
Data Quality: From Theory to Practice

Wenfei Fan
School of Informatics, University of Edinburgh, and RCBD, Beihang University

wenfei@inf.ed.ac.uk

ABSTRACT
Data quantity and data quality, like two sides of a coin, are
equally important to data management. This paper provides
an overview of recent advances in the study of data quality,
from theory to practice. We also address challenges intro-
duced by big data to data quality management.

1. INTRODUCTION
When we talk about big data, we typically emphasize the

quantity (volume) of the data. We often focus on techniques
that allow us to efficiently store, manage and query the data.
For example, there has been a host of work on developing
scalable algorithms that, given a queryQ and a datasetD,
compute query answersQ(D) whenD is big.

But can we trustQ(D) as correct query answers?

EXAMPLE 1. In tableD0 of Fig. 1, each tuple specifies
the name (FN, LN), phone (country codeCC, area codeAC,
landline, mobile), address (street, city andzip), and marital
status of an employee. Consider the following queries.

(1) QueryQ1 is to find distinct employees in Edinburgh
whose first name is Mary. A textbook answer toQ1 in D0

is thatQ1(D0) consists of tuplest2 andt3.
However, there are at least three reasons that discredit

our trust inQ1(D0). (a) In tuplet1, attributet1[AC] is 131,
which is the area code of Edinburgh, not of London. Hence
t1 is “inconsistent”, andt1[city] may actually be Edinburgh.
(b) Tuplest2 andt3 may refer to the same person, i.e., they
may not be “distinct”. (c) RelationD0 may be incomplete:
there are possibly employees in Edinburgh whose records
are not included inD0. In light of these, we do not know
whetherQ1(D0) gives us all correct answers.

(2) Suppose thatt1, t2 and t3 refer to the same Mary, and
that they were once correct records (except the address of
t1). QueryQ2 is to find her current last name. It is not clear
whether the answer is Smith or Luth. Indeed, some attributes
of t1, t2 andt3 have become obsolete and thus inaccurate.2

The example shows that if the quality of the data is bad,
we cannot find correct query answers no matter how scalable
and efficient our query evaluation algorithms are.

Unfortunately, real-life data is often dirty: inconsistent,
inaccurate, incomplete, obsolete and duplicated. Indeed,

“more than 25% of critical data in the world’s top compa-
nies is flawed” [53], and “pieces of information perceived
as being needed for clinical decisions were missing from
13.6% to 81% of the time” [76]. It is also estimated that
“2% of records in a customer file become obsolete in one
month” [31] and hence, in a customer database, 50% of its
records may be obsolete and inaccurate within two years.

Dirty data is costly. Statistics shows that “bad data or poor
data quality costs US businesses $600 billion annually” [31],
“poor data can cost businesses 20%-35% of their operating
revenue” [92], and that “poor data across businesses and the
government costs the US economy $3.1 trillion a year” [92].
Worse still, when it comes to big data, the scale of the data
quality problem is historically unprecedented.

These suggest that quantity and quality are equally impor-
tant to big data,i.e., big data = data quantity + data quality.

This paper aims to provide an overview of recent advances
in the study of data quality, from fundamental research (Sec-
tion 2) to practical techniques (Section 3). It also identifies
challenges introduced by big data to data quality manage-
ment (Section 4). Due to the space constraint, this is by no
means a comprehensive survey. We opt for breadth rather
than depth in the presentation. Nonetheless, we hope that
the paper will incite interest in the study of data quality man-
agement for big data. We refer the interested reader to recent
surveys on the subject [7, 11, 37, 52, 62, 78].

2. FOUNDATIONS OF DATA QUALITY
Central to data quality are data consistency, data dedu-

plication, information completeness, data currency and data
accuracy. The study of data quality has been mostly fo-
cusing on data consistency and deduplication in relational
data. Nonetheless, each and every of the five central is-
sues introduces fundamental problems. In this section we
survey fundamental research on these issues. We highlight
dependency-based approaches since they may yield a uni-
form logical framework to handle these issues.

2.1 Data Consistency
Data consistencyrefers to the validity and integrity of data

representing real-world entities. It aims to detect errors(in-
consistencies and conflicts) in the data, typically identified
as violations ofdata dependencies(integrity constraints). It

1

FN LN CC AC landline mobile street city zip status
t1: Mary Smith 44 131 3855662 7966899 5 Crichton London W1B 1JL single
t2: Mary Luth 44 131 null null 10 King’s Road Edinburgh EH4 8LE married
t3: Mary Luth 44 131 6513877 7966899 8 Mayfield Edinburgh EH4 8LE married
t4: Bob Webber 01 908 6512845 3393756 PO Box 212 Murray Hill NJ 07974 single
t5: Robert Webber 01 908 6512845 null 9 Elm St. Murray Hill NJ 07974 single

Figure 1: An employee datasetD0

is also to help usrepair the data by fixing the errors.
There are at least two questions associated with data con-

sistency. What data dependencies should we use to detect
errors? What repair model do we adopt to fix the errors?

Data dependencies. Several classes of data dependencies
have been studied as data quality rules, including

• functional dependencies (FDs) and inclusion depen-
dencies (INDs) [14, 23] found in textbooks (e.g.,[1]);

• conditional functional dependencies (CFDs) [38] and
conditional inclusion dependencies (CINDs) [15],
which extendFDs andINDs, respectively, with a pat-
tern tableau of semantically related constants;

• denial constraints (DCs) [8, 23], which are universally
quantified first-order logic (FO) sentences of the form
∀x̄¬(φ(x̄)∧β(x̄)), whereφ(x̄) is a non-empty con-
junction of relation atoms over̄x, andβ(x̄) is a con-
junction of built-in predicates=, 6=,<,>,≤,≥;

• equality-generating dependencies [2] (EGDs [9]), a
special case ofDCs whenβ(x̄) is of the formxi =xj ;
our familiarFDs are a special case ofEGDs;

• tuple-generating dependencies [2] (TGDs [9]), FO

sentences of the form∀x̄(φ(x̄)→∃ȳ(ψ(x̄, ȳ)), where
φ(x̄) andψ(x̄, ȳ) are conjunctions of relation atoms
over x̄ andx̄∪ȳ, respectively, such that each variable
of x̄ occurs in at least one relation atom ofφ(x̄);

• full TGDs [2], special case ofTGDs without existential
quantifiers,i.e.,of the form∀x̄(φ(x̄)→ψ(x̄)); and

• LAV TGDs [2], a special case ofTGDs in whichφ(x̄)
is a single relation atom;LAV TGDs subsumeINDs.

EXAMPLE 2. We may use the followingCFDs as data
quality rules on the employee relation of Figure 1:

ϕ1 = ((CC,zip→street), TP1),
ϕ2 = ((CC,AC→city), TP2),

whereCC,zip→street and CC,AC→city are FDs embed-
ded in theCFDs, andTP1 andTP2 are pattern tableaux:

TP1: CC zip street

44

TP2: CC AC city

44 131 Edinburgh
01 908 Murray Hill

CFD ϕ1 states that in the UK (whenCC = 44), zip code
uniquely determinesstreet. In other words,CC,zip→street

is anFD that is enforced only on tuples that match the pat-
tern CC = 44, e.g., ont1–t3 in D0, but not ont4–t5. Taking
ϕ as a data quality rule, we find thatt2 andt3 violateϕ1 and
hence, are inconsistent: they have the samezip but differ in
street. Such errors cannot be caught by conventionalFDs.

CFD ϕ2 says that country codeCC and area codeAC

uniquely determinecity. Moreover, in the UK (i.e.,CC =
44), whenAC is 131,city must be Edinburgh; and in the US
(CC = 01), if AC is 908, thencity is Murray Hill. It catches
t1 as a violation, i.e., a single tuple may violate aCFD. Note
that ϕ2 subsumes conventionalFD CC,AC→city, as indi-
cated by the first tuple inTP2, in which ‘ ’ is a “wildcard”
that matches any value (see [38] for details). 2

To decide what class of dependencies we should use as
data quality rules, we want to strike a balance between its
“expressive power”,i.e., whether it is capable of catching
errors commonly found in practice, and the complexity for
reasoning about its dependencies and for repairing data.

There are two classical problems for reasoning about de-
pendencies: the satisfiability and implication problems.

Satisfiability. For a classC of dependencies andϕ∈C, we
useD |=ϕ to denote that a databaseD satisfiesϕ, depend-
ing on howC is defined. For a setΣ⊆C, we useD |=Σ to
denote thatD satisfies all dependencies inΣ. Thesatisfiabil-
ity problemfor C is to decide, given a finite setΣ⊆C defined
on a relational schemaR, whether there exists a nonempty
finite instanceD of R such thatD |=Σ. That is, whether the
data quality rules inΣ are consistent themselves.

We can specify arbitraryFDs without worrying about their
satisfiability. Indeed, every set ofEGDs (or TGDs) can be
satisfied by a single-tuple relation [8]. However, a set of
DCs orCFDs maynotbe satisfiable by a nonempty database.
While the satisfiability problem forDCs has not been settled,
it is known that it isNP-complete forCFDs [38], owing to
the constant patterns inCFDs. That is, the expressive power
of CFDs andDCs come at a price of a higher complexity.

Implication. Consider a finite setΣ⊆C of dependencies
and anotherϕ∈C, both defined on instances of a relational
schemaR. We say thatΣ impliesϕ, denoted byΣ |=ϕ, if for
all instancesD of R,D |=ϕ as long asD |=Σ. Theimplica-
tion problemfor C is to decide, givenΣ⊆C andϕ∈C over a
relational schemaR, whetherΣ |=ϕ. The implication anal-
ysis helps us remove redundant data quality rules and hence,
speed up error detection and data repairing processes.

Table 1 summarizes known complexity of the implication
analysis of data dependencies used as data quality rules.

Data repairing. There are two approaches to obtaining con-
sistent information from an inconsistent database, both pro-
posed by [6]: data repairing is to find another database
that is consistent and minimally differs from the original
database; andconsistent query answeringis to find an an-
swer to a given query in every repair of the original database.

2

Dependencies Implication
FDs O(n) (cf. [1])
INDs PSPACE-complete (cf. [1])

FDs + INDs undecidable (cf. [1])
CFDs coNP-complete [38]
CINDs EXPTIME-complete [15]

CFDs + CINDs undecidable [15]
DCs coNP-complete [8]

TGDs undecidable (cf. [1])

Table 1: Complexity of implication analysis

Both approaches are based on the notion of repairs. We fo-
cus on data repairing in this paper, and refer the interested
reader to a comprehensive survey [11] and recent work [12,
67, 86, 87] on consistent query answering.

Repair models. Assume a functioncost(D,Dr) that mea-
sures the difference between instancesD andDr of a rela-
tional schemaR, such that the smaller it is, the closerDr is
to D. Given a setΣ of dependencies and an instanceD of
R, a repair of D relative toΣ andcost(,) is an instanceDr

of R such thatDr |=Σ andcost(D,Dr) is minimum among
all instances ofR that satisfyΣ. Several repair models have
been studied, based on howcost(D,Dr) is defined:

• S-repair[23]: cost(D,Dr) = |D\Dr|, whereDr⊆D;
assuming that the information inD is inconsistent but
complete, this model allows tuple deletions only;

• C-repair [6]: cost(D,Dr) = |D⊕Dr|, whereD⊕Dr

is defined as(D\Dr)∪(Dr\D); assuming thatD is
neither consistent nor complete, this model allows both
tuple deletions and tuple insertions;

• CC-repair[2]: a C-repair such that|D⊕Dr| is strictly
smaller than|D⊕D′

r| for all D′

r that satisfiesΣ; and

• U-repair [91, 14]: cost(D,Dr) is a numerical aggre-
gation function defined in terms of distances and accu-
racy of attribute values inD andDr; this model sup-
ports attribute value modifications.

For example, the repair model of [14] assumes (a) a
weightw(t,A) associated with each attributeA of each tu-
ple t in D, and (b) adistancefunctiondis(v,v′) for values
v andv′ in the same domain. Intuitively,w(t,A) indicates
the confidence in theaccuracyof t[A], anddis(v,v′) mea-
sures how closev′ is to v. The cost of changing the value
of an attributet[A] from v to v′ is defined as:cost(v,v′)=
w(t,A)·dis(v,v′). That is, the more accurate the original
t[A] valuev is and the more distant the new valuev′ is from
v, the higher the cost of the change is. The cost of changing
a tuplet to t′ is the sum ofcost(t[A], t′[A]) for A ranging
over all attributes int in which the value oft[A] is modified.
The cost of changingD to Dr, denoted bycost(D,Dr), is
the sum of the costs of modifying tuples inD. In practice,
repairing is typically carried out viaU -repair (see Section 3).

The repair checking problem. Consider a classC of depen-
dencies and a repair modelT with which functioncostT (,)
is associated. Therepair checking problemfor (C,T) is to
decide, given a finite setΣ⊆C of dependencies defined over

Dependencies Repair model Repair checking
full TGDs S-repair PTIME [85]

oneFD + oneIND S-repair coNP-complete [23]
DCs S-repair LOGSPACE (cf. [2])

WA LAV TGDs + EGDs S-repair LOGSPACE [2]
full TGDs + EGDs S-repair PTIME-complete [2]
WA TGDs + EGDs S-repair coNP-complete [2]

DCs C-repair coNP-complete [73]
full TGDs + EGDs C-repair coNP-complete [2]
WA TGDs + EGDs C-repair coNP-complete [2]

DCs CC-repair coNP-complete [2]
full TGDs + EGDs CC-repair coNP-complete [2]
WA TGDs + EGDs CC-repair coNP-complete [2]

fixedFDs U -repair coNP-complete [14]
fixedCINDs U -repair coNP-complete [14]

Table 2: Complexity of repair checking

a relational schemaR, and two instancesD andDr of R,
whetherDr is a repair ofD relative toΣ andcostT (,)?

The repair checking problem has been studied for vari-
ous dependencies and repair models; some of the complex-
ity bounds are presented in Table 2. Here a set ofTGDs is
said to be weakly acyclic (WA) if its dependency graph does
not have a cycle going through a special edge that indicates
an existentially quantified variable inΣ (see [2] for details).

Table 2 tells us that data repairing is rather expensive, es-
pecially forU -repair when attribute values are allowed to be
updated: following [14], one can show that its data complex-
ity is already intractable when onlyFDs or INDs are used.

2.2 Data Deduplication
Data deduplicationis the problem of identifying tuples

from one or more (possibly unreliable) relations that refer
to the same real-world entity. It is also known as record
matching, record linkage, entity resolution, instance identifi-
cation, duplicate identification, merge-purge, database hard-
ening, name matching, co-reference resolution, identity un-
certainty, and object identification. It is a longstanding issue
that has been studied for decades [49], and is perhaps the
most extensively studied data quality problem.

The need for data deduplication is evident in,e.g.,data
quality management, data integration and fraud detection.It
is particularly important to big data, which is often charac-
terized by a large number of (heterogeneous) data sources.
To make practical use of the data, it is often necessary to ac-
curately identify tuples from different sources that referto
the same entity, so that we can fuse the data and enhance the
information about the entity. This is nontrivial: data from
various sources may be dirty, and moreover, even when the
data sources are seemingly reliable, inconsistencies and con-
flicts often emerge when we integrate the data [14].

A variety of approaches have been proposed for data
deduplication: probabilistic (e.g., [49, 65, 95]), learning-
based [27, 82], distance-based [60], and rule-based [3, 44,
61] (see [33, 62, 78] for surveys). In this paper we focus on
rule-based collective and collaborative deduplication.

Data deduplication. To simplify the discussion, consider
a single relation schemaR. This does not lose generality

3

since for any relational schemaR=(R1, . . . ,Rn), one can
construct a single relation schemaR and a linear bijective
functionf() from instances ofR to instances ofR, without
loss of information. Consider a setE of entity types, each
specified bye[X], whereX is a set of attributes ofR.

Given an instanceD ofR and a setE of entity types,data
deduplicationis to determine, for all tuplest, t′ in D, and
for each entity typee[X], whethert[X] andt′[X] should be
identified,i.e., they refer to the same entity of typee. Fol-
lowing [13], we callt[X] andt′[X] referencesto e entities.

EXAMPLE 3. On the employee relation of Figure 1,
we may consider two entity types:address specified by
(CC,street,city,zip), andperson as the list of all attributes
of employee. Given employee tuplest andt′, deduplication
is to decide whethert[address] and t′[address] refer to the
same address, and whethert andt′ are the same person.2

As observed in [13], references to different entities may
co-occur, and entities for co-occurring references shouldbe
determined jointly. For instance, papers and authors co-
occur; identifying two authors helps identify their papers,
and vice versa. This is referred to ascollective entity resolu-
tion (deduplication) [13]. A graph-based method is proposed
in [13] to propagate similarity among references, for col-
lective deduplication. A datalog-like language is introduced
in [5], with recursive rules for collective deduplication.

Matching rules. Rules were first studied in [3] for dedupli-
cation. Extending [3], a class ofmatching dependenciesis
defined in [44] in terms of similarity predicates and a match-
ing operator⇋, based on a dynamic semantics [34].

EXAMPLE 4. Matching dependencies on the employee
relation of Figure 1 include the following:

ψ1 = ∀t, t′(t[CC,AC, landline]= t′[CC,AC, landline]
→ t[address]⇋t′[address]),

ψ2 = ∀t, t′(t[LN,address]= t′[LN,address]∧t[FN]≈ t′[FN]
→ t[person]⇋t′[person]),

ψ3 = ∀t, t′(t[CC,AC,mobile]= t′[CC,AC,mobile]
→ t[person]⇋t′[person]),

Intuitively, (a)ψ1 states that ift andt′ have the same land-
line phone, thent[address] andt′[address] should refer to the
same address and be equalized via updates; (b)ψ2 says that
if t andt′ have the same address and last name, and if they
havesimilar first names, then they refer to the same person;
and (c)ψ3 states that ift andt′ have the same mobile phone,
then they should be identified as the same person. Here≈
denotes a predicate for similarity ofFN, such that, e.g., Bob
≈ Robert, since Bob is a nickname of Robert.

These rules identifyt4 and t5 in Figure 1 as follows. (a)
By ψ1, t4[address] and t5[address] should be identified al-
though their values areradically different; and (b) by (a)
andψ2, t4 andt5 refer to the same person. Note that match-
ing dependencies can be “recursively” applied: the outcome
of (a) is used to deduce (b), for collective deduplication.2

There exists a sound and complete axiom system for de-
ducing matching dependencies from a set of known match-
ing dependencies, based on their dynamic semantics [34].
The deduction process is in quadratic time. Moreover, “neg-
ative rules” such as “a male and a female cannot be the same
person” can be expressed as matching dependencies without
the need for introducing negation [45].

An operational semantics is developed for matching de-
pendencies in [12] by means of a chase process with match-
ing functions. It is shown that matching dependencies can
also be used in data cleaning, together with related complex-
ity bounds for consistent query answering [12]. Other types
of rules have also been studied in,e.g.,[4, 16, 89].

Collaborative deduplication. Data repairing and dedupli-
cation are often taken as separate processes. To improve the
accuracy of both processes, the two should be unified [45].

EXAMPLE 5. We show how data repairing and dedupli-
cation interact to identifyt1–t3 of Figure 1 as follows.

(a) ByCFD ϕ1 of Example 2, we have thatt2 andt3 have the
same address. By matching dependencyψ2 of Example 4, we
deduce thatt2 andt3 refer to the same person. Moreover, we
can enricht2 by t2[landline,mobile] := t3[landline,mobile].

(b) Byψ3 of Example 4, we deduce thatt1 andt3 refer to the
same person. Therefore,t1–t3 refer to the same Mary. 2

The example shows that repairing helps deduplication and
vice versa. This is also observed in [5]. Algorithms for uni-
fying repairing and deduplication are given in [45]. In ad-
dition to data consistency, it has also been verified that data
deduplication should also be combined with the analyses of
data currency (timeliness) and data accuracy [42, 70].

Putting these together, we advocatecollaborative dedupli-
cationthat incorporates the analyses of data consistency (re-
pairing), currency, accuracy and co-occurrences of attributes
into the deduplication process, not limited to co-occurring
references considered in collective deduplication [13].

2.3 Information Completeness
Information completenessconcerns whether our database

has complete information to answer our queries. Given a
databaseD and a queryQ, we want to know whetherQ can
be correctly answered by using only the data inD.

A database is typically assumed either closed or open.
• Under the Closed World Assumption (CWA), our

database includes all the tuples representing real-world
entities, but someattribute valuesmay bemissing.

• Under the Open World Assumption (OWA), our
database may only be a proper subset of the set of tu-
ples that represent real-world entities. That is, both
tuples and values may be missing.

The CWA is often too strong in the real world [76]. Under
the OWA, however, few queries can find correct answers.

To deal with missing values, representation systems are
typically used (e.g., c-tables,v-tables [59, 64]), based on

4

RCDP(LQ,LC) combined complexity [36] data complexity [17]

(FO, CQ) undecidable undecidable
(CQ, CQ) Πp

2
-complete PTIME

(UCQ, UCQ) Πp
2
-complete PTIME

Table 3: Relative information completeness

certain query answers, which are recently revised in [71].
There has also been work on coping with missing tuples, by
assuming that there exists a virtual databaseDc with “com-
plete information”, and that part ofD is known as a view
of Dc [69, 77, 80]. Given such a databaseD, we want to
determine whether a query posed onDc can be answered by
an equivalent query onD, via query answering using views.

Relative information completeness. We can possibly do
better by making use of master data. An enterprise nowa-
days typically maintainsmaster data(a.k.a. reference data),
a single repository of high-quality data that provides various
applications with a synchronized, consistent view ofthe core
business entitiesof the enterprise [74].

Given a databaseD and master dataDm, we specify a set
V of containment constraints[36]. Such a constraint is of
the formq(D)⊆p(Dm), whereq is a query onD, andp is
a simple projection onDm. Intuitively,Dm is closed-world,
and the part ofD that is constrained byV is bounded by
Dm, while the rest is open-world. We refer to a databaseD
that satisfiesV as apartially closeddatabasew.r.t. (Dm,V).
A databaseDe is apartially closed extensionofD if D⊆De

andDe is partially closedw.r.t. (Dm,V) itself.
A partially closed databaseD is said to becomplete for

a queryQ relative to(Dm,V) if for all partially closed ex-
tensionsDe of D w.r.t. (Dm,V), Q(De)=Q(D). That is,
there is no need for adding new tuples toD, since they ei-
ther violate the containment constraints, or do not change
the answer toQ in D. In other words,D already contains
complete information necessary for answeringQ [36].

EXAMPLE 6. Recall that relationD0 of Figure 1 may
not have complete information to answer queryQ1 of Ex-
ample 1. Now suppose that we have a master relation
Dm of schema(FN,LN,city), which maintains complete em-
ployee records in the UK, and a containment constraintφ:
πFN,LN,cityσCC=44(D0)⊆Dm, i.e., the set of UK employees
in D0 is contained inDm. Then ifQ1(D0) returns all em-
ployees in Edinburgh found inDm, we can safely conclude
thatD0 is complete forQ1 relative to(Dm,{φ}). 2

Several problems have been studied for relative informa-
tion completeness [17, 36]. One of the problems, denoted by
RCDP(LQ,LC), is to determine, given a queryQ, master
dataDm, a setV of containment constraints, and a partially
closed databaseD w.r.t. (Dm,V), whetherD is complete
for Q relatively to (Dm,V), whereLQ andLC are query
languages in whichQ and q (in containment constraints)
are expressed, respectively. Some complexity bounds of
RCDP(LQ,LC) are shown in Table 3, whereCQ, UCQ and
FO denote conjunctive queries (SPJ), unions of conjunctive

queries (SPJU) andFO queries (the full relational algebra),
respectively. The complexity bounds demonstrate the diffi-
culty of reasoning about information completeness. Relative
information completeness has also been studied in the set-
ting where both values and tuples may be missing, by ex-
tending representation systems for missing values [35].

Containment constraints are also able to express depen-
dencies used in the analysis of data consistency, such as
CFDs andCINDs [36]. Hence we can study data consistency
and information completeness in a uniform framework.

2.4 Data Currency
Data currency(timeliness) aims to identify the current

values of entities represented by tuples in a (possibly stale)
database, and to answer queries with the current values.

There has been work on how to define current tuples by
means of timestamps in temporal databases (see,e.g., [24,
83] for surveys). In practice, however, timestamps are often
unavailable or imprecise [96]. The question is how to deter-
mine data currency in the absence of reliable timestamps.

Modeling data currency. We present a model proposed in
[43]. Consider a databaseD that possibly contains stale data.
For each tuplet∈D, t[eid] denotes the id of the entity thatt
represents, obtained by data deduplication (see Section 2.2).

(1) The model assumesa currency order≺A for each at-
tributeA of each relation schemaR, such that for tuplest1
andt2 of schemaR in D, if t1[eid] = t2[eid], i.e., whent1
andt2 represent the same entity, thent1≺A t2 indicates that
t2 is more up-to-date thant1 in theA attribute value. This is
to model partially available currency information inD.

(2) The model usescurrency constraintsto specify currency
relationships derived from the semantics of the data, ex-
pressed as denial constraints equipped with constants.

EXAMPLE 7. Extending relationD0 of Figure 1 with at-
tribute eid, currency constraints onD0 include:

∀s,t
(

(s[eid]= t[eid]∧s[status]= “married” ∧
t[status]= “single”) → t≺status s

)

,
∀s,t

(

(s[eid]= t[eid]∧t≺status s→ t≺LN s
)

.
These constraints are derived from the semantics of the data:
(a) marital changes from “single” to “married”, but not the
other way around; and (b)LN andstatus are correlated: ift
has more current status thans, it also has more currentLN.

Based on these, queryQ2 of Example 1 can be answered
with the most currentLN value of Mary, namely, Luth. 2

Based on currency orders and constraints, we can define

(3) consistent completionsDc of D, which extend≺A in D
to a total order on all tuples pertaining to the same entity,
such thatDc satisfies the currency constraints; and

(4) fromDc, we can extract thecurrent tuplefor each entity
eid, composed of the entity’s most currentA value for each
attributeA based on≺A. This yields thecurrent instanceof
Dc consisting of only the current tuples of the entities inD,
from which currency orders can be removed.

5

CCQA(LQ) combined complexity [43] data complexity [43]

FO PSPACE-complete coNP-complete
CQ, UCQ Πp

2
-complete coNP-complete

Table 4: Certain current answers

(5) We computecertain current answersto a queryQ in D,
i.e.,answers toQ in all consistent completionsDc of D.

Several problems associated with data currency are stud-
ied in [43]. One of the problems, denoted byCCQA(LQ),
is to decide, given a databaseD with partial currency orders
≺A and currency constraints, a queryQ∈LQ and a tuplet,
whethert is a certain current answer toQ in D. Some of the
complexity results forCCQA(LQ) are shown in Table 4.

2.5 Data Accuracy
Data accuracyrefers to the closeness of values in a

database to the true values of the entities that the data in the
database represents, when the true values are not known.

While it has long been recognized that data accuracy
is critical to data quality [7], the topic has not been well
studied. Prior work typically studies the reliability of data
sources,e.g., dependencies [30] and lineage information
[90] of data sources to detect copy relationships and iden-
tify reliable sources, vote counting and probabilistic analysis
based on the trustworthiness of data sources [51, 97].

Complementary to the reliability analysis of sources, rel-
ative accuracy is studied in [18]. Given tuplest1 andt2 that
pertain to the same entity, it is to infer whethert1[A] is more
accurate thant2[A] for attributesA of the tuples. The infer-
ence is conducted by a chase process, by combining the anal-
yses of data consistency, currency and correlated attributes.

3. TECHNIQUES FOR DATA CLEANING
As Gartner [54] put it, the data quality tool market is

“among the fastest-growing in the enterprise software sec-
tor”. It reached $1.13 billion in software revenue in 2013,
about 13.2% growth, and will reach $2 billion by 2017, 16%
growth. While data quality tools have mostly been dealing
with customer, citizen and patient data, they are rapidly ex-
panding into financial and quantitative data domains.

What does the industry need from data quality tools? Such
tools are expected to automate key elements, including: (1)
data profiling to discover data quality rules, in particular
“dependency analysis (cross-table and cross-dataset analy-
sis)”; (2) cleaning, “the modification of data values to meet
domain restrictions, integrity constraints or other business
rules”; and (3) matching, “the identifying, linking and merg-
ing of related entries within or across sets of data”, and in
particular, “matching rules or algorithms” [54].

In this section we briefly survey techniques for profiling
(discovery of data quality rules), cleaning (error detection
and data repairing) and matching (data deduplication).

3.1 Discovering Data Quality Rules
To clean data with data quality rules, the first question we

have to answer is how we can get the rules. It is unrealistic to
rely on domain experts to design data quality rules via an ex-
pensive and long manual process, or count on business rules
that have been accumulated. This highlights the need for
automaticallydiscoveringandvalidatingdata quality rules.

Rule discovery. For a classC of dependencies that are used
as data quality rules, thediscovery problemfor C is stated as
follows. Given a database instanceD, it is to find aminimal
cover, a non-redundant set of dependencies that is logically
equivalent to the set of all dependencies inC that hold onD.

A number of discovery algorithms are developed for,e.g.,

• FDs, e.g.,[63, 93], andINDs (see [72] for a survey);

• CFDs, e.g.,[21, 39, 56, 58], andCINDs [56];

• denial constraintsDCs [25]; and for

• matching dependencies [84].

Discovery algorithms are often based on the levelwise ap-
proach proposed by [63],e.g., [21, 39], depth-first search
of [93], e.g.,[25, 39], and association rule mining [39, 56].

Rule validation. Data quality rules are discovered from pos-
sibly dirty data, and are likely “dirty” themselves. Hence
given a setΣ of discovered rules, we need to identify what
rules inΣ make sense, by checking their satisfiability. In ad-
dition, we want to remove redundant rules fromΣ, by mak-
ing use of implication analysis (see Section 2.1).

It is nontrivial to identify sensible rules fromΣ. Recall
that the satisfiability problem isNP-complete forCFDs, and
is nontrivial for DCs. Nevertheless, approximation algo-
rithms can be developed. ForCFDs, such algorithms have
been studied [38], which extract a setΣ′ of satisfiable de-
pendencies fromΣ, and guarantee thatΣ′ is “close” to a
maximum satisfiable subset ofΣ, within a constant bound.

3.2 Error Detection
After data quality rules are discovered and validated, the

next question concerns how to effectively catch errors in a
database by using these rules. Given a databaseD and a
setΣ of dependencies as data quality rules,error detection
(a.k.a. error localization) is to find all tuples inD that violate
at least one dependency inΣ. Error detection is a routine
operation of data quality tools. To clean data we have to
detect errors first. Many users simply want errors in their
data to be detected, without asking for repairing the data.

Error detection methods depend on (a) what dependencies
are used as data quality rules, and (b) whether the data is
stored in a local database or distributed across different sites.

Centralized databases. WhenD resides in a centralized
database and whenΣ is a set ofCFDs, two SQL queries
Qc andQv can beautomaticallygenerated such thatQc(D)
andQv(D) return all and only those tuples inD that violate
Σ [38]. Better still,Qc andQv are independent of the num-
ber and size ofCFDs in Σ. That is, we can detect errors by
leveraging existing facility of commercial relational DBMS.

6

EXAMPLE 8. To detect violations ofϕ2 = ((CC,AC→
city), TP2) of Example 2, we use the followingQc andQv:

QC SELECT * FROM R t, TP2 tp
WHERE t[CC,AC]≍ tp[CC,AC] AND t[city] 6≍ tp[city]

QV SELECT DISTNCT CC,AC FROM R t, TP2 tp
WHERE t[CC,AC]≍ tp[CC,AC] AND tp[city]= ‘ ’
GROUP BY CC,AC HAVING COUNT(DISTNCT city)>1

wheret[CC,AC]≍ tp[CC,AC] denotes (t[CC] = tp[CC] OR
tp[CC] = ‘ ’) AND (t[AC] = tp[AC] OR tp[AC] = ‘ ’); and
R denotes the schema of employee datasets. Intuitively,QC

catches single-tuple violations ofϕ2, i.e., those that violate
a pattern inTP2, andQV identifies violations of theFD em-
bedded inϕ2. Note thatQC andQV simply treat pattern
tableauTP2 as an “input” relation, regardless of its size.
In other words,QC andQV are determined only by theFD

embedded inϕ2, no matter how large the tableauTP2 is.
WhenΣ consists of multipleCFDs, we can “merge” these

CFDs into an equivalent one, by making use of a new wild-
card [38]. Thus two SQL queries as above suffice forΣ. 2

The SQL-based method also works forCINDs [20].

Distributed data. In practice a database is often fragmented
and distributed across different sites. In this setting, error
detection necessarily requires data shipment from one site
to another. For both vertically or horizontally partitioned
data, it isNP-complete to decide whether error detection can
be carried out by shipping a bounded amount of data, and
the SQL-based method no longer works [40]. Nevertheless,
distributed algorithms are in place to detectCFD violations
in distributed data, with performance guarantees [40, 47].

3.3 Data Repairing
After errors are detected, we want to fix the errors. Given

a databaseD and a setΣ of dependencies as data quality
rules,data repairing(a.k.a. data imputation) is to find a re-
pairDr of D with minimumcost(D,Dr). We focus on the
U -repair model based on attribute-value modifications (see
Section 2.1), as it is widely used in the real world [54].

Heuristic fixes. Data repairing is cost-prohibitive: its data
complexity iscoNP-complete for fixedFDs or INDs [14].
In light of this, repairing algorithms are mostly heuristic, by
enforcing dependencies inΣ one by one. This is nontrivial.

EXAMPLE 9. Consider two relation schemasR1(A,B)
andR2(B,C), anFD onR1: A→B, and anIND R2[B]⊆
R1[B]. Consider instancesD1 ={(1,2),(1,3)} of R1 and
D2 ={(2,1),(3,4)}, whereD1 does not satisfy theFD. To
repair (D1,D2), a heuristic may enforce theFD first, to
“equalize” 2 and 3; it then needs to enforce theIND, by
ensuring thatD1 includes{2,3} as itsB-attribute values.
This yields a repairing process that does not terminate.2

Taking bothFDs andINDs as data quality rules, a heuris-
tic method is proposed in [14] based on equivalence classes,
which group together attribute values ofD that must take the
same value. The idea is to separate the decision of which

values should be equal from the decision of what values
should be assigned to the equivalence classes. Based on
the cost(,) function given in Section 2.1, it guarantees to
find a repair. The method has been extended to repair data
based onCFDs [28], EGDs andTGDs [55] with a partial or-
der on equivalence classes to specify preferred updates, and
DCs [26] by generalizing equivalence classes to conflict hy-
pergraphs. An approximation algorithm for repairing data
based onFDs was developed in [66].

A semi-automated method is introduced in [94] for data
repairing based onCFDs. In contrast to [14], it interacts
with users to solicit credible updates and improve the ac-
curacy. Another repairing method is studied in [45], which
picks reliable fixes based on an analysis of the relative cer-
tainty of the data, measured by entropy. There have also
been attempts to unify data repairing and deduplication [45]
based onCFDs, matching dependencies and master data.

Certain Fixes. A major problem with heuristic repairing
methods is that they do not guarantee to find correct fixes;
worse still, they may introduce new errors when attempting
to fix existing errors. As an example, to fix tuplet1 of Fig-
ure 1 that violatesCFD ϕ2 of Example 2, a heuristic method
may very likely changet1[city] from London to Edinburgh.
While the change makest1 a “repair”, the chances are that
for the entity represented byt1, AC is 020 andcity is Lon-
don. That is, the heuristic update does not correct the errorin
t1[AC], and worse yet, it changest1[city] to a wrong value.
Hence, while the heuristic methods may suffice for statisti-
cal analysis,e.g.,census data, they are often too risky to be
used in repairing critical data such as medical records.

This highlights the need for studying certain fixes for crit-
ical data,i.e.,fixes that are guaranteed to be correct [46]. To
identify certain fixes, we make use of (a) master data (Sec-
tion 2.3), (b) editing rules instead of data dependencies, and
(c) a chase process for inferring “certain regions” based on
user confirmation, master data and editing rules, where cer-
tain regions are attribute values that are validated.

Editing rules are dynamic constraints that tell us which
attributes should be changed and to what values they should
be changed. In contrast, dependencies have a static seman-
tics; they are capable of detecting the presence of errors in
the data, but they do not tell us how to fix the errors.

EXAMPLE 10. Assume master dataDm with schema
Rm(postal, C,A) for postal code, city and area code in the
UK. An editing rule forD0 of Fig. 1 is as follows:

σ: (postal,zip)→((C,city),(A,AC)),
specified with pairs of attributes fromDm andD0. It states
that for an input tuplet, if t[zip] is validated and there exists
a master tuples∈Dm such thatt[zip] = s[postal], then
updatet[city,AC]:=s[C,A] is guaranteed a certain fix, and
t[AC,city] becomes a certain region (validated). Suppose
that there iss = (W1B 1JL, London, 020) inDm, and that
t1[zip] of Figure 1 is validated. Thent1[AC] should be
changed to 020; heret1[city] remains unchanged. 2

7

A framework is developed in [46] for inferring certain
fixes for input tuples. Although it may not be able to fix
all the errors in the data based on available information, it
guarantees that each update fixes at least one error, and that
no new errors are introduced in the entire repairing process.
The process may consult users to validate a minimum num-
ber of attributes in the input tuples. Static analyses of editing
rules and certain regions can also be found in [46].

Editing rules are generalized in [29] by allowing generic
functions to encompass editing rules [46],CFDs and match-
ing dependencies. However, it remains to be justified
whether such generic rules can be validated themselves and
whether the fixes generated are sensible at all.

Beyond data repairing. Data repairing typically assumes
that data quality rules have been validated. Indeed, in prac-
tice we use data quality rules to clean data only after the
rules are confirmed correct themselves. A more general set-
ting is studied in [22], when both data and data quality rules
are possibly dirty and need to be repaired.

There has also been work on (a) causality of errors [75]
and its connection with data repairs [81], and (b) propagation
of errors and dependencies in data transformations [19, 48].

3.4 Data Deduplication
A number of systems have been developed for data dedu-

plication, e.g., BigMatch [95], Tailor [32], Swoosh [10]
AJAX [50], CrowdER [88] and Corleone [57], as stand-
alone tools, embedded packages in ETL systems, or crowd-
sourced systems. Criteria for developing such systems in-
clude (a) accuracy, to reducefalse matches(false positives)
and false non-matches(false negatives); and (b) scalability
with big data. To improve accuracy, we advocate collabora-
tive deduplication (Section 2.2), including but not limited to
collective deduplication [13]. For scalability, parallelmatch-
ing methods need to be developed and combined with tradi-
tional blocking and windowing techniques (see [33]). We
refer the interested reader to [62, 78] for detailed surveys.

4. CHALLENGES POSED BY BIG DATA
The study of data quality has raised as many question as

it has answered. In particular, a full treatment is requiredfor
each of data accuracy, currency and information complete-
ness, as well as their interaction with data consistency and
deduplication. Moreover, big data introduces a number of
challenges, and the study of big data quality is in its infancy.

Volume. Cleaning big data is cost-prohibitive: discovering
data quality rules, error detection, data repairing and data
deduplication are all expensive;e.g.,the data complexity of
data repairing iscoNP-complete forFDs andINDs [14]. To
see what it means in the context of big data, observe that a
linear scan of a datasetD of PB size (1015 bytes) takes days
using a solid state drive with a read speed of 6GB/s, and it
takes years ifD is of EB size (1018 bytes) [41].

To cope with the volume of big data, we advocate the fol-

lowing approaches, taking data repairing as an example.

Parallel scalable algorithms. We approach big data repair-
ing by developing parallel algorithms. This is often neces-
sary since in the real world, big data is often distributed.

It is notalways the case that the more processors are used,
the faster we get. To characterize the effectiveness of paral-
lelization, we formalize parallel scalability following [68].

Consider a datasetD and a setΣ of data quality rules.
We denote byt(|D|, |Σ|) the worst-case running time of
a sequential algorithmfor repairingD with Σ; and by
T (|D|, |Σ|,n) the time taken by a parallel algorithm for the
taskby usingn processors, takingn as a parameter. Here
we assumen≪|D|, i.e., the number of processors does not
exceed the size of the data, as commonly found in practice.

We say that the algorithm isparallel scalableif
T (|D|, |Σ|,n)=O(t(|D|, |Σ|)/n)+(n|Σ|)O(1).

That is, the parallel algorithm achieves a polynomial reduc-
tion in sequential running time, plus a “bookkeeping” cost
O((n|Σ|)l) for a constantl that isindependent of|D|.

Obviously, if the algorithm is parallel scalable, then for a
givenD, it guaranteesthat the more processors are used, the
less time it takes to repairD. It allows us to repair big data
by adding processors when needed. If an algorithm is not
parallel scalable, it may not be able to efficiently repairD
whenD grows bigno matter how manyprocessors are used.

Entity instances. We propose to deal with entity instances in-
stead of processing big datasetD directly. Anentity instance
Ie is a set of tuples inD that pertain to the same entitye. It
is substantially smallerthanD, and typically retains a man-
ageable size whenD grows big. This suggests the following
approach to repairing big data: (1) clusterD into entity in-
stancesIe, by using a parallel data deduplication algorithm;
(2) for each entitye, deduce “the true values” ofe from Ie,
by processing all entities in parallel; and (3) resolve incon-
sistencies across different entities, again in parallel.

We find that this approach allows us to effectively and ef-
ficiently deduce accurate values for each entity, by reasoning
about data consistency, data deduplication with master data,
data accuracy and data currency together [18, 42].

Bounded incremental repairing. We advocateincremental
data repairing. Given a big datasetD, a setΣ of data qual-
ity rules, a repairDr of D with Σ, and updates∆D toD, it
to find changes∆Dr to the repairDr such thatDr⊕∆Dr

is a repair ofD⊕∆D with Σ, whereD⊕∆D denotes the
updated dataset ofD with ∆D; similarly forDr⊕∆Dr.

Intuitively, small changes∆D to D often incur a small
number of new violations to the rules inΣ; hence, changes
∆Dr to the repairDr are also small, and it is more effi-
cient to find∆Dr than to compute a new repair starting
from scratch. In practice, data is frequently updated, but the
changes∆D are typically small. We can minimize unneces-
sary recomputation ofDr by incremental data repairing.

The benefit is more evident if there exists a bounded incre-
mental repairing algorithm. As argued in [79], incremental

8

algorithms should be analyzed in terms of|CHANGED| =
|∆D| + |∆Dr|, indicating the updating costs that areinher-
ent tothe incremental problem itself. An incremental algo-
rithm is said to beboundedif its cost can be expressed as
a function of|CHANGED| and|Σ|, i.e., it depends only on
|CHANGED| and|Σ|, independent ofthe size of bigD.

This suggests the following approach to repairing and
maintaining a big datasetD. (1) We compute repairDr of
D once, in parallel by using a number of processors. (2)
In response to updates∆D to D, we incrementallycom-
pute∆Dr, by reducing the problem of repairing bigD to an
incremental problem on “small data” of size|CHANGED|.
The incremental step may not need a lot of resources.

Besides the scalability of repairing algorithms with big
data, we need to ensure the accuracy of repairs. To this end,
we promote the following approach.

Knowledge bases as master data. Master data is extremely
helpful in identifying certain fixes [46], data repairing [45]
and in deducing the true values of entities [18, 42]. A num-
ber of high-quality knowledge bases are already developed
these days, and can be employed as master data. We believe
that repairing algorithms should be developed by taking the
knowledge bases as master data, to improve the accuracy.

Velocity. Big datasets are “dynamic”: they change fre-
quently. This further highlights the need for developing
bounded incremental algorithms for data cleaning. When
CFDs are used as data quality rules, incremental algorithms
are in place for error detection in centralized databases [38]
and distributed data [47], and for data repairing [28].
Nonetheless, parallel incremental algorithms need to be de-
veloped for error detection, data repairing and deduplication.

Variety . Big data is also characterized by its heterogeneity.
Unfortunately, very little is know about how to model and
improve the quality of data beyond relations. In particular,
graphs are a major source of big data,e.g.,social graphs,
knowledge bases, Web sites, and transportation networks.
However, integrity constraints are not yet well studied for
graphs to determine the consistency of the data. Even keys,
a primary form of data dependencies, are not yet defined for
graphs. Given a graphG, we need keys that help us uniquely
identify entities represented by vertices inG.

Keys for graphs are, however, a departure from their coun-
terparts for relations, since such keys have to be specified in
terms of both attribute values of vertices and the topologi-
cal structures of neighborhoods, perhaps in terms of graph
pattern matching by means of subgraph isomorphism.

Acknowledgments. The author thanks Floris Geerts for
his thorough reading of the first draft and for helpful
comments. The author is supported in part by NSFC
61133002, 973 Program 2012CB316200, Shenzhen Pea-
cock Program 1105100030834361, Guangdong Innovative
Research Team Program 2011D005, EPSRC EP/J015377/1
and EP/M025268/1, and a Google Faculty Research Award.

5. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu.Foundations of Databases.

Addison-Wesley, 1995.
[2] F. N. Afrati and P. G. Kolaitis. Repair checking in inconsistent

databases: algorithms and complexity. InICDT, pages 31–41, 2009.
[3] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy

duplicates in data warehouses. InVLDB, pages 586–597, 2002.
[4] A. Arasu, S. Chaudhuri, and R. Kaushik. Transformation-based

framework for record matching. InICDE, pages 40–49, 2008.
[5] A. Arasu, C. Ré, and D. Suciu. Large-scale deduplication with

constraints using dedupalog. InICDE, pages 952–963, 2009.
[6] M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers

in inconsistent databases. InPODS, pages 68–79, 1999.
[7] C. Batini and M. Scannapieco.Data Quality: Concepts,

Methodologies and Techniques. Springer, 2006.
[8] M. Baudinet, J. Chomicki, and P. Wolper. Constraint-generating

dependencies.JCSS, 59(1):94–115, 1999.
[9] C. Beeri and M. Y. Vardi. A proof procedure for data dependencies.

JACM, 31(4):718–741, 1984.
[10] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su,S. E.

Whang, and J. Widom. Swoosh: a generic approach to entity
resolution.VLDB J., 18(1):255–276, 2009.

[11] L. Bertossi.Database Repairing and Consistent Query Answering.
Morgan & Claypool Publishers, 2011.

[12] L. E. Bertossi, S. Kolahi, and L. V. S. Lakshmanan. Data cleaning
and query answering with matching dependencies and matching
functions.TCS, 52(3):441–482, 2013.

[13] I. Bhattacharya and L. Getoor. Collective entity resolution in
relational data.TKDD, 1(1), 2007.

[14] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-based model
and effective heuristic for repairing constraints by value
modification. InSIGMOD, pages 143–154, 2005.

[15] L. Bravo, W. Fan, and S. Ma. Extending inclusion dependencies with
conditions. InVLDB, 2007.

[16] D. Burdick, R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan. A
declarative framework for linking entities. InICDT, 2015.

[17] Y. Cao, T. Deng, W. Fan, and F. Geerts. On the data complexity of
relative information completeness.Inf. Syst., 45:18–34, 2014.

[18] Y. Cao, W. Fan, and W. Yu. Determining the relative accuracy of
attributes. InSIGMOD, pages 565–576, 2013.

[19] A. Chalamalla, I. F. Ilyas, M. Ouzzani, and P. Papotti. Descriptive
and prescriptive data cleaning. InSIGMOD, pages 445–456, 2014.

[20] W. Chen, W. Fan, and S. Ma. Analyses and validation of conditional
dependencies with built-in predicates. InDEXA, 2009.

[21] F. Chiang and R. J. Miller. Discovering data quality rules.PVLDB,
1(1):1166–1177, 2008.

[22] F. Chiang and R. J. Miller. A unified model for data and constraint
repair. InICDE, pages 446–457, 2011.

[23] J. Chomicki and J. Marcinkowski. Minimal-change integrity
maintenance using tuple deletions.Information and Computation,
197(1-2):90–121, 2005.

[24] J. Chomicki and D. Toman. Time in database systems. In M.Fisher,
D. Gabbay, and L. Vı́la, editors,Handbook of Temporal Reasoning in
Artificial Intelligence, pages 429–467. Elsevier, 2005.

[25] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial constraints.
PVLDB, 6(13):1498–1509, 2013.

[26] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning: Putting
violations into context. InICDE, pages 458–469, 2013.

[27] W. W. Cohen and J. Richman. Learning to match and clusterlarge
high-dimensional data sets for data integration. InKDD, 2002.

[28] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. Improving data
quality: Consistency and accuracy. InVLDB, pages 315–326, 2007.

[29] M. Dallachiesa, A. Ebaid, A. Eldawy, A. K. Elmagarmid, I. F. Ilyas,
M. Ouzzani, and N. Tang. NADEEF: a commodity data cleaning
system. InSIGMOD, 2013.

[30] X. Dong, L. Berti-Equille, and D. Srivastava. Truth discovery and
copying detection in a dynamic world. InPVLDB, 2009.

[31] W. W. Eckerson. Data quality and the bottom line: Achieving
business success through a commitment to high quality data.
Technical report, The Data Warehousing Institute, 2002.

[32] M. G. Elfeky, A. K. Elmagarmid, and V. S. Verykios. TAILOR: A

9

record linkage tool box. InICDE, 2002.
[33] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate

record detection: A survey.TKDE, 19(1):1–16, 2007.
[34] W. Fan, H. Gao, X. Jia, J. Li, and S. Ma. Dynamic constraints for

record matching.VLDB J., 20(4):495–520, 2011.
[35] W. Fan and F. Geerts. Capturing missing tuples and missing values.

In PODS, pages 169–178, 2010.
[36] W. Fan and F. Geerts. Relative information completeness. ACM

Trans. on Database Systems, 35(4), 2010.
[37] W. Fan and F. Geerts.Foundations of Data Quality Management.

Morgan & Claypool Publishers, 2012.
[38] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional

functional dependencies for capturing data inconsistencies.TODS,
33(1), 2008.

[39] W. Fan, F. Geerts, J. Li, and M. Xiong. Discovering conditional
functional dependencies.TKDE, 23(5):683–698, 2011.

[40] W. Fan, F. Geerts, S. Ma, and H. Müller. Detecting inconsistencies in
distributed data. InICDE, pages 64–75, 2010.

[41] W. Fan, F. Geerts, and F. Neven. Making queries tractable on big data
with preprocessing.PVLDB, 6(8):577–588, 2013.

[42] W. Fan, F. Geerts, N. Tang, and W. Yu. Conflict resolutionwith data
currency and consistency.J. Data and Information Quality, 5(1-2):6,
2014.

[43] W. Fan, F. Geerts, and J. Wijsen. Determining the currency of data.
TODS, 37(4), 2012.

[44] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record matching
rules. InVLDB, 2009.

[45] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Interaction between record
matching and data repairing. InSIGMOD, 2011.

[46] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Towards certain fixes with
editing rules and master data.VLDB J., 21(2):213–238, 2012.

[47] W. Fan, J. Li, N. Tang, and W. Yu. Incremental detection of
inconsistencies in distributed data.TKDE, 2014.

[48] W. Fan, S. Ma, Y. Hu, J. Liu, and Y. Wu. Propagating functional
dependencies with conditions.PVLDB, 1(1):391–407, 2008.

[49] I. Fellegi and A. B. Sunter. A theory for record linkage.J. American
Statistical Association, 64(328):1183–1210, 1969.

[50] H. Galhardas, D. Florescu, D. Shasha, and E. Simon. AJAX: An
extensible data cleaning tool. InSIGMOD, page 590, 2000.

[51] A. Galland, S. Abiteboul, A. Marian, and P. Senellart. Corroborating
information from disagreeing views. InWSDM, 2010.

[52] V. Ganti and A. D. Sarma.Data Cleaning: A Practical Perspective.
Morgan & Claypool Publishers, 2013.

[53] Gartner. ’Dirty data’ is a business problem, not an IT problem, 2007.
http://www.gartner.com/newsroom/id/501733.

[54] Gartner. Magic quardrant for data quality tools, 2014.
[55] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The LLUNATIC

data-cleaning framework.PVLDB, 2013.
[56] B. Goethals, W. L. Page, and H. Mannila. Mining association rules of

simple conjunctive queries. InSDM, 2008.
[57] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli,J. W.

Shavlik, and X. Zhu. Corleone: hands-off crowdsourcing forentity
matching. InSIGMOD, 2014.

[58] L. Golab, H. Karloff, F. Korn, D. Srivastava, and B. Yu. On
generating near-optimal tableaux for conditional functional
dependencies.PVLDB, 1(1):376–390, 2008.

[59] G. Grahne.The Problem of Incomplete Information in Relational
Databases. Springer, 1991.

[60] S. Guha, N. Koudas, A. Marathe, and D. Srivastava. Merging the
results of approximate match operations. InVLDB, 2004.

[61] M. A. Hernández and S. J. Stolfo. The merge/purge problem for large
databases. InSIGMOD, pages 127–138, 1995.

[62] T. N. Herzog, F. J. Scheuren, and W. E. Winkler.Data Quality and
Record Linkage Techniques. Springer, 2009.

[63] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen. TANE: An
efficient algorithm for discovering functional and approximate
dependencies.COMP. J., 42(2):100–111, 1999.

[64] T. Imieliński and W. Lipski, Jr. Incomplete information in relational
databases.JACM, 31(4), 1984.

[65] M. A. Jaro. Advances in record-linkage methodology as applied to
matching the 1985 census of Tampa Florida.J. American Statistical

Association, 89:414–420, 1989.
[66] S. Kolahi and L. V. S. Lakshmanan. On approximating optimum

repairs for functional dependency violations. InICDT, 2009.
[67] P. G. Kolaitis and E. Pema. A dichotomy in the complexityof

consistent query answering for queries with two atoms.Inf. Process.
Lett., 112(3):77–85, 2012.

[68] C. P. Kruskal, L. Rudolph, and M. Snir. A complexity theory of
efficient parallel algorithms.TCS, 71(1):95–132, 1990.

[69] A. Y. Levy. Obtaining complete answers from incompletedatabases.
In VLDB, pages 402–412, 1996.

[70] P. Li, X. L. Dong, A. Maurino, and D. Srivastava. Linkingtemporal
records.PVLDB, 4(11):956–967, 2011.

[71] L. Libkin. Certain answers as objects and knowledge. InKR, 2014.
[72] J. Liu, J. Li, C. Liu, and Y. Chen. Discover dependenciesfrom data -

a review.TKDE, 24(2):251–264, 2012.
[73] A. Lopatenko and L. E. Bertossi. Complexity of consistent query

answering in databases under cardinality-based and incremental
repair semantics. InICDT, pages 179–193, 2007.

[74] D. Loshin.Master Data Management. Knowledge Integrity, Inc.,
2009.

[75] A. Meliou, W. Gatterbauer, S. Nath, and D. Suciu. Tracing data errors
with view-conditioned causality. InSIGMOD, pages 505–516, 2011.

[76] D. W. Miller Jr., J. D. Yeast, and R. L. Evans. Missing prenatal
records at a birth center: A communication problem quantified. In
AMIA Annu Symp Proc., pages 535–539, 2005.

[77] A. Motro. Integrity = validity + completeness.ACM Trans. on
Database Systems, 14(4):480–502, 1989.

[78] F. Naumann and M. Herschel.An Introduction to Duplicate
Detection. Morgan & Claypool Publishers, 2010.

[79] G. Ramalingam and T. Reps. On the computational complexity of
dynamic graph problems.TCS, 158(1-2):213–224, 1996.

[80] S. Razniewski and W. Nutt. Completeness of queries overincomplete
databases.PVLDB, pages 749–760, 2011.

[81] B. Salimi and L. E. Bertossi. From causes for database queries to
repairs and model-based diagnosis and back. InICDT, 2015.

[82] S. Sarawagi and A. Bhamidipaty. Interactive deduplication using
active learning. InKDD, pages 269–278, 2002.

[83] R. T. Snodgrass.Developing Time-Oriented Database Applications
in SQL. Morgan Kaufmann, 1999.

[84] S. Song and L. Chen. Efficient discovery of similarity constraints for
matching dependencies.TKDE, 87:146–166, 2013.

[85] S. Staworko.Declarative inconsistency handling in relational and
semi-structured databases. PhD thesis, the State University of New
York at Buffalo, 2007.

[86] S. Staworko, J. Chomicki, and J. Marcinkowski. Prioritized repairing
and consistent query answering in relational databases.Ann. Math.
Artif. Intell., 64(2-3):209–246, 2012.

[87] B. ten Cate, G. Fontaine, and P. G. Kolaitis. On the data complexity
of consistent query answering. InICDT, pages 22–33, 2012.

[88] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. CrowdER:
Crowdsourcing entity resolution.PVLDB, 2012.

[89] S. Whang, O. Benjelloun, and H. Garcia-Molina. Genericentity
resolution with negative rules.VLDB J., 18(6):1261–1277, 2009.

[90] J. Widom. Trio: A system for integrated management of data,
accuracy, and lineage. InCIDR, 2005.

[91] J. Wijsen. Database repairing using updates.TODS, 30(3), 2005.
[92] Wikibon. A comprehensive list of big data statistics, 2012.

http://wikibon.org/blog/big-data-statistics/.
[93] C. M. Wyss, C. Giannella, and E. L. Robertson. Fastfds: A

heuristic-driven, depth-first algorithm for mining functional
dependencies from relation instances. InDaWak, 2001.

[94] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, andI. F. Ilyas.
Guided data repair.PVLDB, pages 279–289, 2011.

[95] W. Yancey. BigMatch: A program for extracting probablematches
from a large file. Technical Report Computing 2007/01, U.S. Census
Bureau, 2007.

[96] H. Zhang, Y. Diao, and N. Immerman. Recognizing patterns in
streams with imprecise timestamps.PVLDB, pages 244–255, 2010.

[97] B. Zhao, B. I. P. Rubinstein, J. Gemmell, and J. Han. A bayesian
approach to discovering truth from conflicting sources for data
integration.PVLDB, 2012.

10

