
On Models and Query Languages for Probabilistic
Processes ∗

Daniel Deutch Tova Milo
Tel Aviv University

danielde@post.tau.ac.il milo@post.tau.ac.il

ABSTRACT
Probabilistic processes appear naturally in various con-
texts, with applications to Business Processes, XML data
management and more. Many models for specifying
and querying such processes exist in the literature; a
main goal of research in this area is to design models
that are expressive enough to capture real-life processes
and analysis tasks, but at the same time allow for ef-
ficient query evaluation. We depict the model estab-
lished in [13, 16, 17, 18], and claim that it achieves a
good balance between expressivity and query evaluation
complexity. We compare and contrast the model with
other common models for probabilistic processes, high-
lighting the different choices made in models design and
their effect on expressivity and incurred complexity.

1. INTRODUCTION
Probabilistic processes, i.e. processes with some

probability distribution over their possible execu-
tions, appear naturally in various contexts. For in-
stance, the possible behaviors of web-site users may
be captured by such processes, where the proba-
bilities are derived from the popularity of actions
among previous users; a recent paper [6] explains
how to capture probabilistic XML data via a prob-
abilistic process specification; and there are many
additional applications e.g. in areas such as Natural
Language Processing [29] or computational biology
[35]. Probabilistic processes occurring in such cases
typically have intricate structures, and may induce
a large (or even infinite, in presence of recursion)
number of possible executions [6, 15].
The importance of probabilistic processes along

with their complex nature call for the use of a query
language, that will allow to analyze the processes
and their possible executions. The results of such
analysis are then applied for debugging the process,
optimizing it, or identifying optimal ways to use

∗Database Principles Column. Column editor: Leonid
Libkin, School of Informatics, University of Edinburgh,
Edinburgh, EH8 9AB, UK. E-mail: libkin@inf.ed.ac.uk

it. Examples for analysis tasks include termination
analysis (i.e. finding the probability that the pro-
cess terminates), identifying likely execution flows
(or parts thereof), identifying the probability that
the execution reaches a given point, and so on.
To allow for an analysis of the above flavor, three

components are required. First, one should de-
sign a formal model for probabilistic processes and
their executions. Second, the model should be ac-
companied by a corresponding query language that
will allow to specify analysis tasks over such pro-
cesses and executions; the model and query lan-
guage should be expressive enough to capture real-
life processes and analysis tasks, and simple enough
to allow for effective formulation of process specifi-
cation and queries. Third, the model and query lan-
guage must be supported by efficient query evalua-
tion algorithms. Clearly, there exists a tradeoff be-
tween the expressive power of the model and query
language, and the complexity of query evaluation.
An important goal of research in this area is to find
a good balance between the two.
Many models and query languages for probabilis-

tic processes (e.g. [4, 6, 9, 17, 25, 30, 34]) appear
in the literature, and vary in their expressive power
and the query evaluation complexity they admit.
Specifically, in [5, 16, 17] we have suggested a model
and query language for Probabilistic Business Pro-
cesses (BPs), which are used to depict the logical
structure of business activities that are common e.g.
in e-commerce and in Web Applications [5, 19]. The
model is an abstraction of the BPEL [8] standard
and allows for an intuitive, graphical representation
of the process. The query language is then based
on the same graph-based view and allows users to
query processes visually, in an intuitive manner,
very analogous to how the processes are typically
specified. We then studied query evaluation, and
provided efficient algorithms, for different fragments
of the query language [13, 16, 17].
We claim that our proposed model is successful in



achieving a good balance between the expressivity
and the complexity of query evaluation. To sub-
stantiate this claim, we first informally depict the
model and the complexity results achieved for query
evaluation. Then, we review other common models
and compare their properties. Via this comparison,
we highlight the different choices that are made in
the models design, and their effects on expressivity
and query evaluation complexity.
We next provide a brief overview of the Business

Process model and query language.
A Business Process (BP) specification is ab-

stractly modeled as a nested DAG consisting of ac-
tivities (nodes), and links (edges) between them,
that detail the execution order of the activities [15,
23]. For example, consider a BP of an on-line travel
agency. The BP specification may include activities
(nodes) for flight and hotel reservation, car rental,
payment and confirmation services, and edges that
describe their execution order. The DAG shape
allows to describe parallel computations. For in-
stance, advertisements may be injected in parallel
to the search. BP activities may be either atomic,
or compound. In the latter case their possible in-
ternal structures, called implementations, are also
detailed as DAGs, leading to the nested DAG struc-
ture. A compound activity may have different possi-
ble implementations, corresponding to different user
choices, variable values, servers availability, etc. An
Execution Flow (abbr. EX-flow) is then an actual
running instance of a BP, obtained by choosing a
single implementation for each compound activity.
A BP specification induces a set of such possible
EX-flows; this set may be large, or even infinite
when the BP specification contains recursion.
In practice, some EX-flows are more common

than others. This is modeled by a probability dis-
tribution over the possible implementations of com-
pound activities [16, 17]. A BP specification along
with a description of such distribution is called a
Probabilistic BP. We note that the probabilities of
choices dictating the execution course are, in typical
cases, inter-dependent; for instance a user making a
reservation for a flight to Paris is more likely to also
reserve an hotel in Paris. We allow to model such
dependencies in a straightforward manner.
We also defined a query language for analyzing

BPs. Queries are used to define EX-flows or parts
of them, that are of interest to the analyst. For
our travel agency example, an analyst may wish
to find out how is one likely to book a travel pack-
age containing a flight reservation?, or how is this
likely to be done for travelers of a particular air-
line company, say British Airways?. There may be

many different ways for users to book such travel
packages. But assume, for instance, that we obtain
that a likely scenario for British Airways reserva-
tions is one where users first search for a package
containing both flights and hotels, but eventually
do not reserve an hotel. Such a result may im-
ply that the combined deals suggested for British
Airways fliers are unappealing, (as users are specif-
ically interested in such deals, but refuse those pre-
sented to them), and can be used to improve the
Web site. Queries are defined using execution pat-
terns (abbr. EX-patterns), generalizing EX-flows
similarly to the way tree patterns, used in query
languages for XML, generalize XML trees [10]. In
more details, EX-patterns bear the structure of an
EX-flow, where activity names are either specified,
or left open using a special any symbol and then may
match any node. Edges in a pattern are either regu-
lar, interpreted over edges, or transitive, interpreted
over paths. Similarly, activities may be regular or
transitive, for searching only in their direct internal
flow or for searching in any nesting depth, respec-
tively. A match of the query is captured via the
notion of an embedding, which is a homomorphism
from an EX-pattern to an EX-flow, respecting node
labels and edge relation. We then note that given
a BP specification s and a query q, the number of
possible EX-flows of s that qualify according to q
may be extensively large, or even infinite when s is
recursive. In practice, analysts are only interested
in the possible EX-flows of s that are most likely to
occur in practice. This is in fact a flavor of top-k
analysis.
In many cases, analysts are further interested

only in some part of the possible EX-flows. For that,
we define top-k projection queries, whose output
consists of the likely sub-flows. An important ques-
tion that rises when considering projection queries
is the choice of a ranking metric for the query re-
sults. Recall that our model associates a likelihood
value with every possible EX-flow of the BP speci-
fication; with projection queries, a single projection
results may originate from multiple EX-flows. In
this case, the likelihoods of all such EX-flows should
then be aggregated, to form the result score. Evi-
dently, different choices of such aggregation func-
tions require different query evaluation mechanisms
and incur different complexity of query evaluation.
We consider the max and sum aggregation func-
tions, explain their intuitive meaning and depict the
complexity of query evaluation for each choice of
function.



Paper Organization. In Section 2 we recall our
model of probabilistic BPs and queries over such
BPs; in Section 3 we overview the complexity of
query evaluation for such queries. In Section 4
we overview other common models for probabilis-
tic models, comparing them to our BP model. We
conclude in Section 5.

2. MODEL
We (informally) depict in this section the model

of probabilistic Business Processes (BPs), and a
query language over such processes, originally de-
fined and used in [5, 16, 17, 18]. Additional process
models and their connection to this model are dis-
cussed in Section 4.

2.1 Business Processes
We start by depicting the model for Business Pro-

cesses (without probabilities), then introduce prob-
abilities. At a high-level, a BP specification encodes
a set of activities and the order in which they may
occur. A BP specification is modeled as a set of
node-labeled DAGs. Each DAG has a unique start
node with no incoming edges and a unique end node
with no outgoing edges. Nodes are labeled by activ-
ity names and directed edges impose ordering con-
straints on the activities. Activities that are not
linked via a directed path are assumed to occur in
parallel. The DAGs are linked through implemen-
tation relationships; the idea is that an activity a
in one DAG is realized via the activities in another
DAG. We call such an activity compound to dif-
ferentiate it from atomic activities which have no
implementations. Compound activities may have
multiple possible implementations, and the choice
of implementation is controlled by a a condition re-
ferred to as a guarding formula.

Example 2.1. Fig. 1 depicts a partial BP spec-
ification. Its root DAG consists of a single activity
chooseTravel. chooseTravel is a compound ac-
tivity having 3 possible implementations F2, F3, F4.
These correspond to different choices of travel
search (flights only, flights + hotels, or flights +
hotels + cars) and are guarded by corresponding
formulas. The idea is that exactly one formula is
satisfied at run-time (the user chooses one of the
three search types) and thus chooseTravel is im-
plemented either by F2, F3 or F4. Consider for
example F1; it describes a group of activities com-
prising user login, the injection of an advertise-
ment, the Flights activity, and the Confirm ac-
tivity. Directed edges specify the order of activities
occurrence, e.g. users must login before choosing
a flight. Some of the activities (e.g. Advertise

and Flights) are not in a particular order, and
thus may occur in parallel. Login and Advertise

are atomic whereas Flights and Confirm are com-
pound. Note that the specification is recursive as
e.g. F2 may call F1.

We note that satisfaction of guarding formulas is
determined by external factors, such as user choices.
We assume that exactly one guarding formula can
be satisfied when determining the implementation
of a given compound activity occurrence, but satis-
faction of guarding formulas can change if activities
occur several times. For instance, a user may choose
to search for flights and hotels the first time she goes
through F1 and for flights only the second time.

Execution Flows. An Execution Flow (EX-flow) is
modeled as a nested DAG that represents the ex-
ecution of activities from a BP. Since, in real-life,
activities are not instantaneous, we model each oc-
currence of an activity a by two a-labeled nodes,
the first standing for the activity activation and
the second for its completion point. These two
nodes are connected by an edge. The edges in the
DAG represent the ordering among activities ac-
tivation/completion and the implementation rela-
tionships. To emphasize the nested nature of exe-
cutions, the implementation of each compound ac-
tivity appears in-between its activation and comple-
tion nodes. An EX-flow structure must adhere to
the structure of the BP specification, i.e., activities
must occur in the same order and implementation
relationships must conform to τ .

Example 2.2. Two EX-flows of the travel
agency BP are given in Fig. 2. Ordering edges
(implementation edges) are drawn by regular (resp.
dashed) arrows. Each EX-flow describes a sequence
of activities that occurred during the BP execution.
In Fig. 2(a) the user chooses a “flights+hotels”
search, reserving a “British Airways” flight and a
“Marriott” hotel, then confirms. Fig. 2 (b) depicts
another possible EX-flow, where the user chooses a
“flights only” search, followed by a choice of British
Airways flight, but then resets and makes other
choices (omitted from the figure).

Likelihood. We note that the EX-flow occurring
at run-time is dictated by the truth values of guard-
ing formulas, which in turn dictate the choice of
implementation for compound activities (out of the
possibly multiple implementations associated with
each such activity in the BP specification). In a
probabilistic process, each such guarding formula is
associated with a probability of being satisfied at
run-time, and this probability may be dependant



Figure 1: Business Process Specification

Figure 2: Execution Flows

on the EX-flow thus far and formulas previously
satisfied.
To model this we use two likelihood functions.

The first, named c−likelihood (choice likelihood),
associates a probability value with each guard-
ing formula (implementation choice), describing the
probability that the formula holds, given the par-
tial EX-flow that preceded it. The second, named
f−likelihood (flow likelihood) reflects the joint likeli-
hood of satisfaction of guarding formulas occurring
along the flow and is defined as the multiplication of
c−likelihood values. A BP specification along with
a likelihood function over the guarding formulas oc-
curring in the specification is called a Probabilistic
Business Process.
Note that the c−likelihood function δ receives two

inputs: a guarding formula f in hand, and the par-
tial EX-flow e′ that preceded the implementation
choices guarded by f . This allows us to capture
dependencies among likelihood values. We distin-
guish between three classes of c−likelihood func-
tions, according to their sensitivity to e′ (referred
to as “history”).

History independence: History-independent func-
tions imply probabilistic independence between the
choices of implementation in different activities oc-
currences throughout the flow. More formally,
a c−likelihood function is history-independent for
every guarding formula f , c−likelihood (e,f) =
c−likelihood (e’,f) for each two EX-flows e, e′.
Bounded-history: Bounded-history functions cap-
ture the more common scenario where the
c−likelihood value does depend on the history e of
the EX-flow, but only in a bounded manner. That
is, to determine the c−likelihood of any implemen-
tation choice at an activity node n, it suffices to
consider only the implementation choices of the last
b preceding compound activities, for some bound b.
By “preceding” we refer here to activity nodes n̂
that are ancestors of n in e (in contrast to nodes
that occur in parallel and thus in general may or
may not precede n). By “choice” we refer to the
formula guarding the implementation selected for
the activity.
Unbounded-history: Unbounded-history functions
may use an unbounded portion of the flow history



e to compute the next choice’s likelihood. For in-
stance, if the price of a given product depends on
the exact full sequence of searches that the user per-
formed prior to the purchase, then the correspond-
ing c−likelihood function is unbounded-history.

Observation. Note that, by definition, for non-
recursive BPs, c−likelihood functions are always
bounded-history, with the bound being, at most,
the BP nesting depth. Recursive BPs, on the other
hand, may have unbounded-history c−likelihood
functions. In practice, typical c−likelihood func-
tions are bounded-history, and moreover the bound
is typically small [36].

2.2 Query Language
We next consider a query language for Probabilis-

tic Business Processes, originally defined in [5] and
further refined in [17, 18]. We start by considering
selection queries, whose output is the (representa-
tion of the) set of all EX-flows of the original BP
specification, that also match the query. We then
introduce projection queries, that further allow to
focus on some sub-flows that are of interest.
Queries are defined using execution patterns, an

adaptation of the tree-patterns of existing XML
query languages, to nested EX-flow DAGs. Such
patterns are similar in structure to EX-flows, but
contain transitive edges that match any EX-flow
path, and transitive activity nodes, for searching
deep within the implementation subgraph, of the
corresponding compound activities, at any level of
nesting. Nodes/ formulas in the pattern may be la-
beled by the wildcard any and then may match any
EX-flow node/formula.

Example 2.3. The query in Fig. 3 (a) (ignore
for now the rectangle surrounding a sub-graph of the
pattern) describes EX-flows that contain a choice of
some British Airways (abbr. “BA”) flight followed
by a confirmation. The double-lined edges are tran-
sitive edges, and may match any sequence of activ-
ities. The doubly bounded chooseTravel activity is
a transitive activity. Its implementation nodes may
be embedded anywhere inside the implementation of
the corresponding EX-flow activity, at any nesting
level.

The matching of an EX-pattern p to an EX-flow
e is called an embedding. An embedding of p into
e is a homomorphism ψ from nodes and edges in
p to nodes,edges and paths in e such that the root
of p is mapped to the root of e; activity pairs in p
are mapped to activity pairs in e, preserving node
labels and formulas; a node labeled by any may be
mapped to nodes with any activity name. For non-

transitive compound activity pairs in p, nodes in
their direct implementation are mapped to nodes
in the direct implementation of the corresponding
activity pair in e. As for edges, each (transitive)
edge from node m to n in p is mapped to an edge
(path) from ψ(m) to ψ(n) in e.
We then distinguish between selection and pro-

jection queries, as follows.

Selection Queries. A selection query is represented
by an EX-pattern. An EX-flow e belongs to the
query result if there exists some embedding of p
into e. We then say that e satisfies p. When eval-
uated against a Business Process s, the output of p
consists of all full EX-flows of s that also satisfy p;
the set of top-k most likely out of these EX-flows
are denoted top-k(s,p).

Projection Queries. In many cases, analysts are not
interested in full execution flows of the process, but
rather in focusing on some part of them. To that
end, we define projection queries over probabilis-
tic processes. For selection queries, the query re-
sult consisted of the full EX-flow in which the EX-
pattern was embedded. We generalize the definition
of such queries and allow a specific part of the pat-
tern to be specified as the projected part. The rest
of the pattern serves for selecting EX-flows of inter-
est. Namely, only EX-flows in which an embedding
of the entire pattern are considered; within these
flows, only nodes and edges matching the projected
part are in fact projected out and appear in the
query result.
Given an embedding ψ of a query q in an EX-flow

e, the embedding result is then defined as the nodes
and edges of e to which ψ maps the nodes and edges
of the projected part of q. For an EX-flow e, the
result of q on e, denoted q↓(e), consists of the results
of all possible embeddings of q into e; finally, for a
BP s, the result of q on s, denoted q↓(s) is the union
of all possible results of q when applied on the EX-
flows of s. Namely q↓(s) =

∪
e∈flows(s) q↓(e) where

flows(s) is the set of possible EX-flows of s.
Note that an EX-flow e′ ∈ q↓(s) may originate

from several EX-flows of s, namely there may be
several e ∈ flows(s) s.t. e′ ∈ q↓(e). Before defin-
ing the top-k projection results, we should first
decide on how to aggregate the weights of these
individual EX-flows, to form the score of projec-
tion result. We consider two possible aggregation
functions (and consequently, semantics of queries),
max and sum. Under max semantics, the score of
e′ is defined as score(e′) = max{f-likelihood(e) |
e ∈ flows(s) ∧ e′ ∈ q↓(e)}. Under sum semantics,



Figure 3: Query

score(e′) =
∑

e∈flows(s)∧e′∈q↓(e)
f-likelihood(e).

The top-k results of a projection query q over
a BP specification s, with respect to max (sum)
semantics, are then denoted top-kmax(q↓, s) (top-
ksum(q↓, s)). When the semantics used is clear from
context, we omit it from notation and simply write
top-k(q↓, s).

Example 2.4. Let us consider again the EX-
pattern in Figure 3(a), this time as a query, with the
rectangle denoting its projected part. Note that the
projection focuses on the execution sub-flows that
may occur between the point where a user chooses a
“BritishAirways” flight and the final confirmation
of her reservation. Note that, due to recursive na-
ture of the BP, there are in general an infinite num-
ber of such possible sub-flows (query answers) - a
user may reset and restart the search an unbounded
number of times. Two possible answers to the query
appear in Fig. 3 (b) and (c). The first answer corre-
sponds to users that choose at some point a “flight-
sOnly” search, pick a “BA” flight and then imme-
diately confirm. The second answer corresponds to
users that choose at some point a “flights+hotels”
search, pick “BA” as airline and Marriott as hotel,
and confirm.
Observe that each of these answers (sub-flow)

have potentially an infinite number of possible origin
EX-flows, differing in what the user had done prior
to/after the reservation. The likelihood of each an-
swer is the max / sum of likelihoods of all these
origins, according to the semantics in hand.
To illustrate the difference between the two se-

mantics (max and sum), consider the above query
and a case where one particular deal D, consist-
ing of a specific flight, hotel and car rental reserva-
tion, is very popular, but where packages consisting
of only flight and hotel reservations (with no car
rental) are overall more common (even though each
given offer is individually less popular than the spe-
cific flight+hotel+car deal D). With sum seman-
tics, the result corresponding to the flight+hotel op-

tion is ranked highest, as it appears in most EX-
flows. But with max semantics, flight+hotel+car
will be ranked highest, as there exists one very pop-
ular EX-flow in which it appears.

3. QUERY EVALUATION
We next review the main results on query evalua-

tion over probabilistic Business Processes. We omit
the proofs and algorithms and refer the reader to
prior publications for the full details.
There are three axes that determine the complex-

ity of query evaluation: whether the BP specifica-
tion is recursive or not, the class of the c−likelihood
function used in the process description (i.e. its
level of dependency over the history), and the query
semantics (selection vs. projection). Interestingly,
when considering projection queries, the choice of
aggregation function also bears a significant effect
on the complexity of query evaluation. The com-
plexity results are summarized in Table 1.
We start the discussion with selection queries,

then proceed to projection queries.

3.1 Selection Queries
Given a BP specification s, a selection query q,

and a number k, the top-k results of q with re-
spect to s (denoted top−k(q, s)) are defined as the
k most likely flows of s, out of those in which an
embedding of q exists. 1. We refer to the problem
of identifying top-k(q,s) (given the above input) as
TOP-K-ANSWERS.
We next discuss the problem complexity for the

different classes of c−likelihood functions.

History-independent c−likelihood function. When
the c−likelihood function is history-independent,
we can design an efficient algorithm for top-k se-
lection query evaluation, as the following theorem

1Certain EX-flows may have equal weights, which im-
plies that there may be several valid solutions to the
problem, in which case we pick one arbitrarily.



BP Weight Function Queries Data Complexity Query Complexity
(Non-)Recursive History-independent Selection / PTIME [16, 17, 18] EXPTIME,

Projection (max) NP-hard [14]
(Non-)Recursive Bounded-History Selection / PTIME in BP, EXPTIME

Projection (max) EXPTIME (NP-hard)
in bound [16, 17]

Recursive Unbounded-History Selection / Undecidable [16, 17] Undecidable
Projection

(Non-)Recursive History-independent Projection (sum) EXPTIME, NP-hard [13] EXPTIME
Non-Recursive History-independent Projection (sum) PTIME EXPTIME

restricted (unit-cost rat. arithmetic) [13]
(Non-)Recursive Bounded-History Projection (sum) EXPTIME in BP, EXPTIME

2-EXPTIME in bound [13]

Table 1: Complexity of query evaluation for Business Processes

holds (the algorithm proving the theorem correct-
ness originally appeared in [16] and was improved
in [18]).

Theorem 3.1. [16, 18] Given a probabilistic BP
s with a history-independent c−likelihood function,
and a query q, we may solve TOP-K-ANSWERS in time
polynomial in the size of s and in the output size,
and exponential in the query size.

The algorithm solving TOP-K-ANSWERS works by
“intersecting” the BP specification s with the query
q, outputting a BP specification s′ whose EX-flows
are exactly the EX-flows of s in which there exists
an embedding of q. The algorithm then employs
a sophisticated A*-style analysis that explores the
space of possible EX-flows of s′, by repeatedly test-
ing possible expansions of activities and avoiding
infinite loops by maintaining a table of the previ-
ously computed sub-flows in a dynamic program-
ming style.
We can also show that a PTIME algorithm

w.r.t. query size is not possible, unless P=NP. For
that, we define the corresponding decision problem
BEST-ANSWER, which tests, whether the top-1 EX-
flow of a given BP specification is more likely than
some threshold t. The following theorem holds (the
proof appears in [17], following a construction from
[14], using reduction from 3-SAT):

Theorem 3.2. [14, 17] BEST-ANSWER is NP-hard
when the input size is considered to be the query
size (and the BP specification size is considered a
constant).

Bounded-History c−likelihood function. Bounded-
History c−likelihood functions pose further chal-
lenges, as the c−likelihood of each choice may de-
pend on a number of other choices. The following
theorem was shown in [17]:

Theorem 3.3. [17] Given a BP s, a bounded-
history c−likelihood function δ with bound b, and

a query q, we may solve TOP-K-ANSWERS in time
polynomial in the size of s and in the output size,
and exponential in b and in the query size.

The general idea of the algorithm is to create,
a new BP s′, with a new, history-independent,
c−likelihood function δ′, such that s and s′ have
essentially the same set of flows with the same
f−likelihood . Then, we apply the algorithm from
the proof of Theorem 3.1. To obtain s′ and δ′

we annotate the activity names in the specifica-
tion, “factoring” within the names all information
required for the computation of c−likelihood of for-
mulas, namely a pre-condition vector, including the
m last choices for all activities. Additionally, the
new activities names also contain post-condition
vectors, necessary to assure consistencies between
pre-conditions assumed by activities and what has
happened in their predecessors.
It was further shown in [17] that the added ex-

ponential dependency on the history-bound b is in-
evitable, as the following theorem holds (proof by
reduction from Set Cover):

Theorem 3.4. [17] For bounded-history
c−likelihood functions with bound b, BEST-ANSWER

is NP-hard when the number of activities in the BP
specification and in the query are considred to be
constants, and b is considered to be the input size.

Unbounded-History c−likelihood functions. Last,
for unbounded-history c−likelihood functions, we
showed in [16] that TOP-K-ANSWERS becomes impos-
sible to solve, as the following theorem holds:

Theorem 3.5. [16] If the c−likelihood function
given as input may be unbounded-history, then
BEST-ANSWER is undecidable.

The proof is by reduction from the halting prob-
lem, where we encode a Turing Machine as a BP
specification with unbounded-history c−likelihood
function; the latter is used to model the TM tape.



3.2 Projection Queries
We next turn to projection queries. It is easy to

observe that all hardness results presented above for
selection queries, also hold for projection queries.
However, it turns out that the upper bounds depend
upon the aggregation function in use. Specifically,
for the max semantics:

Theorem 3.6. [17] Theorems 3.1 and 3.3 hold
for projection queries with max semantics.

To prove Theorem 3.6 we adapt the algorithms
that were designed for selection queries to account
for projection queries with max semantics. A naive
attempt for such adaptation involves selection fol-
lowed by projection, namely the generation of a BP
specification whose EX-flows are the top-k selected
EX-flows, then projecting these EX-flows to find the
top-k projections. However the size of the selected
EX-flows, and consequently the algorithm complex-
ity is exponential in the size of the input BP specifi-
cation, even when the projection results themselves
are of small size. Moreover, we may show that it
is infeasible to compute a BP specification whose
EX-flows correspond to all projection results and
then retrieve the top-k results out of them, intu-
itively because projection over transitive edges may
result in exponentially many paths which cannot be
compactly represented together. However, we may
still perform a two-steps algorithm, similar to the
one employed for selection queries: he first step of
the refined evaluation algorithm generates a specifi-
cation that captures only a subset of the projection
results, where for each transitive edges only the top-
k matching paths are kept; this subset includes in
particular the top-k projections. We can then find
the top-k EX-flows of this specification, which are
the top-k projection results with respect to max se-
mantics.
When the sum aggregation function is used,

query evaluation becomes much more difficult.
Specifically, we can show the following:

Theorem 3.7. [13] For projection queries with
sum semantics, BEST-ANSWER is NP-hard (under
Turing computation model) in the BP size, even for
non-recursive specifications and for queries with no
transitive nodes.

The proof is by reduction from 3-SAT. Interest-
ingly, the problem is hard even for non-recursive
BPs. This is because the hardness is due to the
DAG structure of the BP graphs, that may lead
to exponentially many paths being projected over
the query transitive edges; consequently the sum
of likelihoods of exponentially many EX-flows must

be computed. See the comparison in Section 5 to
Probabilistic XML.
On the other hand, under certain plausible as-

sumptions over the BP specification structure, we
can design an algorithm whose complexity is EXP-
TIME in the BP specification size. We say that a
projection query q w.r.t. a BP specification s has
separated likelihoods, if for every two query answers,
either they have equal likelihoods or the difference
of their likelihoods is greater than some fixed con-
stant ϵ. The following theorem then holds:

Theorem 3.8. [13] For projection queries with
sum semantics and BP specifications with history-
independent c−likelihood function:, TOP-K-ANSWERS
may be solved in EXPTIME, for: (1) non-recursive
BP specifications, and (2) recursive BP specifica-
tions, when the query has separated likelihoods w.r.t.
the specification.

The algorithm uses a small world theorem, show-
ing that among the infinitely many paths that may
match the query transitive edges, it is sufficient to
examine paths whose length is bounded by the size
of the BP specification multiplied by k (the num-
ber of required results); consequently only exponen-
tially (in the above quantity) many paths are exam-
ined. Then, the algorithm reduces TOP-K-ANSWERS
to the computation of likelihoods for a set of ex-
ponentially many candidate answers that are rep-
resented as boolean queries, i.e. queries for which
we ask only for the likelihood of a match; finally,
techniques from [25] are adapted to approximate
the likelihood values of these boolean queries up to
a point allowing to separate the different candidate
answers (this is why separated likelihoods are re-
quired). Exact computation of likelihood values for
boolean queries is impossible here since they may
in general be irrational [13], thus we must resort to
their approximation.
Note that the proof for NP-hardness (Theorem

3.7) used queries with transitive edges. When no
transitive edges are allowed in the query, our algo-
rithm is more efficient, for non-recursive BP specifi-
cations. Specifically, consider the unit-cost rational
arithmetic model [7]: in this model, when comput-
ing the complexity, we assume that each arithmetic
operation on rational numbers may be done in O(1),
regardless of the numbers size. The following theo-
rem then holds:

Theorem 3.9. [13] When the query projected
part does not include transitive edges, and the BP
specification is non-recursive, TOP-K-ANSWERS for
projection queries with sum semantics may be solved



in PTIME under the unit-cost rational arithmetic
model.

The assumption of unit-cost rational arithmetic
is necessary here, as there are examples where even
non-recursive BP specifications and queries without
transitive edges yield projection results with prob-
abilities whose encoding is exponential in the BP
specification size.
When the c−likelihood is bounded-history, we

may first use the construction depicted above for
proving Theorem 3.3 to obtain a new BP speci-
fication s′ with history-independent c−likelihood
function, then apply the above algorithm. Note
that since the size of s′ may be exponential in the
history-bound, and the algorithm that finds the top-
k projections may incur exponential time in the
size of its input, the overall complexity is double-
exponential in the size of the bound. The following
theorem holds:

Theorem 3.10. [13] For projection queries with
sum semantics and BP specifications with bounded-
history c−likelihood function with bound b,
TOP-K-ANSWERS may be solved in time exponential
in the size of the BP specification and double ex-
ponential in b, for: (1) non-recursive BP specifica-
tions, and (2) recursive BP specifications, when the
query has separated likelihoods w.r.t. the specifica-
tion.

4. ADDITIONAL MODELS
We have depicted above our model for probabilis-

tic Business Processes. The literature contains a
variety of formalisms for probabilistic process spec-
ifications. We next discuss a representative sub-
set of these models; for each model we review the
query languages used for its analysis, and the cor-
responding complexity results for query evaluation.
A summary of the models and results reviewed in
this Section appears in Table 2. We also compare
and contrast these models with the model of prob-
abilistic BP.

4.1 Markov Chains
The probabilistic counterpart of Finite State Ma-

chines (FSMs) is called Markov Chains (MCs) [30].
MCs are in fact FSMs, but with transitions as-
sociated with probabilities; these state machines
bear the Markovian property [30], meaning that the
choice of transition is independent of the previous
states that were traversed, given the current state.
The common approach in analysis of such processes
is to use a query language based on temporal logic
[33], e.g. LTL, CTL∗ or µ-calculus (these differ

from each other in terms of expressive power, see
e.g. [33]). Query evaluation for such logics then
correspond to computing the probability that the
property defined by the given query, holds for a ran-
dom walk over the Markov Chain. It is known that
query evaluation of such temporal logic queries over
a Markov Chain may be performed in time polyno-
mial in the size of the Markov Chain, and exponen-
tial in the query size [11].

Comparison to the BP model and query language.
Finite State Machines (and consequently, Markov
Chains) lack the expressive power to capture the
possibly recursive processes allowed in the BP
model here (we shell see in the sequel that BPs
are equivalent to “stronger” models). The defini-
tion of history-unbounded c−likelihood functions
resembles (and is inspired by) the Markovian Prop-
erty.
As for the query language, a first observation is

that temporal logic allows only for boolean queries
(i.e. computing the probability that a given boolean
property holds), while selection and projection
queries of the kind depicted in Section 2 were not
studied in the context of Markov Chains (to the
best of our knowledge). But even when considering
just boolean queries, there are queries expressible
in our language but not in temporal logic. To that
end, note that temporal logics are bisimulation-
invariant, intuitively meaning that they can query
only the process “behavior” rather than its struc-
ture (see [14] for exact notions). In contrast, our
query language takes a database approach and al-
lows to further query the structure of the process
as well as the structure of its possible executions.
Indeed, we have shown in [14] that some queries ex-
pressible in our query language are not expressible
in temporal logic (and vice versa).

4.2 Introducing Function Calls
As stated above, Markov Chains are the proba-

bilistic counterpart of Finite State Machines. Sim-
ilarly, there exist probabilistic counterparts to
stronger model; these models allow for function
calls, and in their full-fledged version, also for
recursion. Specifically, Recursive Markov Chains
(RMCs) [25] extend Markov Chains to allow for re-
cursive invocations of procedures. An RMC con-
sists of a collection of finite state components, each
of which is a Markov chain, that can call each other
in a potentially recursive manner. The authors of
[25] further show that RMCs generalize (and can ex-
press) previous important models for probabilistic
processes such as probabilistic Pushdown Automata
[9], and Stochastic Context Free Grammars [32].



Model Query Data Complexity Query Complexity
MC Temporal PTIME EXPTIME
RMC MSO EXPTIME, Non-elementary

at least as hard as SQRT-SUM
HMC MSO PTIME Non-elementary

(with unit-cost relational arithmetic)
Tree-like HMC MSO PTIME Non-elementary

Prob. XML [31, 37] (non-recursive) Selection / Projection PTIME ♯P -complete

Table 2: Complexity of query evaluation for different models

Query evaluation over RMCs was first studied in
[25] for approximating the probabilities of reacha-
bility and termination. In a recent work, [6] has
extended the analysis for a very strong query lan-
guage, namely the Monadic Second Order (MSO)
Logic. Denote as MSO-EVAL the problem of com-
puting the probability that a given MSO query is
satisfied in a random execution of an RMC; the fol-
lowing theorem then holds:

Theorem 4.1. [24] MSO-EVAL can be per-
formed in EXPTIME Data Complexity and non-
elementary query complexity.

It is highly unlikely that query evaluation for
RMCs may be solved in PTIME, as [25] showed
that this problem is at least as hard as SQRT-SUM.
SQRT-SUM is the problem of deciding, given natu-
ral numbers (d1, ..., dn) and a natural number k,
whether

∑
i=1,...,n

√
di ≤ k, strongly believed not

be solvable in PTIME under Turing Computation
Model [27]. Interestingly, this hardness result holds
even for very simple reachability and termination
analysis, and even when we are only interested in
approximating the probabilities.
Also note in this context the non-elementary

query complexity of the evaluation problem. This
complexity is entailed by the use of the highly ex-
pressive MSO logic as a query language, and is un-
avoidable even for weaker process models due to
[38].
Several restricted variants of RMCs were studied

in [6, 25]; specifically, HMCs (Hierarchical Markov
Chains) is a restricted version that does not allow
for recursive calls. Interestingly, query evaluation
here is still harder than for non-hierarchical MCs.
This is due to the fact that the probability of a
given property may be so small that exponentially
many bits are required to represent it. This, in
turn is due to the function-like structure of HMCs
that allow several functions to call a single function;
in this way, exponentially many call paths may be
represented compactly.
Thus, for the Turing computational model there

is no hope for a PTIME data complexity algorithm.
However, if we use the unit-cost rational arithmetic

model [7], we do not have to care about the size of
numbers. The following theorem then holds:

Theorem 4.2. [6] MSO-EVAL for HMC can be
performed in PTIME Data Complexity (and non-
elementary query complexity), under the unit-cost
rational arithmetic model.

If the HMC possible calls graph has a tree-shape,
then the above problem is avoided and we obtain
a PTIME data complexity under the conventional
Turing Computational Model

Theorem 4.3. [6] MSO-EVAL for Tree-Like
HMCs ([6]) can be performed in PTIME Data Com-
plexity (and non-elementary query complexity), un-
der the Turing Computational Model

Comparison to the BP model and query lan-
guage. Our Business Process model with history-
independent likelihood functions may be shown to
be equivalent to a restricted version of RMCs,
namely 1-exit RMCs (the proof is an adaptation
of Theorem 3 in [14] to a probabilistic context),
and similarly non-recursive Business Processes are
equivalent to 1-exit HMCs. To our knowledge, no
extended model for RMCs that allows for depen-
dencies in-between probabilistic choices was stud-
ied. As for the query language, our language (when
queries are considered as boolean) is contained in
MSO in terms of expressive power. But note that
the use of MSO is very costly: it incurs non-
elementary query complexity, with respect to the
EXPTIME obtained for our language. Our query
language is restricted, but is expressive enough
to express interesting and practical properties as
shown in [5], while allowing for a practically effi-
cient evaluation. Furthermore, as the case for MCs,
selection and projection queries were not studied in
the context of RMCs (to our knowledge).

4.3 Probabilistic XML
It turns out that there are intricate connections

between Probabilistic XML and probabilistic pro-
cesses. Specifically, the recent work of [6] mentioned



above establishes a model for Probabilistic XML
that is based on Recursive State Machines. Then,
in addition to their study of MSO queries, they
study more restricted languages which are com-
mon for XML querying such as (boolean) Tree Pat-
tern Queries and XPath, and show that they incur
lower query complexity: FP ♯P (the class of compu-
tation problems that can be solved in polynomial
time using a ♯P oracle) for tree pattern queries and
PSPACE for XPath.
Previous works on Probabilistic XML documents

[2, 3, 31, 37] used non-recursive models for express-
ing distributions over a finite collection of possible
documents. In [31], a p-document is an XML tree
with two types of nodes: ordinary nodes which are
just regular XML nodes, and distributional nodes
that define some probabilistic distribution over sub-
sets of their children. A random XML document
may then be generated by making probabilistic
choices that follow these distributions. The authors
of [31] then study query evaluation over p-document
and use a language that allows for selection and
projection; the semantics used there for projection
is the counterpart of our sum semantics, and they
show that query evaluation is feasible, as follows:

Theorem 4.4. [31] Query Evaluation over p-
documents may be done in time complexity that is
polynomial in the p-document size, and exponential
in the query size.

They also show that the exponential dependency
on the query size is inevitable, unless P = ♯P .

Comparison to the BP model and query language.
An important distinction between the model of [31]
and our BP model is that BP graphs are DAG-
shaped while XML graphs are tree-shaped. Evi-
dently, this difference causes an unavoidable (unless
P=NP) exponential overhead in query evaluation,
and also complicates the algorithmic construction
(see [13] and the discussion in Section 3). While [6]
considers XML with sharing, a model that does al-
low for DAG-shape graphs in the specification, the
weaker query languages (tree patterns and XPath)
studied in this cannot capture the DAG-shaped pat-
terns expressible in our query language; also, [6]
only studies boolean queries in contrast to the selec-
tion and projection queries allowed in our language.

5. CONCLUSION
We have reviewed in this paper several impor-

tant models for specifying and querying probabilis-
tic processes and compared them in terms of ex-
pressive power and complexity of query evaluation.

We further depicted our proposed model for Busi-
ness Process and our query language that allows for
top-k selection and projection queries. We then ex-
plained how our proposed model achieves a reason-
able balance between expressivity and evaluation
complexity.
Clearly, more work has to be done to capture

real-life probabilistic processes and analysis tasks.
In particular, while the models consider, to some
extent, the data manipulated in the process execu-
tion, more work is required for modeling and query-
ing such manipulated data in real-life settings. The
modeling (and analysis) of the data manipulated
by processes was studied in e.g. [12, 20, 21, 22,
26, 28], but the processes studied there were not
probabilistic; combining these two lines of research
into a unified framework for probabilistic processes
along with the data they manipulate. Additionally,
we have discussed selection and projection queries,
the latter with two particular aggregation functions
(sum and max); in [1] the authors study aggre-
gate queries for “monoid” aggregate functions (in-
cluding sum, count, min, max) for Probabilistic
XML. Studying further operations such as value-
based joins and projection with different aggrega-
tion functions, in the context of the different models
presented here is an intriguing challenge.

Acknowledgments
This research was partially supported by the Is-
raeli Science Foundation (ISF), the US-Israel Bina-
tional Science Foundation (BSF), the EU Project
Mancoosi and the Israel Ministry of Science Eshkol
grant.

6. REFERENCES
[1] S. Abiteboul, T.H. Hubert Chan,

E. Kharlamov, W. Nutt, and P. Senellart.
Aggregate queries for discrete and continuous
probabilistic XML. In ICDT, 2010.

[2] S. Abiteboul, B. Kimelfeld, Y. Sagiv, and
P. Senellart. On the expressiveness of
probabilistic XML models. VLDB J., 18(5),
2009.

[3] S. Abiteboul and P. Senellart. Querying and
updating probabilistic information in XML.
In Proc. of EDBT, 2006.

[4] R. Alur, M. Benedikt, K. Etessami,
P. Godefroid, T. Reps, and M. Yannakakis.
Analysis of recursive state machines. ACM
Trans. Program. Lang. Syst., 27(4), 2005.

[5] C. Beeri, A. Eyal, S. Kamenkovich, and
T. Milo. Querying business processes. In Proc.
of VLDB, 2006.



[6] M. Benedikt, E. Kharlamov, D. Olteanu, and
P. Senellart. Probabilistic XML via Markov
chains. PVLDB, 3(1), 2010.

[7] L. Blum, F. Cucker, M. Shub, and S. Smale.
Complexity and real computation.
Springer-Verlag, 1998.

[8] Business Process Execution Language for Web
Services.
http://www.ibm.com/developerworks/library/ws-
bpel/.

[9] T. Brazdil, A. Kucera, and O. Strazovsky. On
the decidability of temporal properties of
probabilistic pushdown automata. In Proc. of
STACS, 2005.

[10] D. Chamberlin. Xquery: a query language for
XML. In Proc. of SIGMOD, 2003.

[11] C. Courcoubetis and M. Yannakakis. The
complexity of probabilistic verification. J.
ACM, 42(4), 1995.

[12] T. Deng, W. Fan, L. Libkin, and Y. Wu. On
the aggregation problem for synthesized web
services. In Proc. of ICDT, 2010.

[13] D. Deutch. Querying Web Applications Under
Models of Uncertainty. PhD thesis, Tel Aviv
University, 2010.
http://www.cs.tau.ac.il/ danielde/PhdThesis.pdf.

[14] D. Deutch and T. Milo. Querying structural
and behavioral properties of business
processes. In Proc. of DBPL, 2007.

[15] D. Deutch and T. Milo. Type inference and
type checking for queries on execution traces.
In Proc. of VLDB, 2008.

[16] D. Deutch and T. Milo. Evaluating top-k
queries over business processes. In Proc. of
ICDE, 2009.

[17] D. Deutch and T. Milo. Top-k projection
queries for probabilistic business processes. In
Proc. of ICDT, 2009.

[18] D. Deutch, T. Milo, N. Polyzotis, and T. Yam.
Optimal top-k query evaluation for weighted
business processes. In Proc. of VLDB, 2010.

[19] D. Deutch, T. Milo, and T. Yam.
Goal-oriented web-site navigation for on-line
shoppers. In Proc. of VLDB, 2009.

[20] A. Deutsch, M. Marcus, L. Sui, V. Vianu, and
D. Zhou. A verifier for interactive, data-driven
web applications. In Proc. of SIGMOD, 2005.

[21] A. Deutsch, L. Sui, V. Vianu, and D. Zhou.
Verification of communicating data-driven
web services. In Proc. of PODS, 2006.

[22] A. Deutsch and V. Vianu. Wave: Automatic
verification of data-driven web services. Data
Eng. Bull., 31(3), 2008.

[23] P. Diniz. Increasing the accuracy of shape and

safety analysis of pointer-based codes. In
LCPC, 2003.

[24] K. Etessami and M. Yannakakis. Algorithmic
verification of recursive probabilistic state
machines. In Proc. of TACAS, 2005.

[25] K. Etessami and M. Yannakakis. Recursive
Markov Chains, stochastic grammars, and
monotone systems of nonlinear equations.
JACM, 56(1), 2009.

[26] C. Fritz, R. Hull, and J. Su. Automatic
construction of simple artifact-based business
processes. In Proc. of ICDT, 2009.

[27] M. R. Garey, R. L. Graham, and D. S.
Johnson. Some np-complete geometric
problems. In Proc. of STOC, 1976.

[28] R. Hull and J. Su. Tools for composite web
services: a short overview. SIGMOD Rec.,
34(2), 2005.

[29] D. Jurafsky, C. Wooters, J. Segal, A. Stolcke,
E. Fosler G. Tajchman, and N. Morgan. Using
a stochastic context-free grammar as a
language model for speech recognition. In
Proc. of ICASSP, 1995.

[30] J. G. Kemeny and J. L. Snell. Finite Markov
Chains. Springer, 1976.

[31] B. Kimelfeld and Y. Sagiv. Matching twigs in
probabilistic XML. In Proc. of VLDB, 2007.

[32] K. Lary and S. J. Young. The estimation of
stochastic context-free grammars using the
inside-outside algrithm. Computer, Speech and
Language, 4:35–56, 1990.

[33] Z. Manna and A. Pnueli. The temporal logic
of reactive and concurrent systems.
Springer-Verlag, 1992.

[34] T. Oates, S. Doshi, and F. Huang. Estimating
maximum likelihood parameters for stochastic
context-free graph grammars. In Proc. of ILP,
2003.

[35] T. Pavlidis. Linear and context-free graph
grammars. J. ACM, 19(1), 1972.

[36] P. L. T. Pirolli and J. E. Pitkow.
Distributions of surfers’ paths through the
world wide web: Empirical characterizations.
World Wide Web, 2(1-2), 1999.

[37] P. Senellart and S. Abiteboul. On the
complexity of managing probabilistic XML
data. In Proc. of PODS, 2007.

[38] L. Stockmeyer. The Complexity of Decision
Problems in Automata Theory and Logic.
PhD thesis, Massachusetts Institute of
Technology, 1974.


