper with Ron in PODS 2004

Back then I was a Ph.D. student, and asked Ron whether I could do an internship in IBM Almaden

We had a paper with Ron in PODS 2004

Back then I was a Ph.D. student, and asked Ron whether I could do an internship in IBM Almaden

He was very positive about the idea, but there were some funding issues

The solution: applied as Hispanic

The solution: applied as Hispanic

The issue: How Hispanic I am?

The solution: applied as Hispanic

The issue: How Hispanic I am?

Is there a precise definition of the notion of being Hispanic?

The solution: applied as Hispanic

- The issue: How Hispanic I am?
 - Is there a precise definition of the notion of being Hispanic?

The final solution: The IBM Ph.D. fellowship

- The first systems for restructuring and translating data were built several decades ago
 - EXPRESS (1977): A data extraction, processing, and restructuring system
- This problem is particularly relevant today
 - There is a need for a simple, yet general, solution to it

Source schema

Target schema

How do we specify the relationship between source and target data?

Target schema

How do we specify the relationship between source and target data? How do we materialize a target instance?

Targersy

What is a good (declarative) language for this?

How do we specify the relationship between source and target data? How do we materialize a target instance?

What is a good (declarative) language for this?

What is a good materialization?

Targersy

How do we specify the relationship between source and target data? How do we materialize a target instance?

Can we do this materialization efficiently?

What is a good (declarative) language for this?

What is a good materialization?

Targersy

Worker(name)

Emp(name)

Worker(name)

Emp(name)

Worker(x) \rightarrow Emp(x)

Worker(name, salary)

Emp(name, dept)

Emp(name, dept)

name	salary	S	name	dept
Ron	100K	\rightarrow	Ron	
John	90K		John	Ś
Paul	70K		Paul	

A solution to the problem

Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, Lucian Popa. Data Exchange: Semantics and Query Answering. ICDT 2003

This article proposed a simple, elegant and general solution
It has a big impact (1000+ citations in Google scholar)

Given: source schema **S** and a target schema **T** with no relation names in common

A source-to-target tuple-generating dependency (st-tgd) is a formula of the form:

$$\forall \mathbf{x} \forall \mathbf{y} \quad \varphi(\mathbf{x}, \mathbf{y}) \rightarrow \exists \mathbf{z} \quad \psi(\mathbf{x}, \mathbf{z})$$

where $\varphi(\mathbf{x}, \mathbf{y})$ and $\psi(\mathbf{x}, \mathbf{z})$ are conjunctions of atoms over **S** and **T**, respectively

• A mapping from **S** to **T** is specified by a set \sum_{sT} of st-tgds

• A mapping from **S** to **T** is specified by a set \sum_{sT} of st-tgds

 $\mathbf{S} = \{ Worker(\cdot) \}$

$$\mathbf{f} = \{ \mathsf{Emp}(\cdot) \}$$

$$\sum_{st} = \{ \forall x \text{ Worker}(x) \rightarrow \text{Emp}(x) \}$$

• A mapping from **S** to **T** is specified by a set \sum_{sT} of st-tgds

- **S** = { Worker(\cdot) }
- $\mathbf{T} = \{ \operatorname{Emp}(\cdot) \}$
- $\sum_{st} = \{ \forall x \text{ Worker}(x) \rightarrow \text{Emp}(x) \}$
- **S** = { Worker(\cdot, \cdot) }
- $\mathbf{T} = \{ \operatorname{Emp}(\cdot, \cdot) \}$
- $\sum_{st} = \{ \forall x \forall y \text{ Worker}(x, y) \rightarrow \exists z \text{ Emp}(x, z) \}$

A definition of a mapping

• A mapping **M** is just a tuple (**S**, **T**, \sum_{sT})

- An instance of S is called a source instance, while an instance of T is called a target instance
- Σ_{st} specifies the relationship between source and target data
A definition of a mapping

• A mapping **M** is just a tuple (**S**, **T**, \sum_{sT})

- An instance of S is called a source instance, while an instance of T is called a target instance
- Σ_{st} specifies the relationship between source and target data

What is the semantics of a mapping?

A definition of a mapping

• A mapping **M** is just a tuple (**S**, **T**, \sum_{sT})

- An instance of S is called a source instance, while an instance of T is called a target instance
- Σ_{st} specifies the relationship between source and target data

- What is the semantics of a mapping?
 - When is a target instance considered to be a valid materialization for a source instance under M?

A target instance J is a solution for a source instance I under a mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \sum_{\mathbf{ST}})$ if:

(I,J) satisfies \sum_{st} under the usual semantics of first-order logic

Assume we have a mapping specified by Worker(x) \rightarrow Emp(x) and instances:

- = { Worker(Ron), Worker(John), Worker(Paul) }
- $J_1 = \{ Emp(Ron), Emp(John), Emp(Paul) \}$
- $J_2 = \{ Emp(Ron), Emp(John) \}$

Assume we have a mapping specified by Worker(x) \rightarrow Emp(x) and instances:

- = { Worker(Ron), Worker(John), Worker(Paul) }
- $J_1 = \{ Emp(Ron), Emp(John), Emp(Paul) \}$
- $J_2 = \{ Emp(Ron), Emp(John) \}$

 J_1 is a solution for I: $(I, J_1) \models \forall x \text{ Worker}(x) \rightarrow \text{Emp}(x)$

Assume we have a mapping specified by Worker(x) \rightarrow Emp(x) and instances:

- = { Worker(Ron), Worker(John), Worker(Paul) }
- $J_1 = \{ Emp(Ron), Emp(John), Emp(Paul) \}$
- $J_2 = \{ Emp(Ron), Emp(John) \}$

 J_1 is a solution for I: $(I, J_1) \models \forall x \text{ Worker}(x) \rightarrow \text{Emp}(x)$

 J_2 is not a solution for I: and (I, J_2) $\nvDash \forall x$ Worker(x) \rightarrow Emp(x)

Worker		
Ron	100K	
John	90K	
Paul	70K	

Worker		
Ron	100K	
John	90K	
Paul	70K	

What is a good solution?

The classical notions of null value and homomorphism are used to solve this issue

Target instances are allowed to contain constants and nulls

Homomorphisms are used to define a notion of most general solution

Solutions with null values

Worker		
Ron	100K	
John	90K	
Paul	70K	

Solutions with null values

Solutions with null values

Consider two instances J_1 and J_2 of the same schema

Consider a function h from the set of constants and nulls to the set of constants and nulls

Consider two instances J_1 and J_2 of the same schema

Consider a function h from the set of constants and nulls to the set of constants and nulls

h is a homomorphism from J_1 to J_2 if

Consider two instances J_1 and J_2 of the same schema

Consider a function h from the set of constants and nulls to the set of constants and nulls

h is a homomorphism from J_1 to J_2 if

h(c) = c for every constant c

Consider two instances J_1 and J_2 of the same schema

Consider a function h from the set of constants and nulls to the set of constants and nulls

h is a homomorphism from J_1 to J_2 if

- h(c) = c for every constant c
- if $R(a_1, ..., a_n)$ is a fact in J_1 , then $R(h(a_1), ..., h(a_n))$ is a fact in J_2

Emp				
Ron	D1			
John	⊥ 4			
Ringo	D2			
Paul	D1			

		h(F	Ron) =	Ron	h(⊥ ₁) =	D1	
		h(Jo	ohn) =	John	h(⊥ ₂) =	⊥ 4	
		h(P	aul) =	Paul	h(⊥ ₃) =	D1	
E	mp						Emp
Ron	\perp_1					Ron	D1
John	⊥ _ 2					John	⊥ 4
Paul	⊥ 3					Ringo	D2
						Paul	D1

The notion of universal solution

Given a mapping **M** and a source instance I

A solution J for I under **M** is a universal solution if:

for every solution K for I under **M**, there exists a homomorphism from J to K

The notion of universal solution

The notion of universal solution

The last ingredient: a polynomial-time algorithm for computing universal solutions

The well-known notion of chase can be used to compute universal solutions

Existential variables in st-tgds are replaced by fresh nulls

Worker		
Ron	100K	
John	90K	
Paul	70K	

Computing universal solutions efficiently

Consider a mapping specified by Worker(x,y) \rightarrow 3z Emp(x, z)

Worker	
Ron	100K
John	90K
Paul	70K

Framework has to be simple

Syntax and semantics of mappings are simple

Framework has to be simple

- Syntax and semantics of mappings are simple
- Framework has to be general enough to be of practical interest
 - Based on realistic assumptions

Main notions have to be well formalized

Main notions have to be well formalized

It is important to have a precise definition of what a valid translation of a source instance is

- Main notions have to be well formalized
 - It is important to have a precise definition of what a valid translation of a source instance is
- Do not reinvent the wheel: use well-known and widelystudied concepts, bring tools from other areas

- Main notions have to be well formalized
 - It is important to have a precise definition of what a valid translation of a source instance is
- Do not reinvent the wheel: use well-known and widelystudied concepts, bring tools from other areas
 - Syntax and semantics of mappings are based on first-order logic

Main notions have to be well formalized

- It is important to have a precise definition of what a valid translation of a source instance is
- Do not reinvent the wheel: use well-known and widelystudied concepts, bring tools from other areas
 - Syntax and semantics of mappings are based on first-order logic
 - Universal solutions are defined in terms of homomorphisms

Worker		
Ron	100K	
John	90K	
Paul	70K	

- How to evaluate a query Q over an instance I is well understood
 - Q(I) is used to denote the answer to Q over I
- This notion is used to define the answer to a target query with respect to a source instance given a mapping

Given a mapping **M**, a source instance I and a query Q over the target schema

The set of certain answers of Q with respect to I given **M** is defined as:

 $certain_{M}(Q,I) =$

J is a solution for I under M

Worker		
Ron	100K	
John	90K	
Paul	70K	

Consider a mapping specified by Worker(x,y) \rightarrow 3z Emp(x, z) and the target query $Q(u) = \exists v Emp(u,v)$ Answer to Q ={ Ron, John, Paul } Worker Em Ron 100K Ron ⊥1 John 90K John \perp_2 Paul 70K Paul \perp_3

Consider a mapping specified by Worker(x,y) \rightarrow 3z Emp(x, z) and the target query $Q(u) = \mathbf{J}v \operatorname{Emp}(u,v)$

⊥_4

Computing certain answers efficiently

Given a mapping **M**, a source instance I and a universal solution J for I under **M**

For every union of conjunctive queries Q:

certain_M(Q,I) = { $\mathbf{a} \mid \mathbf{a} \in Q(J)$ and \mathbf{a} only mentions constants }

Why this approach was so influential?

The simple and well-defined framework for data exchange open many directions for further research

Why this approach was so influential?

The simple and well-defined framework for data exchange open many directions for further research

 Design of efficient algorithms for computing universal solutions (minimal ones)

Why this approach was so influential?

The simple and well-defined framework for data exchange open many directions for further research

- Design of efficient algorithms for computing universal solutions (minimal ones)
- Design of efficient query answering algorithms for target positive queries
The simple and well-defined framework for data exchange open many directions for further research

- Design of efficient algorithms for computing universal solutions (minimal ones)
- Design of efficient query answering algorithms for target positive queries
- Identification of more expressive query languages (inequalities, negation and aggregation)

The simple and well-defined framework for data exchange open many directions for further research

- Design of efficient algorithms for computing universal solutions (minimal ones)
- Design of efficient query answering algorithms for target positive queries
- Identification of more expressive query languages (inequalities, negation and aggregation)
- Use of source and target integrity constraints

The simple and well-defined framework for data exchange open many directions for further research

- Design of efficient algorithms for computing universal solutions (minimal ones)
- Design of efficient query answering algorithms for target positive queries
- Identification of more expressive query languages (inequalities, negation and aggregation)
- Use of source and target integrity constraints
- Optimization of mappings

The simple and well-defined framework for data exchange open many directions for further research:

The simple and well-defined framework for data exchange open many directions for further research:

Use of more expressive mapping languages

The simple and well-defined framework for data exchange open many directions for further research:

Use of more expressive mapping languages

Study of different notions of solutions and semantics for query answering (OWA versus CWA)

The simple and well-defined framework for data exchange open many directions for further research:

- Use of more expressive mapping languages
- Study of different notions of solutions and semantics for query answering (OWA versus CWA)
- Development of data exchange settings in other data models: XML, graph databases, probabilistic databases

The simple and well-defined framework for data exchange open many directions for further research:

- Use of more expressive mapping languages
- Study of different notions of solutions and semantics for query answering (OWA versus CWA)
- Development of data exchange settings in other data models: XML, graph databases, probabilistic databases
- Development of mapping operators

Metadata management **S**₁ S_2 **M**₁₂ **M**₁₄ **S**₄

The need for mapping operators

Philip A. Bernstein. Applying Model Management to Classical Meta Data Problems. CIDR 2003

The need for mapping operators

Philip A. Bernstein. Applying Model Management to Classical Meta Data Problems. CIDR 2003

Once a formal definition of mapping is given, these operators can be formally defined and studied

- S₁, S₂ and S₃ denote pairwise disjoint schemas
 - Instances of S_k are denoted as I_k (k = 1, 2, 3)
- M₁₂ and M₂₃ denote mappings from S₁ to S₂ and S₂ to S₃, respectively

The composition of M_{12} with M_{23} is defined as a mapping M_{12} M_{23} such that:

The composition of M_{12} with M_{23} is defined as a mapping M_{12} M_{23} such that:

 I_3 is a solution for I_1 under $M_{12} \circ M_{23}$

The composition of M_{12} with M_{23} is defined as a mapping M_{12} M_{23} such that:

> I_3 is a solution for I_1 under $M_{12} \circ M_{23}$ if and only if

The composition of M_{12} with M_{23} is defined as a mapping M_{12} M_{23} such that:

> I₃ is a solution for I₁ under M₁₂ · M₂₃ if and only if there exists I₂ such that I₂ is a solution for I₁ under M₁₂ and I₃ is a solution for I₂ under M₂₃

What is the right language to express the composition operator?

What is the right language to express the composition operator?

Are st-tgds closed under composition?

- What is the right language to express the composition operator?
- Are st-tgds closed under composition?
 - If M₁₂ and M₂₃ are specified by sets of st-tgds, can also M₁₂ · M₂₃ be specified by a set of st-tgds?

Having a formal definition of mappings these questions can be answered

Having a formal definition of mappings these questions can be answered

st-tgds are not closed under composition

Having a formal definition of mappings these questions can be answered

- st-tgds are not closed under composition
 - There exist mappings M₁₂ and M₂₃ specified by sets of st-tgds, such that M₁₂ · M₂₃ cannot be specified by a set of st-tgds

Having a formal definition of mappings these questions can be answered

- st-tgds are not closed under composition
 - There exist mappings M₁₂ and M₂₃ specified by sets of st-tgds, such that M₁₂ · M₂₃ cannot be specified by a set of st-tgds
- There exists a mapping language that is appropriate for composition

The power of composition

Consider a mapping M_{12} specified by the following st-tgds:

Node(x) \rightarrow $\exists \cup Paint(x, \cup)$ Edge(x, y) \rightarrow Arc(x, y)

and a mapping M_{23} specified by the following st-tgds:

Paint(x,u) \rightarrow Color(u) Arc(x,y) \wedge Paint(x,u) \wedge Paint(y,u) \rightarrow Error(x) \wedge Error(y)
Adding second-order quantification

Unless P = NP, the previous mapping $M_{12} \circ M_{23}$ cannot be defined in first-order logic

What does it need to be added to st-tgds to capture the composition of two mappings?

Adding second-order quantification

Unless P = NP, the previous mapping $M_{12} \circ M_{23}$ cannot be defined in first-order logic

What does it need to be added to st-tgds to capture the composition of two mappings?

Fagin's theorem gives us a good idea of what needs to be added: NP = BSO

 $\exists f \left(\begin{array}{c} \forall x \ [\ Node(x) \rightarrow Color(f(x)) \] \land \\ \forall x \forall x \ [\ Edge(x,y) \land f(x)=f(y) \rightarrow Error(x) \land Error(y) \] \end{array} \right)$

A simple extension of st-tgds gives rise to a mapping language that is appropriate to define the composition:

 $\exists f \left(\begin{array}{c} \forall x \ [\ Node(x) \rightarrow Color(f(x)) \] \land \\ \forall x \forall x \ [\ Edge(x,y) \land f(x)=f(y) \rightarrow Error(x) \land Error(y) \] \end{array} \right)$

These dependencies are called second-order st-tgds (SO tgds)

It is the right language for specifying the composition of mappings defined by st-tgds

It is the right language for specifying the composition of mappings defined by st-tgds

The composition of a sequence of mappings specified by sets of st-tgds can be specified by an SO tgd

It is the right language for specifying the composition of mappings defined by st-tgds

The composition of a sequence of mappings specified by sets of st-tgds can be specified by an SO tgd

SO tgds are closed under composition

It is the right language for specifying the composition of mappings defined by st-tgds

The composition of a sequence of mappings specified by sets of st-tgds can be specified by an SO tgd

SO tgds are closed under composition

For every SO tgd φ , there exists a sequence of mappings specified by sets of st-tgds such that its composition is specified by φ

Besides, it has (almost) the same good properties as st-tgds for data exchange

Besides, it has (almost) the same good properties as st-tgds for data exchange

Universal solutions are defined in the same way

Besides, it has (almost) the same good properties as st-tgds for data exchange

Universal solutions are defined in the same way

There is a polynomial-time algorithm (based on the chase) for computing universal solutions

Besides, it has (almost) the same good properties as st-tgds for data exchange

Universal solutions are defined in the same way

There is a polynomial-time algorithm (based on the chase) for computing universal solutions

Certain answers to union of conjunctive queries can be computed by using universal solutions

Lessons learned

Having a simple and formal definition of mappings is a key ingredient to study mapping operators

Lessons learned

Having a simple and formal definition of mappings is a key ingredient to study mapping operators

Use well-known and widely-studied concepts

A simple form of second-order quantification gives rise to a simple yet powerful mapping language that is appropriate to define the composition operator

Thanks Ron for many well-defined and inspiring concepts!

