Optimal Aggregation Algorithms for Middleware

Ron Fagin Amnon Lotem Moni Naor

Gems of PODS talk, 2016
Mr. Database Theoretician, we’ve got a problem with Garlic, our multimedia database system!

- What was the problem?
 - The answers to queries in DB/2 are sets
 - The answers to queries in QBIC are sorted lists
 - How do you combine the results?
Example

- Searching a CD database for Artist = “Beatles” yields a set, via, say DB/2

Musicbrainz has 12 million recordings in its DB
Example

- AlbumColor = “Red” yields a sorted list, via, say QBIC

<table>
<thead>
<tr>
<th>Album</th>
<th>Redness</th>
</tr>
</thead>
<tbody>
<tr>
<td>weezer</td>
<td>.697</td>
</tr>
<tr>
<td>Lena</td>
<td>.683</td>
</tr>
<tr>
<td>(Red)</td>
<td>.670</td>
</tr>
<tr>
<td>The Red Album</td>
<td>.659</td>
</tr>
<tr>
<td>C.M.E.</td>
<td>.629</td>
</tr>
</tbody>
</table>
Example

• How do we make sense of
 \((\text{Artist} = \text{‘Beatles’}) \land (\text{AlbumColor} = \text{‘Red’})\) ?
 – Here it is probably a list of albums by the Beatles, sorted by how red they are
• What about
 \((\text{Artist} = \text{‘Beatles’}) \lor (\text{AlbumColor} = \text{‘Red’})\) ?
• And what about
 \((\text{Color} = \text{‘Red’}) \land (\text{Shape} = \text{‘Round’})\) ?
What Was My Solution?

- These weren’t just sorted lists: they were *scored lists*
- Can view sets as scored lists (scores 0 or 1)
- This reminded me of fuzzy logic
- In fuzzy logic, conjunction (\(\wedge\)) is min, and disjunction (\(\vee\)) is max
I like your solution. But we also need an efficient algorithm that can find the top k results while minimizing database accesses.

I have an algorithm that finds the top k with only \sqrt{n} database accesses.

Good, that beats linear! But we database people are spoiled, and are used to only log n accesses. Be smarter and get me a log n algorithm.

I proved that you can’t do better than \sqrt{n}.
Time for the Accesses

- Say \(n = 12,000,000 \) CDs
- Assume 1000 accesses per second
- \(n \) accesses (naïve algorithm) would take 3 hours
- \(\sqrt{n} \) accesses would take 3 seconds
Generalizing the Algorithm

- The algorithm works for arbitrary monotone scoring functions
 - increasing the scores of arguments cannot decrease the overall score
The Problem

- There are m attributes, or fields
- Each object in a database has a score x_i for attribute i
- The objects are given in m sorted lists, one list per attribute
- Goal: Find the top k objects according to a monotone scoring function, while minimizing access to the lists

- Can think of the attributes as voters, and the objects as candidates, where each voter assigns a score to each candidate
REDNESS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>177: 0.993</td>
<td></td>
</tr>
<tr>
<td>139: 0.991</td>
<td></td>
</tr>
<tr>
<td>702: 0.982</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>235: 0.325</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

ROUNDNESS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>235: 0.999</td>
<td></td>
</tr>
<tr>
<td>666: 0.996</td>
<td></td>
</tr>
<tr>
<td>820: 0.992</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>177: 0.406</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Scoring Functions

- Let f be the scoring function
- Popular choices for f:
 - \min (used in fuzzy logic)
 - average
- Let x_1, \ldots, x_m be the scores of object R under the m attributes
- Then $f(x_1, \ldots, x_m)$ is the overall score of object R
- A scoring function f is *monotone* if whenever $x_i \leq y_i$ for every i, then $f(x_1, \ldots, x_m) \leq f(y_1, \ldots, y_m)$
Modes of Access

- **Sorted (or sequential) access**
 - Can obtain the next object and its score for attribute i

- **Random access**
 - Can obtain the score of object R for attribute i

- Wish to minimize total number of accesses
Algorithms

- Want an algorithm for finding the top k objects
- Naïve algorithm retrieves every score of every object
 - Too expensive
Fagin’s Algorithm - FA

Combining fuzzy information from multiple systems, PODS’96, JCSS’99

- For all lists \(L_1, L_2, \ldots, L_m \) get next object in sorted order.
- **Stop** when there is set of \(k \) objects that appeared in all lists.
- For *every* object \(R \) encountered
 - retrieve all fields \(x_1, x_2, \ldots, x_m \).
 - Compute \(f(x_1, x_2, \ldots, x_m) \)
- Return top \(k \) objects
Correctness of the Halting Rule

Assume (by way of contradiction):
\[R \text{ unseen; } S \text{ in top } k; \quad f(R) > f(S) \]

Let \(T_1, \ldots, T_k \) be the objects that appeared in every list.
Since \(S \) is in the top \(k \), there is \(p \) s.t. \[f(S) \geq f(T_p). \]
So \(f(R) > f(T_p). \)

Hence for some attribute \(j \) the score of \(R \) on attribute \(j \)
is bigger than the score of \(T_p \) on attribute \(j \).
Since \(T_p \) appeared in \(L_j \) under sorted access, so did \(R \), which is a contradiction.
Performance of FA

Performance: assuming that the fields are independent $O(n^{(m-1)/m})$.

Under **independence** assumption, FA is optimal with high probability in the worst case for all “strict” scoring functions (“strict” means that the value is 1 iff all arguments are 1).
Influence

Algorithm implemented in Garlic
Influenced other IBM products, including
• Watson Bundled Search system
• InfoSphere Federation Server
• WebSphere Commerce

Paper introducing my algorithm has over 800 citations (Google Scholar)
Enter Amnon Lotem

Mike Franklin taught an advanced course in databases at the University of Maryland
- Autumn 1997

- Amnon Lotem was a student
- Mike suggested Amnon to read Fagin’s paper
- Amnon found an algorithm that was “better” than the “optimal” Fagin’s Algorithm
 - Convinced Mike, via simulations
Enter Moni Naor

1999-2001:
Sabbatical from Weizmann Institute
At
• Stanford
• IBM Almaden
Seminar Schedule

This quarter the talks will focus on **Ontologies, E-Commerce, XML, and Metadata.**

<table>
<thead>
<tr>
<th>DATE</th>
<th>NAME</th>
<th>AFFILIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 October 1999</td>
<td>Fuzzy Queries in Multimedia Database Systems (slides in postscript)</td>
<td>Ron Fagin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IBM Almaden Research Center</td>
</tr>
</tbody>
</table>
\[
\begin{align*}
(n+1)(n+2) & \leq \frac{\log \log n}{\log \log (\log n)} \\
& \leq \frac{\log \log n}{\log \log (\log \log n)} \\
& \leq \frac{\log \log n}{\log \log (\log \log \log n)}
\end{align*}
\]
Threshold Algorithm

- Do sorted access in parallel to each of the m scored lists.
- As each object R is seen under sorted access:
 - Do random access to retrieve all of its scores x_1, \ldots, x_m
 - Compute its overall score $f(x_1, \ldots, x_m)$
 - If this is one of the top k answers so far, remember it
- For each list i, let t_i be the score of the last object seen under sorted access
- Define the threshold value T to be $f(t_1, \ldots, t_m)$. When k objects have been seen whose overall score is at least T, stop
- Return the top k answers
Threshold Algorithm: Example (using min)

<table>
<thead>
<tr>
<th>REDNESS</th>
<th>ROUNDNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>177: 0.993</td>
<td>235: 0.999</td>
</tr>
</tbody>
</table>

Scoring function is min
Threshold Algorithm: Example (using min)

<table>
<thead>
<tr>
<th>REDNESS</th>
<th>ROUNDNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>177: 0.993</td>
<td>235: 0.999</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>177: 0.406</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>
Threshold Algorithm: Example (using min)

<table>
<thead>
<tr>
<th>REDNESS</th>
<th>ROUNDNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>177: 0.993</td>
<td>235: 0.999</td>
</tr>
<tr>
<td>. . .</td>
<td>. . .</td>
</tr>
<tr>
<td>235: 0.325</td>
<td>177: 0.406</td>
</tr>
<tr>
<td>. . .</td>
<td>. . .</td>
</tr>
</tbody>
</table>
Threshold Algorithm: Example (using min)

<table>
<thead>
<tr>
<th>REDNESS</th>
<th>ROUNDNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>177: 0.993</td>
<td>235: 0.999</td>
</tr>
<tr>
<td>. . .</td>
<td>. . .</td>
</tr>
<tr>
<td>235: 0.325</td>
<td>177: 0.406</td>
</tr>
<tr>
<td>. . .</td>
<td>. . .</td>
</tr>
</tbody>
</table>

Overall score for 177: \(\min(0.993, 0.406) = 0.406 \)

Overall score for 235: \(\min(0.325, 0.999) = 0.325 \)
Threshold Algorithm: Example (using min)

Overall score for 177: \(\min(0.993, 0.406) = 0.406 \)

Overall score for 235: \(\min(0.325, 0.999) = 0.325 \)

Threshold value: \(\min(0.993, 0.999) = 0.993 \)
Threshold Algorithm: Example (using min)

<table>
<thead>
<tr>
<th>REDNESS</th>
<th>ROUNDNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>177: 0.993</td>
<td>235: 0.999</td>
</tr>
<tr>
<td>139: 0.991</td>
<td>666: 0.996</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>235: 0.325</td>
<td>177: 0.406</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Threshold Algorithm: Example (using min)

<table>
<thead>
<tr>
<th>REDNESS</th>
<th>ROUNDNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>177: 0.993</td>
<td>235: 0.999</td>
</tr>
<tr>
<td>139: 0.991</td>
<td>666: 0.996</td>
</tr>
<tr>
<td>235: 0.325</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Threshold value: min(0.991, 0.996) = .991
Threshold Algorithm: Example (using min)

<table>
<thead>
<tr>
<th>REDNESS</th>
<th>ROUNDNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>177: 0.993</td>
<td>235: 0.999</td>
</tr>
<tr>
<td>139: 0.991</td>
<td>666: 0.996</td>
</tr>
<tr>
<td>702: 0.982</td>
<td>820: 0.992</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>235: 0.325</td>
<td>177: 0.406</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Threshold Algorithm: Example (using min)

<table>
<thead>
<tr>
<th>REDNESS</th>
<th>ROUNDNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>177: 0.993</td>
<td>235: 0.999</td>
</tr>
<tr>
<td>139: 0.991</td>
<td>666: 0.996</td>
</tr>
<tr>
<td>702: 0.982</td>
<td>820: 0.992</td>
</tr>
<tr>
<td>. . .</td>
<td>. . .</td>
</tr>
<tr>
<td>235: 0.325</td>
<td>177: 0.406</td>
</tr>
<tr>
<td>. . .</td>
<td>. . .</td>
</tr>
</tbody>
</table>

Threshold value: \(\min(0.982, 0.992) = .982 \)
Properties of TA

• Correctness: For each monotone \(f \) and each database \(D \) of objects, TA finds the top \(k \) objects.
• Ease of implementation: Requires only bounded buffers
• Robustness: easy to extend to approximate top-k and stopping with guarantee
• No independence assumption needed
Correctness of the Halting Rule

Suppose the current top k objects have scores at least T (the current threshold).

Assume (by way of contradiction):

R unseen; S in current top k; $f(R) > f(S)$

R has scores x_1, \ldots, x_m

$\Rightarrow x_i \leq t_i$ for every i (as R has not been seen)

$\Rightarrow f(R) = f(x_1, \ldots, x_m) \leq f(t_1, \ldots, t_m) = T \leq f(S)$

\Rightarrow contradiction!
TA vs. FA

Proposition: TA halts at least as early as FA halts.

Proof: When FA halts, each of the k objects that appear in all lists have overall score at least as big as the current threshold, by monotonicity.
Example where TA beats FA (using min, $k=1$)

<table>
<thead>
<tr>
<th>REDNESS</th>
<th>ROUNDNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: 0.9</td>
<td>2: 0.9</td>
</tr>
<tr>
<td>3: 0.6</td>
<td>4: 0.8</td>
</tr>
<tr>
<td>. . .</td>
<td>. . .</td>
</tr>
<tr>
<td>2: 0.2</td>
<td>1: 0.7</td>
</tr>
<tr>
<td>4: 0.1</td>
<td>3: 0.1</td>
</tr>
</tbody>
</table>

Overall score for 1: min(0.9, 0.7) = 0.7

Threshold = min(0.6, 0.8) = 0.6

TA halts

FA has not seen an object in both lists, so does not halt
Instance Optimality

\(A \) = class of algorithms,
\(D \) = class of legal inputs.
For \(A \in A \) and \(D \in D \) have \(\text{cost}(A,D) \geq 0 \).

- An algorithm \(A \in A \) is instance optimal over \(A \) and \(D \) if there are constants \(c_1 \) and \(c_2 \) s.t.
 for every \(A' \in A \) and \(D \in D \)
 \[\text{cost}(A,D) \leq c_1 \cdot \text{cost}(A',D) + c_2. \]

\(c_1 \) is called the optimality ratio
Instance Optimality of TA

Intuition about why TA is instance optimal: Cannot stop any sooner, since the next object to be explored might have the threshold value.

But, life is a bit more delicate...
Wild Guesses

Wild guesses: random access for a field i of object R that has not been sequentially accessed before

- Neither FA nor TA use wild guesses
- Subsystem might not allow wild guesses
Instance Optimality- No Wild Guesses

Theorem: For each monotone f let

- A be the class of algorithms that
 - correctly find top k answers, with scoring function f, for every database.
 - Do not make wild guesses.
- D be the class of all databases.

Then TA is instance optimal over A and D. Optimality ratio is $m + m^2 \cdot c_R / c_S$ - best possible!
Our “threshold algorithm” is an even better algorithm (optimal in a stronger sense)

But Ron, you told me that your algorithm is optimal!?

Well, Laura, there is optimal, and then there is optimal
Rank Aggregation vs. Score Aggregation

• Rank aggregation: Given sorted lists (permutations) \(L_1, L_2, \ldots, L_m \) to be aggregated, Kemeny’s criterion says that the consensus list is one where the sum of the distances to the \(L_i \) ‘s is minimal.

 – Using the Kendall \(\tau \) distance (suggested by Kemeny) gives NP-hard optimization problem

• Score aggregation was considered trivial

 – Simple, efficient algorithm

 – Our new twist is to minimize the number of accesses
Influence

- We submitted the paper to PODS ’01
- I was worried that the Threshold Algorithm was so simple that the paper would be rejected
 - So I called it a “remarkably simple algorithm”
 - The paper won the PODS Best Paper Award!
- The paper was very influential
 - Over 1800 citations (Google Scholar)
 - PODS Test of Time Award in 2011
 - IEEE Technical Achievement Award in 2011
 - Gödel Prize in 2014
Thanks to Mike Franklin

- Removed himself from the paper, since he was on the PODS ‘01 PC
Applications of TA

- relational databases
- multimedia databases
- music databases
- semistructured databases
- text databases
- uncertain databases
- probabilistic databases
- graph databases
- spatial databases
- spatio-temporal databases
- web-accessible databases
- XML data
- web text data
- semantic web
- high-dimensional datasets
- information retrieval
- fuzzy data sets
- data streams
- search auctions
- wireless sensor networks
- distributed sensor networks
- distributed networks
- social-tagging networks
- document tagging systems
- peer-to-peer systems
- recommender systems
- personal information management systems
- group recommendation systems
- document annotation