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“Contributions to the Model Theory of Finite
Structures”

Foundations of Finite-Model Theory: Three Seminal Results

• Generalized first-order spectra and polynomial-time recognizable sets. In
Complexity of Computation, ed. R. Karp, SIAM-AMS Proceedings 7,
1974, pp. 43–73.

• Monadic generalized spectra. Zeitschr. f. math. Logik und Grundlagen
d. Math. 21, 1975, pp. 89–96

• Probabilities on finite models. J. Symbolic Logic 41:1, 1976, pp. 50–58.
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Finite-Model Theory

Model Theory: models(ϕ) = {M : M |= ϕ}

• ϕ – 1st-order sentence

• M – structure

Example: “all graph nodes have at least two distinct neighbors”

(∀x)(∃y)(∃z)(¬(y = z) ∧ E(x, y) ∧ E(x, z))

Finite-Model Theory: focus on finite structures!
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Descriptive-Complexity Theory

A complexity-theoretic perspective on finite-model theory:

• Fix ϕ and consider models(ϕ) as a decision problem:

– Given M , does it satisfy ϕ, i.e., does M |= ϕ hold?

Q: What is the complexity? (Data Complexity)

A: In LOGSPACE (easy!)
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Existential Second-Order Logic (ESO)

Syntax: (∃R1) . . . (∃Rk)ϕ

• ϕ – first order

Semantics: Σ1
1

• {models(ψ) : ψ ∈ ESO}

Data Complexity: NP – guess quantified relations R1 . . . Rk and check
that ϕ holds
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Fagin’s Theorem

Just observed: Σ1
1 ⊆ NP

Fagin, 1974: Σ1
1 = NP

• In words: Σ1
1 captures NP

Amazing Result!

• No Turing machine

• No time

• No polynomial

• Pure logic!
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Why Second-Order Logic?

Vardi, 1981: Why second-order logic?

• To simulate nondeterminism.

• To simulate a linear order, so we can count TM steps.

What if we:

• focus on deterministic machines, i.e., P instead of NP .

• assume that the structure comes with a built-in linear order.
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The Immerman-Vardi Theorem

Chandra+Harel, 1980: Fixpoint Logic – augmenting first-order logic with
bounded iteration:
R← ϕ(R,Q1, . . . , Qm)

• where R occurs positively in ϕ.

Theorem [Immerman, V., 1982]: Fixpoint Logic captures P on ordered
structures.

• A logical characterization of P .

Major Open Question: Is there a logic that captures P without assuming
built-in order. [Chandra+Harel, 1980]

8



Pure Descriptive-Complexity Theory

Computational-Complexity Theory: What computational resources are
required to solve computational problems?

• Example: What is the computational complexity class of Digraph
Reachability? NLOGSPACE!

Descriptive-Complexity Theory: What logical resources are required to
solve computational problems?

• Example: What logic can express digraph reachability?
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The Logic of Digraph Reachability

Observation: REACH is in P.

• Consequence: REACH is in both Σ1
1 and Π1

1.

Observation: REACH is in Monadic Π1
1.

• Question: Is REACH in Monadic Σ1
1

Fagin, 1975: REACH is not in Monadic Σ1
1.

• Corollary: REACH is not in FO.

• Rediscovred by Aho+Ullman, 1978.
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Built-In Relations

Major Issue in Descriptive-Complexity Theory: power of built-in
relations

• Example: See Immerman-Vardi Theorem!

Question: What happens to REACH 6∈MonadicΣ1
1 when we add built-in

relations?

Theorem [Fagin-Stockmeyer-V., 1995]: REACH 6∈ MonadicΣ1
1 even

when we add built-in relations of moderate degree, e.g., successor relation.

• Schwentick, 1996: even with linear order.
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Fagin’74 vs Fagin’75

• Fagin’75: standard result in mathematical logic – Property X cannot be
expressed in logic Y

– But: restriction to finite structures makes the result more difficult.

• Fagin’74: Finiteness enables us to view a logical problem as a decision
problem – yields connection to computational-complexity theory

Perspective: Finiteness opens the door to completely new questions in
model theory!
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Logical Validity

Validity: truth in in all structures – logical truth!

• The most fundamental notion in logic!

Finite Validity: truth in in all finite structures

But:

• Validity is semidecidable – Gödel

• Finite validity is not semidecidable – Trakhtenbrot
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Almost-Sure Validity

Fagin’76: Almost-Sure Validity – truth over almost all finite structures

• Leverage finiteness to define limit probability

0-1 Law for First-Order Logic: For every first-order sentence ϕ, either ϕ
or ¬ϕ is almost-surely valid.

• A proof for The Book!

Contrast:

• Valid sentences are rare, and identifying them is undecidable!

• But almost-sure validity is the norm, and the decision problem is
relatively easy ([Grandjean, 1983]: PSPACE-complete)
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Beyond First-Order Logic

Observation:

• In standard mathematical logic, first-order logic is the Lingua Franca for
foundational reasons.

• In finite-model theory, first-order logic is not priviliged. Many other logics
are being studied, e.g., existental second-order logic, fixpoint logic, etc.

Question: Does the 0-1 Law extend beyond first-order logic?
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0-1 Laws for Existential Second-Order Logic

Recall: ESO captures NP.

• No 0-1 law for ESO – can define parity

Kolaitis+V., 1987: Focus on first-order fragments of ESO

• (∃R1) . . . (∃Rk)ϕ, where ϕ is in a fragment of FO

Classification Project: classify fragments of FO that yields fragments of
ESO with 0-1 laws.

• Kolaitis+V., 1987-8: positive results

• Pacholski+Szwast , 1989 and Le bars , 1998: negative results
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0-1 Law for Infinitary Logic

Question: Why does FO have a 0-1 Law?

Answer: [Kolaitis+V., 1990]: Because every sentence in FO have finitely
many variables!

Corollary [K+V., 1990]: Finite-variable infinitary logic has a 0-1 Law!

Why Care? Because Finite-variable infinitary logic can express several
fixpoint logics. ⇒ 0-1 Law for Fixpoint Logics.

17



In Conclusion

Sad Truth: Most PhD dissertations are just not memorable.

In Contrast:

• Ron’s dissertation is memorable!

• It is also seminal – the foundation stone for Finite-Model Theory

• It was an auspicious start to a highly distinguished research career.

• Most importantly, it has had a profound influence on my research career!
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