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ABSTRACT “more than 25% of critical data in the world’s top compa-

Data quantity and data quality, like two sides of a coin, are Ni€s is flawed” [S3], and "pieces of information perceived
equally important to data management. This paper provides2S P€ing needed for C_I'n'(f,al decisions were missing from
an overview of recent advances in the study of data quality, “13'6% to 81% of the time” [76]. Itis also estimated that
from theory to practice. We also address challenges intro- 270 Of records in a customer file become obsolete in one

duced by big data to data quality management. month” [31] and hence, in a customer database, 50% of its
records may be obsolete and inaccurate within two years.
1. INTRODUCTION Dirty data is costly. Statistics shows that “bad data or poor

When we talk about big data, we typically emphasize the data quality costs US businesses $600 billion annually];[31

guantity (volume) of the data. We often focus on techniques “poor data can cost businesses 20%-35% of their operating

that allow us to efficiently store, manage and query the data."€VeNu€” [92], and that “poor data across businesses and the
For example, there has been a host of work on developinggovemment costs the US economy $3.1 trillion a year” [92].
scalable algorithms that, given a quepyand a dataseb Worse still, when it comes to big data, the scale of the data
compute query answe@(,D) whenD is big ' quality problem is historically unprecedented.

But can we trus)(D) as correct query answers? These suggest that quantity and quality are equally impor-
tant to big datai.e., big data = data quantity + data quality

This paper aims to provide an overview of recent advances
in the study of data quality, from fundamental research{Sec
tion 2) to practical techniques (Section 3). It also ideadifi
challenges introduced by big data to data quality manage-
(1) Query @, is to find distinct employees in Edinburgh ment (Section 4). Due to the space constraint, this is by no

ExampLE 1. In table Dy of Fig. 1, each tuple specifies
the namekN, LN), phone (country cod€C, area codeAC,
landline, mobile), addressdtreet, city andzip), and marital
status of an employee. Consider the following queries.

whose first name is Mary. A textbook answerxpin D means a comprehensive survey. We opt for breadth rather

is that@1 (Do) consists of tuples, andt. than depth in the presentation. Nonetheless, we hope that
However, there are at least three reasons that discredit the paper will incite interest in the study of data qualityma

our trust inQ1(Dy). (a) In tuplety, attributet; [AC] is 131, agement for big data. We refer the interested reader to tecen

which is the area code of Edinburgh, not of London. Hence surveys on the subject [7, 11, 37, 52, 62, 78].

t1 is “inconsistent”, andt; [city] may actually be Edinburgh.

(b) Tuplest, andts may refer to the same person, i.e., they 2. FOUNDATIONS OF DATA QUALITY

may not be tistinct’. (c) Relation Dy may be incomplete: Central to data quality are data consistency, data dedu-
there are possibly employees in Edinburgh whose recordsplication, information completeness, data currency artd da
are not included inDy. In light of these, we do not know accuracy. The study of data quality has been mostly fo-
whetherQ,(Dy) gives us all correct answers. cusing on data consistency and deduplication in relational

(2) Suppose that,, ¢, and 5 refer to the same Mary, and data. Nonetheless, each and every of the five central is-
that they were once correct records (except the address ofSU€s introduces fundamental problems. In this section we
#1). QueryQs is to find her current last name. Itis not clear survey fundamental research on these issues. Wg h|gh||gh_t
whether the answer is Smith or Luth. Indeed, some attributesdePendency-based approaches since they may yield a uni-
oft,,1, andt; have become obsolete and thus inaccurate.  0rm logical framework to handle these issues.

The example shows that if the quality of the data is bad, 2.1 Data Consistency
we cannot find correct query answers no matter how scalable Data consistenciefers to the validity and integrity of data
and efficient our query evaluation algorithms are. representing real-world entities. It aims to detect erfors
Unfortunately, real-life data is often dirty: inconsisten consistencies and conflicts) in the data, typically idesdifi
inaccurate, incomplete, obsolete and duplicated. Indeed,as violations oflata dependencigmtegrity constraints). It



FN LN CC [ AC | landline mobile street city zip status
t1: | Mary Smith | 44 | 131 | 3855662 | 7966899 5 Crichton London WI1B 1JL | single
ta: | Mary Luth 44 | 131 null null 10King’s Road | Edinburgh | EH4 8LE | married
t3: | Mary Luth 44 | 131 | 6513877 | 7966899 8 Mayfield Edinburgh | EH4 8LE | married
ty: Bob | Webber| 01 | 908 | 6512845| 3393756| PO Box 212 | Murray Hill | NJ 07974 single
t5: | Robert | Webber| 01 | 908 | 6512845 null 9 Elm St. Murray Hill | NJ07974| single

Figure 1: An employee datasetD,

is also to help usepair the data by fixing the errors.

CFD ¢4 says that country cod€C and area codeAC

There are at least two questions associated with data con-uniquely determineity. Moreover, in the UK (i.e.CC =
sistency. What data dependencies should we use to detecd4), whenAC is 131,city must be Edinburgh; and in the US

errors? What repair model do we adopt to fix the errors?

Data dependencies Several classes of data dependencies
have been studied as data quality rules, including

o functional dependencie$Ds) and inclusion depen-
denciesNDs) [14, 23] found in textbooksH(.g.,[1]);

conditional functional dependencieGHDs) [38] and
conditional inclusion dependencie<INDs) [15],
which extendFDs andINDs, respectively, with a pat-
tern tableau of semantically related constants;

denial constraintsXCs) [8, 23], which are universally
quantified first-order logicHO) sentences of the form
Vz-(¢(Z)AB(Z)), where$(Z) is a non-empty con-
junction of relation atoms ovet, and/(z) is a con-
junction of built-in predicates-, #, <, >, <, >;
equality-generating dependencies [HGDs [9]), a
special case dbCs whenj3(z) is of the formz; =x;;
our familiarFDs are a special case &fGDs;

tuple-generating dependencies [2[GDs [9]), FO
sentences of the formiz(¢(z) — 3y (¢ (z, 7)), where
¢(z) andy(z,y) are conjunctions of relation atoms
overz andzUy, respectively, such that each variable
of z occurs in at least one relation atomeg(fz);

full TGDs[2], special case of GDs without existential
quantifiersj.e., of the formvz (¢(z) — ¢ (z)); and

LAV TGDs [2], a special case of GDs in which ¢(z)
is a single relation atorm;AV TGDs subsuméNDs.

EXAMPLE 2. We may use the followinGFDs as data
quality rules on the employee relation of Figure 1:
1 = ((CC,zip—street), Tp1),
w2 = ((CC,AC—city), Tpa),
where CC, zip — street and CC,AC— city are FDs embed-
ded in theCFDs, andT»; andTp, are pattern tableaux:

Tpo: CC AC city

Tpi: | CC | zip || street _ _ _
44 _ _ 44 | 131 Edinburgh
01 | 908 || Murray Hill

CFD ¢, states that in the UK (whefaC = 44), zip code
uniquely determinestreet. In other wordsCC, zip — street

is anFD that is enforced only on tuples that match the pat-
tern CC = 44, e.g., ont1—t3 in Dy, but not ont,—t5. Taking
 as a data quality rule, we find that andts violatey, and
hence, are inconsistent: they have the saipdut differ in
street. Such errors cannot be caught by conventidrias.

(CC=01), if ACis 908, thertity is Murray Hill. It catches
t; as a violation, i.e., a single tuple may violat€&aD. Note
that oo subsumes conventioneD CC,AC — city, as indi-
cated by the first tuple ifi'’p2, in which " is a “wildcard”
that matches any value (see [38] for details). |

To decide what class of dependencies we should use as
data quality rules, we want to strike a balance between its
“expressive power”j.e., whether it is capable of catching
errors commonly found in practice, and the complexity for
reasoning about its dependencies and for repairing data.

There are two classical problems for reasoning about de-
pendencies: the satisfiability and implication problems.

Satisfiability For a clasg of dependencies andeC, we
useD ¢ to denote that a databagesatisfiesp, depend-
ing on howC is defined. For a s CC, we useD =X to
denote thaD satisfies all dependenciesih Thesatisfiabil-

ity problemfor C is to decide, given a finite s&1C C defined
on a relational schem®&, whether there exists a nonempty
finite instanceD of R such thatD =X. That is, whether the
data quality rules irt are consistent themselves.

We can specify arbitrarlyDs without worrying about their
satisfiability. Indeed, every set &GDs (or TGDs) can be
satisfied by a single-tuple relation [8]. However, a set of
DCs or CFDs maynotbe satisfiable by a nonempty database.
While the satisfiability problem fdbCs has not been settled,
it is known that it isNP-complete forCFDs [38], owing to
the constant patterns {tFDs. That is, the expressive power
of CFDs andDCs come at a price of a higher complexity.

Implication Consider a finite seE CC of dependencies

and anotherp €C, both defined on instances of a relational

schemaR. We say thak impliesy, denoted by = ¢, if for

all instanced of R, D =¢ as long ad) =3. Theimplica-

tion problemfor C is to decide, givelx CC andy €C over a

relational schem&, whetherX =¢. The implication anal-

ysis helps us remove redundant data quality rules and hence,

speed up error detection and data repairing processes.
Table 1 summarizes known complexity of the implication

analysis of data dependencies used as data quality rules.

Data repairing. There are two approaches to obtaining con-
sistent information from an inconsistent database, bath pr
posed by [6]: data repairingis to find another database
that is consistent and minimally differs from the original
database; andonsistent query answering to find an an-
swer to a given query in every repair of the original database



Dependencies Implication Dependencies Repair model Repair checking
FDs O(n) (cf. [1]) full TGDs S-repair PTIME [85]
INDs PSPACE-complete (cf. [1]) oneFD + onelND S-repair coNP-complete [23]
FDs + INDs undecidable (cf. [1]) DGCs S-repair | LOGSPACE (cf. [2])
CFDs coNP-complete [38] WA LAV TGDs + EGDs S-repair LOGSPACE [2]
CINDs EXPTIME-complete [15] full TGDs + EGDs S-repair PTIME-complete [2]
CFDs + CINDs undecidable [15] WA TGDs + EGDs S-repair coNP-complete [2]
DCs coNP-complete [8] DCs C-repair coNP-complete [73]
TGDs undecidable (cf. [1]) full TGDs + EGDs C-repair coNP-complete [2]
Table 1: Complexity of implication analysis WA TGDs + EGDs C-repair | coNP-complete [2]
DCs CC-repair coNP-complete [2]
Both approaches are based on the notion of repairs. We fo- | full TGDs + EGDs CCrepair | coNP-complete [2]
cus on data repairing in this paper, and refer the interested LA :GZSFJ'DEGDS (;]C’repé'r C°'\'|\';'C°mrilete[[lzj]
; ixe s -repair coNP-complete
reader to a comprehensive survey [11] and recent work [12, fxed CINDS [repair | coNP-complete [14]

67, 86, 87] on consistent query answering. Table 2: Complexity of repair checking

Repair models Assume a functiorost(D, D,.) that mea-

sures the difference between instanéeand D, of a rela- @ relational schem&, and two instance® and D, gf R,
tional schemaR, such that the smaller it is, the closey. is whetherD; is a repair ofD) relative toX: andcostr(, ) _
to D. Given a set of dependencies and an instarieeof The repair checking problem has been studied for vari-
R, arepair of D relative toX andcost(,) is an instanceD,. ous dependencies and repair models; some of the complex-

of R such thatD, = andcost(D, D,.) is minimum among ity bounds are presented in Table 2. Here a sef@Ds is

all instances oRR that satisfyX. Several repair models have ~said to be weakly acyclic (WA) if its dependency graph does

been studied, based on hawst(D, D,.) is defined: not have a cycle going through a special edge that indicates
. an existentially quantified variable i (see [2] for details).

° S-repa_lr[23]: COSt(D’DT) N .|D\.DT|’.Where_DT CD; Table 2 tells us that data repairing is rather expensive, es-
assuming thf’ﬂ the information B2 is |ncqn3|stent but pecially forU-repair when attribute values are allowed to be
complete, this model allows tuple deletions only; updated: following [14], one can show that its data complex-

e C-repair [6]: cost(D,D,) = |D®D,|, whereD® D, ity is already intractable when onRDs or INDs are used.
is defined ag D\ D,)U(D,.\ D); assuming thaD is L.
neithercons?ste\ntn())r chmE)Iet)e, this model allows both 2.2 Data Deduplication

tuple deletions and tuple insertions; Data deduplicationis the problem of identifying tuples
e CC-repair[2]: a C-repair such thatD& D, | is strictly from one or more (p053|bly unreh_able) relations that refer
smaller tharl D& D’.| for all D, that satisfies; and to the same real-world entity. It is also known as record

) ) . matching, record linkage, entity resolution, instancetdie
e U-repair [91, 14]: cost(D, D;) is @ numerical aggre-  ¢ation, duplicate identification, merge-purge, databasé-h
gation function defined in terms of distances and accu- gning, name matching, co-reference resolution, identity u
racy of attribute values it and D,.; this model sup-  certainty, and object identification. It is a longstandissiie
ports attribute value modifications. that has been studied for decades [49], and is perhaps the
For example, the repair model of [14] assumes (a) a Most extensively studied data quality problem.
weightw(t, A) associated with each attributeof each tu- The need for data deduplication is evident éng., data
pletin D, and (b) adistancefunctiondis(v,v’) for values quality management, data integration and fraud detection.
v andv’ in the same domain. Intuitivelyy(¢, A) indicates  is particularly important to big data, which is often charac

the confidence in thaccuracyof t[A], anddis(v,v’) mea- terized by a large number of (heterogeneous) data sources.
sures how close’ is to v. The cost of changing the value To make practical use of the data, it is often necessary to ac-
of an attributet[A] from v to v’ is defined ascost(v,v') = curately identify tuples from different sources that retfer
w(t,A)-dis(v,v’). That is, the more accurate the original the same entity, so that we can fuse the data and enhance the
t[A] valuev is and the more distant the new valués from information about the entity. This is nontrivial: data from

v, the higher the cost of the change is. The cost of changingVvarious sources may be dirty, and moreover, even when the
a tuplet to t' is the sum ofcost(¢[A],#'[A]) for A ranging data sources are seemingly reliable, inconsistenciesamnd c
over all attributes it in which the value of[A] is modified. flicts often emerge when we integrate the data [14].

The cost of changingd to D,., denoted bycost(D, D,.), is A variety of approaches have been proposed for data
the sum of the costs of modifying tuplesin. In practice, ~ deduplication: probabilistice(g.,[49, 65, 95]), learning-
repairing is typically carried out vi&l-repair (see Section 3).  based [27, 82], distance-based [60], and rule-based [3, 44,
61] (see [33, 62, 78] for surveys). In this paper we focus on

The repair checking problerrConsider a clas€ of depen- rule-based collective and collaborative deduplication.

dencies and a repair modElwith which functioncost(,)
is associated. Theepair checking problenfor (C,T) is to Data deduplication. To simplify the discussion, consider
decide, given a finite séi C C of dependencies defined over a single relation schem&. This does not lose generality




since for any relational schenfa=(R;,...,R,,), one can There exists a sound and complete axiom system for de-
construct a single relation schentaand a linear bijective  ducing matching dependencies from a set of known match-

function () from instances oR to instances oR, without ing dependencies, based on their dynamic semantics [34].
loss of information. Consider a sét of entity typeseach The deduction process is in quadratic time. Moreover, “neg-
specified bye[X ], whereX is a set of attributes aR. ative rules” such as “a male and a female cannot be the same

Given an instanc® of R and a sef’ of entity typesdata person” can be expressed as matching dependencies without
deduplicationis to determine, for all tupleg in D, and the need for introducing negation [45].

for each entity type[X], whethert[X] and¢'[X ] should be An operational semantics is developed for matching de-
identified,i.e., they refer to the same entity of type Fol- pendencies in [12] by means of a chase process with match-
lowing [13], we callt[X] andt'[X] referencedo e entities. ing functions. It is shown that matching dependencies can

also be used in data cleaning, together with related complex
ity bounds for consistent query answering [12]. Other types
of rules have also been studied &g.,[4, 16, 89].

EXAMPLE 3. On the employee relation of Figure 1,
we may consider two entity typesiddress specified by
(CC,street, city, zip), andperson as the list of all attributes
of employee. Given employee tuplemndt’, deduplication Collaborative deduplication. Data repairing and dedupli-
is to decide whethet[address| and ¢'[address] refer to the cation are often taken as separate processes. To improve the
same address, and whethesind¢’ are the same persond accuracy of both processes, the two should be unified [45].

As observed in [13], references to different entities may EXAMPLE 5. We show how data repairing and dedupli-

co-occur, and entities for co-occurring references shbald ~ Cation interact to identify, 5 of Figure 1 as follows.
determined jointly. For instance, papers and authors co-(a) ByCFD ¢, of Example 2, we have thatandt; have the
occur; identifying two authors helps identify their papers same address. By matching dependeficyf Example 4, we
and vice versa. This is referred to@slective entity resolu-  deduce that, and; refer to the same person. Moreover, we
tion (deduplication) [13]. A graph-based method is proposed can enricht, byts[landline, mobile] := ¢3[landline, mobile].

in [13] to propagate similarity among references, for col- (b) By); of Example 4, we deduce thatandts refer to the

lective deduplication. A datalog-like language is introdd same person. Thereforg—t; refer to the same Mary. O

in [5], with recursive rules for collective deduplication. - L
in 5], wi ursive V uphicat The example shows that repairing helps deduplication and

Matching rules. Rules were first studied in [3] for dedupli- vice versa. This is also observed in [5]. Algorithms for uni-

cation. Extending [3], a class ofatching dependenciés fying repairing and deduplication are given in [45]. In ad-
defined in [44] in terms of similarity predicates and a match- dition to data consistency, it has also been verified that dat
ing operator=, based on a dynamic semantics [34]. deduplication should also be combined with the analyses of

data currency (timeliness) and data accuracy [42, 70].

Putting these together, we advocaddiaborative dedupli-
cationthat incorporates the analyses of data consistency (re-

ExaMPLE 4. Matching dependencies on the employee
relation of Figure 1 include the following:

¥y = V¢, ¢ (t[CC,AC, landline] = ¢'[CC,AC, landline] pairing), currency, accuracy and co-occurrences of atib
— t[address| =t'[address]), into the deduplication process, not limited to co-occugrin
Y2 = Vt, ¢ (t[LN, address| =¢'[LN, address| A¢[FN] ~ ¢/ [FN] references considered in collective deduplication [13].
— t[person]=t'[person]), )
s = V. (£{CC, AC, mobile] = #[CC, AC, mobile] 2.3 Information Completeness
— t[person] =1'[person]), Information completenes®ncerns whether our database

Intuitively, (a)¢; states that it and#' have the same land- has complete information to answer our queries. Given a
line phone, thet[address] and? [address] should refertothe ~ databasé and a queryy, we want to know whethep can

same address and be equalized via updatesjgtjays that D€ correctly answered by using only the datdin
if ¢ and#’ have the same address and last name, and if they A database is typically assumed either closed or open.

havesimilar first names, then they refer to the same person; e Under the Closed World Assumption (CWA), our

and (c)w3 states that it andt’ have the same mobile phone, database includes all the tuples representing real-world
then they should be identified as the same person. kere entities, but somattribute valuesnay bemissing
denotes a predicate for similarity &N, such that, e.g., Bob e Under the Open World Assumption (OWA), our
~ Robert, since Bob is a nickname of Robert. database may only be a proper subset of the set of tu-

These rules identify, and; in Figure 1 as follows. (a) ples that represent real-world entities. That is, both
By ¢, t4[address| and ¢;[address| should be identified al- tuples and values may be missing.

though their values areadically differenf and (b) by (a)
and1)», t4 andts refer to the same person. Note that match-
ing dependencies can be “recursively” applied: the outcome
of (a) is used to deduce (b), for collective deduplication.

The CWA is often too strong in the real world [76]. Under
the OWA, however, few queries can find correct answers.

To deal with missing values, representation systems are
typically used €.g., c-tables,v-tables [59, 64]), based on



[ RCDP(Lg, L) | combined complexity [36]] data complexity [17]]

queries §PJU) andFO queries (the full relational algebra),

((Eg Eg; H“Qi%if;g't‘é ””S?ﬁiﬁ;b'e respectively. The complexity bounds demonstrate the diffi-
UCQ, UCQ) Hg_commete BPTIME culty of reasoning about information completeness. Redati
— : information completeness has also been studied in the set-
Table 3: Relative information completeness ting where both values and tuples may be missing, by ex-

tending representation systems for missing values [35].

Containment constraints are also able to express depen-
encies used in the analysis of data consistency, such as
CFDs andCINDs [36]. Hence we can study data consistency
and information completeness in a uniform framework.

certain query answers, which are recently revised in [71].
There has also been work on coping with missing tuples, by q
assuming that there exists a virtual databBsevith “com-

plete information”, and that part D is known as a view
of D. [69, 77, 80]. Given such a datababe we want to
determine whether a query posedBpcan be answeredby 2.4  Data Currency

an equivalent query o), via query answering using views. Data currency(timelines$ aims to identify the current

Relative information completeness We can possibly do  values of entities represented by tuples in a (possiblg)stal
better by making use of master data. An enterprise nowa- database, and to answer queries with the current values.
days typically maintainmaster datda.k.a. reference daja There has been work on how to define current tuples by
a single repository of high-quality data that provideseasi ~ means of timestamps in temporal databases @ee,[24,
applications with a synchronized, consistent viewhafcore ~ 83] for surveys). In practice, however, timestamps arenofte
business entitiesf the enterprise [74]. unavailable or imprecise [96]. The question is how to deter-
Given a databasB and master dat®,,,, we specify aset ~ mine data currency in the absence of reliable timestamps.
V' of containment constraint86]. Such a constraint is of
the formq(D) Cp(D,,), whereq is a query onD, andp is
a simple projection o®,,,. Intuitively, D,, is closed-world,
and the part ofD that is constrained by is bounded by
D,,,, while the rest is open-world. We refer to a databBse

Modeling data currency. We present a model proposed in
[43]. Consider a databagethat possibly contains stale data.
For each tuple € D, t[eid] denotes the id of the entity that

represents, obtained by data deduplication (see Sec&jn 2.

that satisfied” as apartially closeddatabasev.r.t. (D,,, V). (1) The model assumes currency order= 4 for each at-
A databaseD, is apartially closed extensioof D if D C D, tribute A of each relation schem&, such that for tuples,
andD., is partially closedv.r.t. (D,,, V) itself. andi, of schemaR in D, if ¢, [eid] = {5[eid], i.e., whent,

A partially closed databasP is said to becomplete for an_dtg represent the same gntity, thQrH.AtQ indicates t.ha.lt
a queryQ relative to(D,,, V') if for all partially closed ex- to is more up-to-date than in the A attribute value. This is

tensionsD, of D W.rt. (D, V), Q(D.)=Q(D). Thatis, to model partially available currency informationin

there is no need for adding new tuplesio since they ei-  (2) The model usesurrency constraintgo specify currency
ther violate the containment constraints, or do not changerelationships derived from the semantics of the data, ex-
the answer ta) in D. In other words,D already contains ~ Pressed as denial constraints equipped with constants.
complete information necessary for answerip{B6]. EXAMPLE 7. Extending relationD, of Figure 1 with at-

EXAMPLE 6. Recall that relationD, of Figure 1 may tribute eid, currency constraints o include:

not have complete information to answer quély of Ex- V‘Sat((s[eid]:t[eid]“/\js[smtus] ="married” A

ample 1. Now suppose that we have a master relation t.[Status].: single”) — 1 <status 5),

D, of schemdFN, LN, city), which maintains complete em- Vs, t((s[eid] =t[eid] At <status s — t=<Ln ).

ployee records in the UK, and a containment constraint ~ These constraints are derived from the semantics of the data

TEN.LN.city0CC—44 (Do) € Dy, i.€., the set of UK employees (a) marital changes from “single” to “married”, but not the

in Dy is contained inD,,,. Then ifQ:(D,) returns all em- other way around; and (H)N andstatus are correlated: ift
ployees in Edinburgh found if,,,, we can safely conclude has more current status thanit also has more curreritN.
that D is complete forQ, relative to(D,,,{¢}). O Based on these, quefy, of Example 1 can be answered

with the most currentN value of Mary, namely, Luth. O

Several problems have been studied for relative informa- . i
. Based on currency orders and constraints, we can define
tion completeness [17, 36]. One of the problems, denoted by ) ) ) )
RCDP(Lg, L¢), is to determine, given a query, master (3) consistent completion®€ of D, V\.lh.ICh extend< 4 in D .
dataD,,, a setV’ of containment constraints, and a partially t0 @ total order on all tuples pertaining to the same entity,
closed databas® w.rt. (D,,,V), whetherD is complete such thatD¢ satisfies the currency constraints; and
for @ relatively to (D,,,V'), whereLy and Lo are query (4) from D€, we can extract theurrent tuplefor each entity
languages in whicl) and ¢ (in containment constraints) eid, composed of the entity’s most currefitvalue for each
are expressed, respectively. Some complexity bounds ofattribute A based on< 4. This yields thecurrent instancef
RCDP(Lg, L) are shown in Table 3, whef@&Q, UCQ and De¢ consisting of only the current tuples of the entitiedin
FO denote conjunctive querieSKJ), unions of conjunctive  from which currency orders can be removed.



[ CCQA(Lq) [ combined complexity [43]] data complexity [43]] have to answer is how we can get the rules. Itis unrealistic to
FO PSPACE-complete coNP-complete rely on domain experts to design data quality rules via an ex-
€Q,UCQ 1T -complete coNP-complete pensive and long manual process, or count on business rules
that have been accumulated. This highlights the need for
automaticallydiscoveringandvalidatingdata quality rules.

Table 4: Certain current answers

(5) We computeertain current answert a queryq in D,
i.e.,answers td in all consistent completion®¢ of D.
Several problems associated with data currency are stud
ied in [43]. One of the problems, denoted 6ZQA (L),
is to decide, given a databaBewith partial currency orders
<4 and currency constraints, a quepe L, and a tuple,
whethert is a certain current answer €pin D. Some of the
complexity results foCCQA(L) are shown in Table 4. e FDs, e.9.,[63, 93], andNDs (see [72] for a survey);
e CFDs, e.g.,[21, 39, 56, 58], andINDs [56];

e denial constraint®Cs [25]; and for

Rule discovery. For a clasg of dependencies that are used
as data quality rules, treiscovery problenfor C is stated as
Tollows. Given a database instanbeit is to find aminimal
cover, a non-redundant set of dependencies that is logically
equivalent to the set of all dependencie§ithat hold onD.

A number of discovery algorithms are developed éog.,

2.5 Data Accuracy

Data accuracyrefers to the closeness of values in a _ :
database to the true values of the entities that the dat@inth e matching dependencies [84].

database represents, when the true values are notknown.  pjiscovery algorithms are often based on the levelwise ap-
While it has long been recognized that data accuracy proach proposed by [63k.g.,[21, 39], depth-first search

is critical to data quality [7], the topic has not been well o [93] e.g.,[25, 39], and association rule mining [39, 56].
studied. Prior work typically studies the reliability of tda

sources,e.g., dependencies [30] and lineage information R_ule vglidation. Data quali_ty rules_are discovered from pos-
[90] of data sources to detect copy relationships and iden-sibly dirty data, and are likely “dirty” themselves. Hence

tify reliable sources, vote counting and probabilisticlgsis ~ given a set of discovered rules, we need to identify what

based on the trustworthiness of data sources [51, 97]. rules inYX make sense, by checking their satisfiability. In ad-
Complementary to the reliability analysis of sources, rel- dition, we want to remove redundant rules framby mak-

ative accuracy is studied in [18]. Given tuplgsandt, that ~ ing use of implication analysis (see Section 2.1).

pertain to the same entity, it is to infer whettigfA] is more It is nontrivial to identify sensible rules fros. Recall

accurate tham,[A] for attributesA of the tuples. The infer-  that the satisfiability problem iP-complete foiCFDs, and

ence is conducted by a chase process, by combining the analis nontrivial for DCs. Nevertheless, approximation algo-

yses of data consistency, currency and correlated agsbut ~ rithms can be developed. FGFDs, such algorithms have
been studied [38], which extract a et of satisfiable de-

3. TECHNIQUES FOR DATA CLEANING pendencies front, and guarantee that’ is “close” to a

As Gartner [54] put it, the data quality tool market is maximum satisfiable subset Bf within a constant bound.

“among the fastest-growing in the enterprise software sec-3.2 Error Detection
tor”. It reached $1.13 billion in software revenue in 2013,
about 13.2% growth, and will reach $2 billion by 2017, 16%
growth. While data quality tools have mostly been dealing
with customer, citizen and patient data, they are rapidly ex
panding into financial and quantitative data domains.

What does the industry need from data quality tools? Suc
tools are expected to automate key elements, including: (1)
data profiling to discover data quality rules, in particular
“dependency analysis (cross-table and cross-dataset-anal
sis)”; (2) cleaning, “the modification of data values to meet
domain restrictions, integrity constraints or other basm
rules”; and (3) matching, “the identifying, linking and nger
ing of related entries within or across sets of data”, and in
particular, “matching rules or algorithms” [54]. Centralized databases When D resides in a centralized

In this section we briefly survey techniques for profiling database and whe¥ is a set ofCFDs, two SQL queries
(discovery of data quality rules), cleaning (error dettti  Q° andQ” can beautomaticallygenerated such th&t*(D)
and data repairing) and matching (data deduplication). andQv (D) return all and only those tuples id that violate
. . . 37 [38]. Better still,Q¢ and@v are independent of the num-
3.1 Discovering Data Quality Rules ber and size o€FDs in . That is, we can detect errors by

To clean data with data quality rules, the first question we |everaging existing facility of commercial relational DESV

After data quality rules are discovered and validated, the
next question concerns how to effectively catch errors in a
database by using these rules. Given a datalhased a
set> of dependencies as data quality rulespr detection
h (a.k.a. error localizatiofis to find all tuples inD that violate
at least one dependency ¥ Error detection is a routine
operation of data quality tools. To clean data we have to
detect errors first. Many users simply want errors in their
data to be detected, without asking for repairing the data.

Error detection methods depend on (a) what dependencies
are used as data quality rules, and (b) whether the data is
stored in a local database or distributed across differergt s



ExAMPLE 8. To detect violations of, = ((CC,AC—
city), Tp2) of Example 2, we use the followidgf andQ*:
Q€ SELECT * FROM Rt, Tpa tp
WHERE ¢[CC, AC] <t,[CC, AC] AND ¢[city] #tp|city]
QY SELECT DI STNCT CC,AC FROM R t, Tps tp

WHERE ¢[CC,AC] <t,[CC, AC] AND ¢, [city] ="_

GROUP BY CC,AC HAVI NG COUNT(DI STNCT city)> 1
wheret[CC,AC] =<1t,[CC,AC] denotes {{CC] = ¢,[CC] OR
t,[CCl =) AND (t[AC] = t,[AC] OR¢,[AC] =" ); and
R denotes the schema of employee datasets. Intuitiély,
catches single-tuple violations ¢f, i.e., those that violate
a pattern inTpo, and@" identifies violations of thED em-
bedded inp,. Note thatQ® and Q" simply treat pattern

tableauTp2 as an “input” relation, regardless of its size.

In other words Q¢ and@" are determined only by theD
embedded i,, Nno matter how large the tabledtp; is.
WhenX consists of multipl€FDs, we can “merge” these

CFDs into an equivalent one, by making use of a new wild-

card [38]. Thus two SQL queries as above sufficeXor O
The SQL-based method also works dNDs [20].

Distributed data. In practice a database is often fragmented

and distributed across different sites. In this settingorer

detection necessarily requires data shipment from one site
to another. For both vertically or horizontally partiti@he
data, itisNP-complete to decide whether error detection can
be carried out by shipping a bounded amount of data, and
the SQL-based method no longer works [40]. Nevertheless,

distributed algorithms are in place to det€iD violations

in distributed data, with performance guarantees [40, 47].

3.3 Data Repairing

After errors are detected, we want to fix the errors. Given
a databasé) and a se® of dependencies as data quality

rules,data repairing(a.k.a. data imputationis to find a re-
pair D, of D with minimumcost(D, D,.). We focus on the

U-repair model based on attribute-value modifications (see

Section 2.1), as it is widely used in the real world [54].

values should be equal from the decision of what values
should be assigned to the equivalence classes. Based on
the cost(,) function given in Section 2.1, it guarantees to
find a repair. The method has been extended to repair data
based orCFDs [28], EGDs and T GDs [55] with a partial or-

der on equivalence classes to specify preferred updates, an
DCs [26] by generalizing equivalence classes to conflict hy-
pergraphs. An approximation algorithm for repairing data
based or-Ds was developed in [66].

A semi-automated method is introduced in [94] for data
repairing based of€FDs. In contrast to [14], it interacts
with users to solicit credible updates and improve the ac-
curacy. Another repairing method is studied in [45], which
picks reliable fixes based on an analysis of the relative cer-
tainty of the data, measured by entropy. There have also
been attempts to unify data repairing and deduplicatioh [45
based orCFDs, matching dependencies and master data.

Certain Fixes. A major problem with heuristic repairing
methods is that they do not guarantee to find correct fixes;
worse still, they may introduce new errors when attempting
to fix existing errors. As an example, to fix tupleof Fig-

ure 1 that violate§€FD ¢4 of Example 2, a heuristic method
may very likely change, [city] from London to Edinburgh.
While the change makes a “repair”, the chances are that
for the entity represented by, AC is 020 andcity is Lon-
don. Thatis, the heuristic update does not correct the &rror
t1[AC], and worse yet, it changes]city] to a wrong value.
Hence, while the heuristic methods may suffice for statisti-
cal analysisg.g.,census data, they are often too risky to be
used in repairing critical data such as medical records.

This highlights the need for studying certain fixes for crit-
ical dataj.e.,fixes that are guaranteed to be correct [46]. To
identify certain fixes, we make use of (a) master data (Sec-
tion 2.3), (b) editing rules instead of data dependencies, a
(c) a chase process for inferring “certain regions” based on
user confirmation, master data and editing rules, where cer-
tain regions are attribute values that are validated.

Editing rules are dynamic constraints that tell us which

Heuristic fixes. Data repairing is cost-prohibitive: its data attributes should be changed and to what values they should

complexity iscoNP-complete for fixedFDs or INDs [14].
In light of this, repairing algorithms are mostly heuristy
enforcing dependencies iione by one. This is nontrivial.

ExampLE 9. Consider two relation schemas; (A, B)
and Ry(B,C),anFD onR;: A— B, and anIND Ry[B|C
R,[B]. Consider instance®; ={(1,2),(1,3)} of R, and
Dy={(2,1),(3,4)}, where D; does not satisfy thED. To
repair (D1,D-), a heuristic may enforce thED first, to
“equalize” 2 and 3; it then needs to enforce th&lD, by
ensuring thatD; includes{2,3} as its B-attribute values.
This yields a repairing process that does not terminatél

Taking bothFDs andINDs as data quality rules, a heuris-
tic method is proposed in [14] based on equivalence classes

which group together attribute valuesi@fthat must take the

be changed. In contrast, dependencies have a static seman-
tics; they are capable of detecting the presence of errors in
the data, but they do not tell us how to fix the errors.

ExAMPLE 10. Assume master dat®,, with schema
R, (postal, C,A) for postal code, city and area code in the
UK. An editing rule forDy of Fig. 1 is as follows:

o: (postal,zip) — ((C,city), (A,AC)),
specified with pairs of attributes frol,,, and D,. It states
that for an input tuple, if ¢[zip] is validated and there exists
a master tuplese D,,, such thatt[zip] = s[postal], then
updatet|city, AC]:=s[C,A] is guaranteed a certain fix, and
t[AC,city] becomes a certain region (validated). Suppose
that there iss = (W1B 1JL, London, 020) iD,,,, and that

t1[zip] of Figure 1 is validated. Them;[AC] should be

same value. The idea is to separate the decision of WhichChanged to 020; here [city] remains unchanged. =



A framework is developed in [46] for inferring certain  lowing approaches, taking data repairing as an example.
fixes for input tuples. Although it may not be able to fix
all the errors in the data based on available information, it
guarantees that each update fixes at least one error, and th
no new errors are introduced in the entire repairing pracess
The process may consult users to validate a minimum num-
ber of attributes in the input tuples. Static analyses dfregli
rules and certain regions can also be found in [46].

Editing rules are generalized in [29] by allowing generic
functions to encompass editing rules [46F,Ds and match-
ing dependencies. However, it remains to be justified
whether such generic rules can be validated themselves an
whether the fixes generated are sensible at all.

Parallel scalable algorithms We approach big data repair-
ing by developing parallel algorithms. This is often neces-
6gary since in the real world, big data is often distributed.

Itis notalways the case that the more processors are used,
the faster we get. To characterize the effectiveness of-para
lelization, we formalize parallel scalability followin@8].

Consider a datasdd and a seb. of data quality rules.
We denote byt(|D|,|X|) the worst-case running time of
a sequential algorithmfor repairing D with X; and by
({(|D|, |X|,n) the time taken by a parallel algorithm for the

ask by usingn processorstakingn as a parameter. Here

we assumer < | D|, i.e., the number of processors does not
Beyond data repairing. Data repairing typically assumes exceed the size of the data, as commonly found in practice.
that data quality rules have been validated. Indeed, in-prac  We say that the algorithm garallel scalablef

tice we use data quality rules to clean data only after the T(|D|,|%|,n)=O0(t(|D|,|Z|)/n)+ (n|2))OD.

rules are confirmed correct themselves. A more general set-That is, the parallel algorithm achieves a polynomial reduc
ting is studied in [22], when both data and data quality rules tion in sequential running time, plus a “bookkeeping” cost
are possibly dirty and need to be repaired. O((n|%])") for a constant that isindependent ofD)|.

There has also been work on (a) causality of errors [75]  Obviously, if the algorithm is parallel scalable, then for a
and its connection with data repairs [81], and (b) propagati  given D, it guaranteeshat the more processors are used, the
of errors and dependencies in data transformations [19, 48] |ess time it takes to repaip. It allows us to repair big data
.. by adding processors when needed. If an algorithm is not
3.4 Data Deduplication parallel scalable, it may not be able to efficiently repair

A number of systems have been developed for data deduswhenD grows bigno matter how mangrocessors are used.

plication, e.g., BigMatch [95], Tailor [32], Swoosh [10] o . o .
AJAX [50], CrowdER [88] and Corleone [57], as stand- Entity mstancesWe pr_oposeto dgal with enuty_m;tancesm—
stead of processing big datagetirectly. Anentity instance

alone tools, embedde_d p_ackages n ET.L systems, or crovyd—Ie is a set of tuples irD that pertain to the same entity It
sourced systems. Criteria for developing such systems in-. . . .
clude (a) accuracy, to reduéase matchegfalse positives) IS substan_nally smallethanl? ' and_typlcally retains a man-
andfalse non-matcheffalse negatives); and (b) scalability ageab Ieﬁ |tze whe@ grot\)/ys g'gt Th|15 SLljgglgs_tst the f;z(llqwmg
with big data. To improve accuracy, we advocate collabora- approach to repairing big data. (1) clus nnto entity n- )
tive deduplication (Section 2.2), including but not lintte stanced.,, by using a parallel data deduplication algorithm;
collective deduplication [13]. For scalability, paralieatch- (2) for each entity, d.e-duc.e the true. values™ affrom I.e'
ing methods need to be developed and combined with tradi-by processing all entities in parallel; and (3) resolve mco

tional blocking and windowing techniques (see [33]). We S'S\}sn?'ejacrftis. different e;]nultlles, aga;n mﬁpa:_allelzl. def
refer the interested reader to [62, 78] for detailed surveys . . € find that this approach allows us 1o ellectively and et-
ficiently deduce accurate values for each entity, by reagpni

about data consistency, data deduplication with master, dat
4. CHALLENGES POSED BY BIG DATA data accuracy and data currency together [18, 42].

The study of data quality has raised as many question as
it has answered. In particular, a full treatment is requiced — . -
each of data accuracy, currency and information complete-_data repairing G_|ven a blg_datasdt), a set of data qu:_;ll—
ness, as well as their interaction with data consistency and'¥ r_ules, a repaid, of D with Z,.and updateAAD to D, it
deduplication. Moreover, big data introduces a number of to find changesAD;, to the repairD; such thatD, ®AD;,

challenges, and the study of big data quality is in its infanc is a repair ofD®AD with 3, where D@ AD denotes the
9 uay '9 quality is in its infa updated dataset d with AD; similarly for D, & AD,..

Volume. Cleaning big data is cost-prohibitive: discovering Intuitively, small changef\D to D often incur a small
data quality rules, error detection, data repairing ané dat number of new violations to the rules ¥x hence, changes
deduplication are all expensive.g.,the data complexity of  AD, to the repairD, are also small, and it is more effi-
data repairing isoNP-complete forFDs andINDs [14]. To cient to find AD, than to compute a new repair starting
see what it means in the context of big data, observe that afrom scratch. In practice, data is frequently updated, bait t
linear scan of a datasét of PB size (0'° bytes) takes days  changes\ D are typically small. We can minimize unneces-
using a solid state drive with a read speed of 6GB/s, and it sary recomputation ab,. by incremental data repairing.
takes years iD is of EB size {0'® bytes) [41]. The benefitis more evident if there exists a bounded incre-
To cope with the volume of big data, we advocate the fol- mental repairing algorithm. As argued in [79], incremental

Bounded incremental repairing We advocaténcremental
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