Ron Fagin and Acyclic Hypergraphs

Why Hypergraphs?
Interesting Properties
Fagin’s Hierarchy

Jeffrey D. Ullman
Stanford University
Hypergraphs

- Nodes + *(hyper)*edges that are sets of any number of nodes.
Hypergraphs as Schemas

- Nodes = attributes.
- Hyperedges = relation schemas.
- Hypergraph = database schema.
Hypergraphs as Schemas

- Nodes = attributes.
- Hyperedges = relation schemas.
- Hypergraph = database schema.

$\{ABC, BCD, BDE, DEF\}$
Hypergraphs as Natural Joins

- Nodes = attributes.
- Edges = schemas of relations being joined.
 - Any equijoin can be so represented if we rename equated attributes from different relations.
Hypergraphs as Natural Joins

- Nodes = attributes.
- Edges = schemas of relations being joined.
 - Any equijoin can be so represented if we rename equated attributes from different relations.

= ABC \bowtie BCD \bowtie BDE \bowtie DEF
Beeri, Fagin, Maier, Mendelzon, U, Yannakakis (STOC, 1981) looked at hypergraphs primarily as database schemas.
Beeri, Fagin, Maier, Mendelzon, U, Yannakakis (STOC, 1981) looked at hypergraphs primarily as database schemas.

At that time, the “universal-relation wars” were raging.

Could you ask queries about attributes only and allow the system to figure out the proper join to connect these attributes?
Beeri, Fagin, Maier, Mendelzon, U, Yannakakis (STOC, 1981) looked at hypergraphs primarily as database schemas.

At that time, the “universal-relation wars” were raging.

- Could you ask queries about attributes only and allow the system to figure out the proper join to connect these attributes?

Identified a class of schemas (“acyclic”) with certain properties that made sense as a universal relation.
The GYO Test for Acyclicity

- It turns out there is a simple way to tell whether a hypergraph is acyclic, so we won’t bother with the original definition.
- Due to Graham and Yu-Oszoyoglu independently.
- “Reduce” the hypergraph using the following two rules:
 - Eliminate a node in only one hyperedge.
 - Eliminate a hyperedge contained in another.
- If you get down to one empty edge, then the hypergraph is acyclic.
Example: GYO Reduction
Previously, Phil Bernstein and his students Chiu, Goodman, and Shmueli had looked at a seemingly unrelated question: when does a join have a full reducer?

= finite sequence of semijoins that is guaranteed to eliminate from the relations all tuples that dangle in the complete join.
Local and Global Consistency

A related formulation: when does *local consistency*

- = the join of any two relations has no dangling tuples

imply *global consistency*

- = there are no dangling tuples in any relation when the join of all the relations is taken.

It turns out “exists a full reducer” = “local consistency implies global consistency” = “acyclic.”
Example: Local/Global Consistency

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

These three relations are locally consistent. But the join of all three relations is empty. Hence not globally consistent.
Now, semijoin reduction will make each relation empty. But the number of steps needed depends on the number of tuples.

1. AB △ CA eliminates only (0,1).
2. Then BC △ AB eliminates only (1,2).
3. And so on...

Notice the change.
A join of two relations is *monotone* if it has no dangling tuples.
Monotone Joins

- A join of two relations is *monotone* if it has no dangling tuples.
- **Important consequence**: the output of a monotone join is at least as large each of its arguments.
 - If implemented properly, the time taken by the join is proportional to input size + output size.
Monotone Joins

- A join of two relations is **monotone** if it has no dangling tuples.
- **Important consequence:** the output of a monotone join is at least as large each of its arguments.
 - If implemented properly, the time taken by the join is proportional to input size + output size.
- **Note:** “local consistency” = “joins of two database relations are monotone,” but “monotone” applies to intermediate joins also.
This line of research had a very different view of the condition under which full reducers exist (and under which local consistency = global consistency).
This line of research had a very different view of the condition under which full reducers exist (and under which local consistency = global consistency).

If and only if you can build a tree with:
This line of research had a very different view of the condition under which full reducers exist (and under which local consistency = global consistency).

If and only if you can build a tree with:
- Nodes = relation schemas.
This line of research had a very different view of the condition under which full reducers exist (and under which local consistency = global consistency).

If and only if you can build a tree with:

- Nodes = relation schemas.
- For every attribute, the set of nodes containing that attribute is connected.
Example: Tree View of Acyclicity
Example: Tree View of Acyclicity
Example: Tree View of Acyclicity
Example: A Cyclic Join

By symmetry, all trees look like this. Notice A is at disconnected nodes.
Theorem

- From Beeri, Fagin, Maier, and Yannakakis (J. ACM, 1983).
Theorem

- From Beeri, Fagin, Maier, and Yannakakis (J. ACM, 1983).
- A hypergraph is acyclic if and only if its hyperedges form a tree whose nodes containing any given attribute are connected.
A hypergraph is acyclic if and only if its hyperedges form a tree whose nodes containing any given attribute are connected.

Therefore, acyclic hypergraphs, and only acyclic hypergraphs, have:

1. Full reducers.
2. Local consistency = global consistency.
3. Local consistency => monotone join sequences guaranteed to exist.
While the tree-based definition of acyclicity is generally less convenient to use than the GYO definition, it yielded an important generalization.
While the tree-based definition of acyclicity is generally less convenient to use than the GYO definition, it yielded an important generalization.

Tree width = maximum number of elements (= relation schema or attribute) at a tree node, where all attributes are in connected set of nodes.
While the tree-based definition of acyclicity is generally less convenient to use than the GYO definition, it yielded an important generalization.

Tree width = maximum number of elements (= relation schema or attribute) at a tree node, where all attributes are in connected set of nodes.

Finite tree width yields several useful properties shared with acyclic hypergraphs.
Example: Tree Width

Now, the A’s are at a connected set of nodes, and the tree width = 2, since the root has two members.
The Fagin Hierarchy

- In his seminal paper “Degrees of Acyclicity for Hypergraphs and Relational Database Schemes” (J. ACM, 1983), Ron defined four different notions of acyclicity.
- Berge acyclicity, and γ-, β-, and α–acyclicity.
- α-acyclic = what we have been calling “acyclic.”
In the leading graph-theory text of the time, Berge defined a cycle in a hypergraph to be a sequence of distinct nodes n_1, n_2, \ldots, n_k such that there are distinct hyperedges containing each consecutive pair of nodes in the end-around sense: $\{n_1, n_2\}, \{n_2, n_3\}, \ldots, \{n_k, n_1\}$.
In the leading graph-theory text of the time, Berge defined a cycle in a hypergraph to be a sequence of distinct nodes n_1, n_2, \ldots, n_k such that there are distinct hyperedges containing each consecutive pair of nodes in the end-around sense: $\{n_1, n_2\}, \{n_2, n_3\}, \ldots, \{n_k, n_1\}$.

Exactly what you want for (ordinary) graphs.
The Berge View of Acyclicity

- In the leading graph-theory text of the time, Berge defined a cycle in a hypergraph to be a sequence of distinct nodes \(n_1, n_2, \ldots, n_k \) such that there are distinct hyperedges containing each consecutive pair of nodes in the end-around sense: \(\{n_1, n_2\}, \{n_2, n_3\}, \ldots, \{n_k, n_1\} \).
- Exactly what you want for (ordinary) graphs.
- But weird for hypergraphs.
In the leading graph-theory text of the time, Berge defined a cycle in a hypergraph to be a sequence of distinct nodes n_1, n_2, \ldots, n_k such that there are distinct hyperedges containing each consecutive pair of nodes in the end-around sense: $\{n_1, n_2\}, \{n_2, n_3\}, \ldots, \{n_k, n_1\}$.

Exactly what you want for (ordinary) graphs.

But weird for hypergraphs.

Example: $ABCD$ has a cycle B, C.
The other three notions of acyclicity each have many equivalent definitions and properties.

One simple hierarchy of distinctions is (assuming the relations are locally consistent):
The other three notions of acyclicity each have many equivalent definitions and properties.

One simple hierarchy of distinctions is (assuming the relations are locally consistent):

- α-acyclic = the join of all the relations in the hypergraph has a sequence of monotone joins.
Other Notions of Acyclicity

- The other three notions of acyclicity each have many equivalent definitions and properties.
- One simple hierarchy of distinctions is (assuming the relations are locally consistent):
 - \(\alpha\)-acyclic = the join of all the relations in the hypergraph has a sequence of monotone joins.
 - \(\beta\)-acyclic = the join of any connected subset of the relations has a sequence of monotone joins.
The other three notions of acyclicity each have many equivalent definitions and properties.

One simple hierarchy of distinctions is (assuming the relations are locally consistent):

- α-acyclic = the join of all the relations in the hypergraph has a sequence of monotone joins.
- β-acyclic = the join of any connected subset of the relations has a sequence of monotone joins.
- γ-acyclic = any join sequence for any connected subset of the relations is monotone.
Key Results
Key Results

1. The four notions of acyclicity are distinct and are contained as follows: Berge acyclic $\subseteq \gamma$-acyclic $\subseteq \beta$-acyclic $\subseteq \alpha$-acyclic.
2. Each of the definitions has a polynomial-time test.
3. For each there is an appropriate notion of a “cycle” analogous to that used by Berge.
Example: α-acyclic, Not β-acyclic

α-acyclic.
Remove D, E, F.
Resulting hyperedges are contained in ABC.
Example: α-acyclic, Not β-acyclic

α-acyclic.
Remove D, E, F.
Resulting hyperedges are contained in ABC.

But ... remove ABC, and the result is an α-cyclic hypergraph.
Hence, original is not β-acyclic.
A former student, Anand Rajaraman, returned for his PhD after founding a startup, Junglee.
A former student, Anand Rajaraman, returned for his PhD after founding a startup, Junglee.

The Junglee folks had developed techniques for examining Web pages and figuring out what data was connected to what.

Example: Help-wanted pages. To which job(s) did a location or salary refer?
A former student, Anand Rajaraman, returned for his PhD after founding a startup, Junglee.

The Junglee folks had developed techniques for examining Web pages and figuring out what data was connected to what.

- **Example**: Help-wanted pages. To which job(s) did a location or salary refer?

Thesis question: what HTML structures allowed Junglee methods to work.
Concluding Remark

- A former student, Anand Rajaraman, returned for his PhD after founding a startup, Junglee.
- The Junglee folks had developed techniques for examining Web pages and figuring out what data was connected to what.
 - **Example**: Help-wanted pages. To which job(s) did a location or salary refer?
 - **Thesis question**: what HTML structures allowed Junglee methods to work.
 - **Answer**: the β-acyclic hypergraphs.