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What was the problem?

The answers to queries in DB/2 are sets
The answers to queries in QBIC are sorted lists
How do you combine the results?

Laura Haas

Garlic

Example databases: .  .  .

Mr.	Database	Theoretician,	we’ve	got	a	
problem	with	Garlic,	our	multimedia	

database	system!
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Example

Searching a CD database for Artist = “Beatles” 
yields a set, via, say DB/2

Musicbrainz has 12 million recordings in its DB
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Example
AlbumColor = “Red” yields a sorted list, via, say 
QBIC
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Redness

.629.659.683.697 .670



Example

How do we make sense of 
(Artist = ‘Beatles’) ∧ (AlbumColor = ‘Red’) ?
– Here it is probably a list of albums by the Beatles, sorted 

by how red they are
What about
(Artist = ‘Beatles’) ∨ (AlbumColor = ‘Red’) ?

And what about
(Color = ‘Red’) ∧ (Shape = ‘Round’) ?
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What Was My Solution?

These weren’t just sorted lists: they were scored
lists 

Can view sets as scored lists (scores 0 or 1)
This reminded me of fuzzy logic 
In fuzzy logic, conjunction (∧) is min, and 
disjunction (∨) is max
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Laura Haas

Use	fuzzy	logic

I	like	your	solution.	But	we	also	need	an	efficient	
algorithm	that	can	find	the	top	k	results	while	

minimizing	database	accesses

Ron Fagin

⋮
I	have	an	algorithm	that	finds	

the	top	k	with	only	√n	
database	accesses

Good,	that	beats	linear!	But	we	database	people	are	spoiled,	
and	are	used	to	only	log	n	accesses.	Be	smarter	and	get	me	a	

log	n	algorithm

I	proved	that	you	can’t	do	
better	than	√n

⋮
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Time for the Accesses

Say n = 12,000,000 CDs
Assume 1000 accesses per second
n accesses (naïve algorithm) would take 3 hours
n accesses would take 3 seconds√



Generalizing the Algorithm

The algorithm works for arbitrary monotone scoring 
functions
– increasing the scores of arguments cannot decrease the 

overall score
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The Problem
There are m attributes, or fields
Each object in a database has a score xi for attribute i
The objects are given in m sorted lists, one list per attribute
Goal: Find the top k objects according to a monotone scoring 
function, while minimizing access to the lists 

Can think of the attributes as voters, and the objects as candidates, 
where each voter assigns a score to each candidate
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Multimedia Example
REDNESS

177: 0.993
139: 0.991
702: 0.982
. . .
235: 0.325
. . .

ROUNDNESS
235: 0.999
666: 0.996
820: 0.992
. . .
177: 0.406
. . .
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Scoring Functions

Let f be the scoring function
Popular choices for f:
– min (used in fuzzy logic)
– average

Let x1,…, xm be the scores of object R under the m
attributes
Then f(x1,…, xm) is the overall score of object R
A scoring function f is monotone if whenever 
xi ≤ yi for every i, then f(x1,…, xm) ≤ f(y1,…, ym) 12



Modes of Access

Sorted (or sequential) access
– Can obtain the next object and its score for attribute i

Random access
– Can obtain the score of object R for attribute i

Wish to minimize total number of accesses 
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Algorithms

Want an algorithm for finding the top k objects
Naïve algorithm retrieves every score of every 
object
– Too expensive
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Fagin’s Algorithm - FA

For all lists L1, L2, …, Lm get next object in 
sorted order.
Stop when there is set of k objects that 
appeared in all lists.
For every object R encountered 
– retrieve all fields x1, x2, …, xm. 
– Compute f(x1,x2,…xm) 

Return top k objects

Combining fuzzy information from multiple systems, PODS’96, JCSS’99



Correctness of the Halting Rule

Assume (by way of contradiction): 
R unseen;  S in top k ;   f(R)>f(S)

Let T1,…, Tk  be the objects that appeared in every list.
Since S is in the top k, there is p s.t. f(S) ≥ f(Tp).

So f(R) > f(Tp).

Hence for some attribute j the score of R on attribute j 
is bigger than the score of Tp on attribute j.
Since Tp appeared in Lj under sorted access, so did 
R, which is a contradiction.
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Performance of FA

Performance : assuming that the fields are 
independent O(n(m-1)/m).

Under independence assumption, FA is optimal with 
high probability in the worst case for all “strict” 
scoring functions (“strict” means that the value is 1 
iff all arguments are 1)



Influence
Algorithm implemented in Garlic 
Influenced other IBM products, including 
Watson Bundled Search system
InfoSphere Federation Server 
WebSphere Commerce

Paper introducing my algorithm has over 800 citations 
(Google Scholar)
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Enter Amnon Lotem

Mike Franklin taught an advanced course in 
databases at the University of Maryland 

– Autumn 1997 

Amnon Lotem was a student
Mike suggested Amnon to read Fagin’s paper
Amnon found an algorithm that was “better” than 
the “optimal” Fagin’s Algorithm
– Convinced Mike, via simulations



Enter Moni Naor

1999-2001: 
Sabbatical  from Weizmann Institute
At

Stanford

IBM Almaden  



Stanford Advanced Image Databases
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Fuzzy Queries in 
Multimedia Database 
Systems
(slides in postscript)

NAME Ron Fagin

AFFILIATION
IBM Almaden 
Research Center

TIME: Fridays, 3:15pm until 4:30pm. Please arrive 
5 min. early to sign in!

LOCATION & DIRECTIONS: 201 T-Seq, right across the street from 
the Gates Information Sciences building

INFORMATION: michel@CS.Stanford.EDU
Seminar Schedule

This quarter the talks will focus on Ontologies, E-Commerce, XML, and Metadata.

Source: http://i.stanford.edu/infoseminar/archive/FallY99/





Threshold Algorithm
Do sorted access in parallel to each of the m scored lists. 
As each object R is seen under sorted access:
– Do random access to retrieve all of its scores x1,…, xm

– Compute its overall score f(x1,…, xm) 
– If this is one of the top k answers so far, remember it

For each list i, let ti be the score of the last object seen under sorted 
access
Define the threshold value T to be f(t1,…, tm). When k objects have 
been seen whose overall score is at least T, stop
Return the top k answers 
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Threshold Algorithm: Example (using min)
REDNESS

177: 0.993
ROUNDNESS

235: 0.999

24 Scoring function is min



Threshold Algorithm: Example (using min)
REDNESS

177: 0.993
ROUNDNESS

235: 0.999

. . .
177: 0.406
. . .

25



Threshold Algorithm: Example (using min)
REDNESS

177: 0.993

. . .
235: 0.325
. . .

ROUNDNESS
235: 0.999

. . .
177: 0.406
. . .

26



Threshold Algorithm: Example (using min)
REDNESS

177: 0.993

. . .
235: 0.325
. . .

ROUNDNESS
235: 0.999

. . .
177: 0.406
. . .

Overall score for 177: min(0.993, 0.406) = .406
Overall score for 235: min(0.325, 0.999) = .325
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Threshold Algorithm: Example (using min)
REDNESS

177: 0.993

. . .
235: 0.325
. . .

ROUNDNESS
235: 0.999

. . .
177: 0.406
. . .

Overall score for 177: min(0.993, 0.406) = .406
Overall score for 235: min(0.325, 0.999) = .325

Threshold value: min( 0.993 , 0.999 ) = .993
28
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Threshold Algorithm: Example (using min)
REDNESS

177: 0.993
139: 0.991

. . .
235: 0.325
. . .

ROUNDNESS
235: 0.999
666: 0.996

. . .
177: 0.406
. . .
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Threshold Algorithm: Example (using min)
REDNESS

177: 0.993
139: 0.991

. . .
235: 0.325
. . .

ROUNDNESS
235: 0.999
666: 0.996

. . .
177: 0.406
. . .

Threshold value: min(  0.991 , 0.996 ) = .991
30
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Threshold Algorithm: Example (using min)
REDNESS

177: 0.993
139: 0.991
702: 0.982
. . .
235: 0.325
. . .

ROUNDNESS
235: 0.999
666: 0.996
820: 0.992
. . .
177: 0.406
. . .
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Threshold Algorithm: Example (using min)
REDNESS

177: 0.993
139: 0.991
702: 0.982
. . .
235: 0.325
. . .

ROUNDNESS
235: 0.999
666: 0.996
820: 0.992
. . .
177: 0.406
. . .

Threshold value: min( 0.982   ,  0.992 ) = .982
32

.982



Properties of TA
Correctness: For each monotone f and each 
database D of objects, TA finds the top k objects.
Ease of implementation: Requires only bounded
buffers
Robustness: easy to extend to approximate top-k 
and stopping with guarantee
No independence assumption needed



Correctness of the Halting Rule

34

Suppose the current top k objects have scores at least 
T (the current threshold).
Assume (by way of contradiction): 

R unseen;  S in current top k ;   f(R)>f(S)

R has scores x1,…, xm

⇒ xi ≤ ti for every i (as R has not been seen)  
⇒ f(R) = f(x1,…, xm) ≤ f(t1,…, tm) = T ≤ f(S)
⇒ contradiction!
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TA vs. FA

Proposition: TA halts at least as early as FA halts.
Proof:  When FA halts, each of the k objects that 

appear in all lists have overall score at least as big 
as the current threshold, by monotonicity.



Example where TA beats FA (using min, k=1)
REDNESS

1: 0.9
3: 0.6
. . .

2: 0.2
4: 0.1

ROUNDNESS
2: 0.9
4: 0.8

. . .
1: 0.7
3: 0.1

Overall score for 1: min(0.9, 0.7)  = 0.7
Threshold = min(0.6,.0.8) = 0.6

TA halts
FA has not seen an object in both lists, so does not halt36
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Instance Optimality 

A = class of algorithms,
D = class of legal inputs. 
For  AÎA and DÎD have cost(A,D) ³³ 0.

An algorithm AÎA is instance optimal over A
and D if there are constants c1 and c2 s.t.
for every A’ÎA and D ÎD

cost(A,D) £ c1 ×cost(A’,D) + c2.
c1 is called the optimality ratio
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Instance Optimality of TA

Intuition about why TA is instance optimal: Cannot 
stop any sooner, since the next object to be 
explored might have the threshold value.

But, life is a bit more delicate...
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Wild Guesses
Wild guesses: random access for a field i of object R

that has not been sequentially accessed before
Neither FA nor TA use wild guesses
Subsystem might not allow wild guesses
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Instance Optimality- No Wild Guesses

Theorem: For each monotone f let 
A be the class of algorithms that 
– correctly find top k answers, with scoring function f, 

for every database.
– Do not make wild guesses.
D be the class of all databases.

Then TA is instance optimal over A and D.
Optimality ratio is m+m2 ·cR/cS - best possible! 



Our	“threshold	algorithm”	is	an	
even	better	algorithm	(optimal	in	a	

stronger	sense)

But	Ron,	you	told	me	that	your	
algorithm	is	optimal!?

Well,	Laura,	there	is	optimal,	and	
then	there	is	optimal

Laura Haas

Amnon 
Lotem

Moni Naor Ron Fagin
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Rank Aggregation vs. Score 
Aggregation

Rank aggregation: Given sorted lists (permutations) 
L1, L2, …, Lm to be aggregated, Kemeny’s
criterion says that the consensus list is one where 
the sum of the distances to the Li ‘s is minimal.
– Using the Kendall τ distance (suggested by Kemeny) 

gives NP-hard optimization problem
Score aggregation was considered trivial
– Simple, efficient algorithm
– Our new twist is to minimize the number of accesses42



Influence
We submitted the paper to PODS ’01
I was worried that the Threshold Algorithm was so 
simple that the paper would be rejected 
– So I called it a “remarkably simple algorithm”
– The paper won the PODS Best Paper Award!

The paper was very influential
– Over 1800 citations (Google Scholar)
– PODS Test of Time Award in 2011
– IEEE Technical Achievement Award in 2011
– Gödel Prize in 2014
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Thanks to Mike Franklin

Removed himself from the paper, since he was on 
the PODS ‘01 PC
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Applications of TA
relational databases
multimedia databases
music databases
semistructured databases
text databases
uncertain databases
probabilistic databases
graph databases
spatial databases
spatio-temporal databases
web-accessible databases
XML data
web text data
semantic web
high-dimensional datasets

information retrieval
fuzzy data sets
data streams
search auctions
wireless sensor networks
distributed sensor networks
distributed networks
social-tagging networks
document tagging systems
peer-to-peer systems
recommender systems
personal information management systems
group recommendation systems
document annotation


