Simple off the shelf abstractions for XML Schema *

Wim Martens
University of Dortmund

Frank Neven
Hasselt University and

Thomas Schwentick
University of Dortmund

transnational University of Limburg

1 Introduction

Although the advent of XML Schema [25] has ren-
dered DTDs obsolete, research on practical XML op-
timization is mostly biased towards DTDs and tends
to largely ignore XSDs (some notable exceptions
non-withstanding). One of the underlying reasons is
most probably the perceived simplicity of DTDs ver-
sus the alleged impenetrability of XML Schema. In-
deed, optimization w.r.t. DTDs has a local flavor and
usually reduces to reasoning about the accustomed
formalism of regular expressions. XSDs, on the other
hand, even when sufficiently stripped down, are re-
lated to the less pervious class of unranked regu-
lar tree automata [6, 19, 20, 21]. Recent results on
the structural expressiveness of XSDs [19], however,
show that XSDs are in fact much closer to DTDs
than to tree automata, leveraging the possibility to
directly extend techniques for DTD-based XML op-
timization to the realm of XML Schema. The goal
of the present paper is to present the results in [19]
in an easy and accessible way. At the same time, we
discuss possible applications, related research, and
future research directions. Throughout the paper,
we try to restrict notation to a minimum. We refer
to [19] for further details.

2 DTDs versus XSDs

We informally discuss the difference in expressive-
ness between DTDs and XSDs. We borrow nota-
tion and some examples from [3]. For our pur-
pose, an XML fragment is a (possibly empty) se-
quence <ai1> fi</a1> ... <ap>fn</ap> of elements

*Database Principles Column. Column editor: Leonid

Libkin.

where aq,...,a, are element names, and fi,..., fn
are themselves XML fragments. In particular, we
ignore attributes and data values as we disregard
schema features that constrain them.

Consider the XML document in Figure 1 that con-
tains information about store orders and stock con-
tents. Orders hold customer information and list
the items ordered, with each item stating its id and
price. The stock contents consists of the list of items
in stock, with each item stating its id, the quantity
in stock, and — depending on whether the item is
atomic or composed from other items — some sup-
plier information for the items of which they are
composed, respectively. It is important to empha-
size that order items do not include supplier infor-
mation, nor do they mention other items. Moreover,
stock items do not mention prices.

DTDs are incapable of distinguishing between or-
der items and stock items because the content model
of an element can only depend on the element’s name
in a DTD, and not on the context in which it is
used. For example, although the DTD in Figure 2
describes all intended XML documents, it also al-
lows supplier information to occur in order items and
price information to occur in stock items.

The W3C specification [25] essentially defines an
XSD as a collection of type definitions, which, if we
abstract away from the concrete XML representation
of XSDs, are rules like

(%)

that map type names to regular expressions over
pairs a[t] of element names a and type names ¢.
Throughout the article we use the convention that
element names are typeset in typewriter font, and
type names are typeset in italic. Intuitively, this par-

store — order[order]*, stock[stock]

ticular type definition specifies an XML fragment to
be of type store if it is of the form

<order> f; </order> ... <order> f,</order>

<stock> g </stock>

where n = 0; f1,..., fn are XML fragments of type
order; and g is an XML fragment of type stock. Each
type name that occurs on the right hand side of a
type definition in an XSD must also be defined in
the XSD, and each type name may be defined only
once.

Using types, an XSD can specify that an item is
an order item when it occurs under an order element
and is a stock item otherwise. For example, Figure 3
shows an XSD describing the intended set of store
documents. Notice in particular the use of the types
itemq and itemo to distinguish between order items
and stock items.

It is important to remark that the ‘Element Dec-
laration Consistent’” (EDC) constraint of the W3C
specification requires multiple occurrences of the
same element name in a single type definition to oc-
cur with the same type. Hence, type definition (x)
is legal, but

persons — (person[male] + person[female])*

is not, as person occurs both with type male and
type female. Of course, element names in different
type definitions can occur with different types (which
is exactly what yields the ability to let the content
model of an element depend on its context).

3 A formal abstraction

Fix a finite set EName and Types of element and
type names, respectively. The set of elements is
then defined as Elem(EName, Types) = {a[t] | a €
EName,t € Types}. As EName and Types will be al-
ways clear from the context, we simply write Elem
in the sequel.

We view an XML fragment f = fi--- f,, as a se-
quence of labeled trees where every tree consists of a
finite number of nodes, and every node v is assigned
an element name denoted by lab(v). We assume the

<store>
<order>
<customer>
<name>John Mitchell</name>
<email> j.mitchell@yahoo.com </email>
</customer>
<item> <id> I18F </id>
<price> 100 </price>
</item>
<item> ...
</order>
<order> ...
<stock>
<item>
<id> IG8 </id> <qty> 10 </qty>
<supplier> <name> Al Jones </name>
<email> a.j@gmail.com </email>
<email> a.j@dot.com </email>

</item> ... <item> ... </item>

</order> ... <order> ... </order>

</supplier>
</item>
<item>
<id> J38H </id> <qty> 30 </qty>
<item>
<id> J38H1 </id> <qty> 10 </qty>
<supplier> ... </supplier>
</item>
<item>
<id> J38H2 </id> <qty> 1 </qty>
<supplier> ... </supplier>
</item>
Kitem> ... </item> ... <item> ... </item>
</item>
<item> ... </item>
</stock>
</store>

Figure 1: Example XML document.

<!ELEMENT store (order®, stock)>
<!ELEMENT order (customer,item™)>
<!ELEMENT customer (name, email®)>
<VELEMENT item (id, (price +

(qty, (supplier + item™))))>
<!ELEMENT stock (item™)>
<!ELEMENT supplier (name,email*)>

Figure 2: A DTD describing the document in Fig-
ure 1.

root — store[store]

store — order[order]*, stock[stock]

order ~— customer|person],item[item]"

person — name[emp],email[emp]t

item; — id[emp],price[emp]

stock — item[itemno]T

itemo — id[emp],qty[emp],
(supplier[person] + item[items]™)

emp — ¢

Figure 3: An XSD describing the XML document in
Figure 1. The symbol € denotes the empty string.

existence of a virtual root root which acts as the
common parent of the roots of the different f;.

The set of regular expressions r, denoted by REG,
is given by the following syntax:

ro=celalrr|r+r || rt|r?

where € denotes the empty string and a € Elem.
Their semantics is the usual one and is therefore
omitted.?

Definition 1. An XSchema is a tuple S =
(EName, Types, p, ty) where EName and Types are fi-
nite sets of elements and types, respectively, p is a
mapping from Types to regular expressions over al-
phabet Elem, and, ty € Types is the start type.

We sometimes also refer to p(t) as the content
model associated to t. Later on, we are going to
restrict p to deterministic regular expressions as de-
fined below in Section 4.

Example 1. In Figure 3, EName = {store, order,
stock, customer, item, name, email, id, qty, price,
supplier}, Types = {root, store, order, person,
itemy, itemg, stock, emp}, root, and the
function p is depicted in arrow notation.

to =

A typing T of f is a mapping assigning a type
7(v) € Types to every node v in f (including

We note that XSDs actually allow numerical occurrence
operators (minoccurs and maxoccurs) and a mild form of shuf-
fling (ALL). As these are all definable within REG, we disregard
them for the moment.

the virtual root). For a node v with children
V1,...,0p, define child-string(r,v) as the typed
string lab(vy)[7(v1)] - - - lab(vy,)[7(vy)].

Definition 2 (validation). An XML fragment f
conforms to or is walid w.r.t. a schema S =
(EName, Types, p, tp), if there is a typing 7 of f such
that, for every node v, child-string(7, v) matches the
regular expression p(7(v)), and 7(root) = t;. We
then call 7 a valid typing.

Despite the clean formalization, the above defi-
nition does not entail a validation algorithm. One
possibility is to compute, for each node v in f, a set
of possible types A(v) € Types such that, for each
type t € A(v), the XML subfragment rooted at v is
valid w.r.t. the schema with start type . The XML
fragment is then valid w.r.t. S itself when the start
type to belongs to A(root). The sets A(v) can be
computed in a bottom-up fashion. Indeed, t € A(v)
iff (1) v is a leaf node and p(t) contains the empty
string; or, (2) v is a non-leaf node with children
v1,...,0, and there are t; € A(vy), ..., t, € A(vy)
such that lab(vi)[t1]---lab(vn)[tn] € p(t). A valid
typing can then be computed from the sets A by
an additional top-down pass through the tree. Al-
though this kind of bottom-up validation is a bit
at odds with the general concept of top-down or
streaming XML processing, the algorithm can be
adapted to this end (cf., for instance, [20, 22]).

Before we restrict XSchemas to obtain the corre-
sponding classes of DTDs and XSDs, we first discuss
deterministic regular expressions.

4 Deterministic regular expres-
sions

Not only the occurrence of types in rules is restricted
by the XML Schema specification, but also the shape
of the regular expressions in the rules themselves.
That is, regular expressions should be determinis-
tic. This constraint is often referred to as UPA: the
Unique Particle Attribution constraint. The intu-
ition behind the constraint is the following: the form
of the regular expression should allow to match each
symbol of the input string uniquely against a po-
sition in the expression when processing the input

string in one pass from left to right. That is, without
looking ahead in the string. For instance, the expres-
sion 71 = (a + b)*a is not deterministic as already
the first symbol in the string aaa can be matched
to two different a’s in 1. The equivalent expression
ro = b*a(b*a)*, on the other hand, is deterministic.
Unfortunately, not every non-deterministic regular
expression can be rewritten into an equivalent de-
terministic one [5]. Thus, semantically, the class of
deterministic regular expressions, which we denote
here by DREG, is a strict subclass of the regular lan-
guages. Moreover, it is not very robust, as it is not
closed under union, concatenation, or Kleene-star,
prohibiting an elegant constructive definition [5].

There has been quite some debate in the XML
community about the restriction to deterministic
regular expressions (cf., e.g., pg 98 of [26] and [17,
24]) as it does not serve its purpose: even for general
regular expressions simple validation algorithms ex-
ist that are as efficient as those for deterministic reg-
ular expressions. One reason to maintain this restric-
tion is to ensure compatibility with SGML parsers,
the predecessor of XML.

Deterministic regular expressions are character-
ized as ome-unambiguous regular expressions by
Briiggemann-Klein and Wood [5]. For a regular ex-
pression r over elements, we denote by 7 the regular
expression obtained from r by replacing, for each i,
the ith a-element in r (counting from left to right)
by a;. For example, 73 is bfa1(b5az)*.

Definition 3. A regular expression r is one-
unambiguous iff there are no strings wa;v and wa;v’
in L(T) so that i # j.

Deciding whether a regular expression r is one-
unambiguous can be done in quadratic time [4]. The
algorithm constructs the Glushkov Automaton G(r)
for r and checks whether it is deterministic.
nutshell, the states of G(r) are the positions of T
plus an initial state s.
position x; to y; if there is a string in which the
successive symbols z, y can be matched to x; and
yj, respectively. A state is accepting if the corre-
sponding position can match the final symbol of a
word. The Glushhov automata G(r1) and G(rq) are
depicted in Figure 4.

In a

There is a transition from

Figure 4: The Glushkov automata G(r1) and G(ra).
Note that G(rg) is deterministic whereas G(r;y) is
not.

It can be decided in EXPTIME whether there is a
deterministic regular expression equivalent to a given
regular expression [5]. If so, the algorithm can return
an equivalent deterministic expression of a size which
is double exponential.

5 DTDs and XSDs formalized

We restrict the general class of XSchemas to DTDs
and XSDs:

Definition 4. Let S = (EName, Types, p,ty) be a
schema. Then,

1. S is local when EName = Types and regular
expressions in p are defined over the alphabet
{a[a] | a € EName}; this simply means that the
name of the element also functions as its type.

2. S'is single-type when there are no elements a[t]
and aftz] in a p(t) with t; # to.

We now formally define the different classes of
XSchemas (as proposed in [20]):

Definition 5. e A DTD is alocal XSchema with
deterministic regular expressions.

e An XSD is a single-type XSchema with deter-
ministic regular expressions.

A Relax NG schema [7] can then be abstracted by
an XSchema.

6 Typing a schema

For general XSchemas, a valid typing is not neces-
sarily unique. Consider for instance the schema

root — alal]+ a[a?2]
al — bl[emp]

a2 — bl[emp]

emp — €

defining the fragment <a> where a can be
both assigned the type ¢! and a2. In addition, com-
puting a valid typing can not be achieved in one top-
down pass through the XML fragment. Consider for
instance the schema

root — alal]+ a[a?2]
al — bl[emp]

a2 — clemp]

emp — €

No type can be assigned to a before its child is vis-
ited. In contrast, the single-type restriction ensures
that XSDs can be uniquely typed in a top-down fash-
ion. To be precise, one-pass typing in a top-down
fashion means that the first time a node is visited a
type should be assigned (so only based on what has
been seen up to now) and that a child can be visited
only when its parent is already visited.

Theorem 1. /20, 19/ When an XML fragment f is
valid w.r.t. an XSD, then there is exactly one valid
typing which in addition can be computed in a one-
pass top-down fashion.

Proof. The theorem follow from a simple algorithm
to validate an XML fragment against a schema

S = (EName, Types, p,tp). Define 7(root) = t.
For every node v with children vy, ..., v, for which
7(v) is defined, let ¢; be the unique type such that
lab(v;)[ti] occurs in 7(v). Set 7(v;) = t;. When
child-string(v) ¢ p(7(v)) then reject as the docu-
ment is not valid, otherwise proceed as before. [

Theorem 1 has an interesting consequence. In a
scenario where XML data is processed as a stream,
the type of each element is determined when its
opening tag arrives. Consequently, any decisions de-
pending on the type of an element can be triggered
immediately. Similarly, parsing w.r.t. an XSD works
fine for documents in SAX-representation.

We mention that when UPA is enforced, the
single-type or EDC constraint is actually not nec-
essary to obtain unique one-pass top-down typing:
UPA alone already implies it (cf. Section 8.7 in
[19]). The reason being that any deterministic reg-
ular expression is restrained-competition and the
latter implies one-pass preorder and therefore also
top-down typing. Actually, the class of restrained-
competition XSchemas captures precisely the frag-
ment of XSchemas admitting one-pass preorder typ-
ing [19].

7 A type-concealed definition of
XSDs: DFA-based XSDs

From the proof of Theorem 1, it already becomes
apparent that the type of a node in a valid typing
w.r.t. an XSD S = (EName, Types, p,tp) only de-
pends on the type of its parent. That type in turn
only depends on its parent, and so on until the root
is reached. Actually, this type dependence can be
captured by a deterministic finite automaton (DFA).
Indeed, define a DFA which starts at the root in ini-
tial state/type top and moves from state/type t to
state/type t’ while reading a iff a[t'] occurs in p(t).
This view decouples types from the rules and hides
them in the automaton. We formalize this next. In
this respect, let child-string(v) be the string formed
by the labels of the children of v.

Definition 6. A DFA-based XSD is a tuple D =
(EName, A, \), where A is a DFA using the states

g - name
'.(;; person mp
supplier doiﬁ
l store | Stock \ stock J item ztemz
1tem
A(root) = store
A(store) = order*stock
M order) = customer item™
A(person) = name email®
A(item;) = 1id price
A(stock) = item™
A(itemy) = 1id qty (supplier + item™)
Aemp) = ¢

Figure 5: A DFA-based XSD equivalent to the XSD
in Figure 3.

Types and A is a function mapping states of A to
regular expressions in DREG over EName (so not
over Elem!). An XML fragment f is valid w.r.t. D if,
for every node v of f, child-string(v) € A(q), where
q is the state reached by A when started in its start
state on the path from root to v.

A DFA-based XSD for our running example is dis-
played in Figure 5.

The following Proposition (which is proved as
Lemma 7 in [11]) shows that the model of DFA-based
XSDs can be used without compromise in modeling
XML Schema.

Theorem 2. Any DFA-based XSD can be trans-
lated into an equivalent XSD in at most quadratic
time, and vice versa.

8 A type-free definition of XSDs:
pattern-based XSDs

As DTDs do not employ types, the content model
of a node is determined by its label. So, the context
which can be delineated by a DTD is simply the

element name of the node at hand. For a node v,
we denote by anc-str(v) the ancestor-string which is
given by the labels of the nodes on the path from root
to v. From the discussion in the previous section,
it becomes apparent that the context which can be
described by an XSD is restricted to the ancestor-
string of the node at hand and can be defined in a
regular way. By replacing the DFA in Definition 6
by regular expressions, we obtain a formalism closely
related to DTDs [19].

Definition 7. A pattern-based XSD P is a set {r1 L,
S1y.-+,"m Ls S;,} of rules, where all r; are in REG
and all s; are in DREG.

We refer to the r; and s; as the vertical and the
horizontal patterns, respectively. The following two
semantics for pattern-based XSDs have been consid-
ered [13].

Definition 8. e An XML fragment f is exis-
tentially valid with respect to a pattern-based
schema P if, for every node v of f, there is a
rule r L, s € P such that anc-str(v) matches r
and child-string(v) matches s.

e An XML fragment f is universally valid with
respect to a pattern-based schema P if, for every
node v of f, and each rule r L, s € P it holds
that anc-str(v) matches r implies child-string(v)
matches s.

A pattern-based schema for our running example
is shown in Figure 6. The reader might notice that in
this example the existential and the universal seman-
tics coincide. Though more convenient as a specifi-
cation mechanism than DFA-based XSDs, transla-
tion to and from XSDs is a bit more problematic as
shown by the following Theorem. In Section 9 we
exhibit fragments occurring in practice with better
behavior.

Theorem 3. 1. Translating a pattern-based XSD
under the existential or universal semantics to
an equivalent XSD requires double exponential
time [11].

2. Translating an XSD to an equivalent pattern-
based XSD under the existential or universal
semantics requires exponential time [19].

store

order® stock
customer item
name email™
id price
item™

id qty (supplier + item™)

e b

store L

store order L, +

store order customer L,
store order item L,
store stock Ly

store stock item™’ Ly

store stock item™ supplier L, name email®

store order item (id+price) L,

store order customer (name+email) L,

store stock item™ supplier (name+email) L,
store stock item™ (id+qty) L

M M M o™

Figure 6: A pattern-based XSD for the store exam-
ple.

9 XSDs in practice

The formal taxonomy presented in Definition 5 begs
the question to what extent the expressiveness of
DTDs and XSDs is actually used in practice. In
[19, 2], a substantial corpus of DTDs and XSDs
was harvested from the Web, including the Cover
Pages [9] incorporating high-quality schemas repre-
senting various standards such as the XML Schema
Specification, XHTML, UDDI, RDF and others.
The study in [19] mainly focused on expressiveness
in terms of typing while [2] together with [1] also
considered content models.

9.1 Local Typing

It turns out that out that the far majority (85%)
of the considered XSDs where in fact structurally
equivalent to a DTD: at most one type is associated
to every element name. So only the remaining 15%
of the XSDs use the typing mechanism to actually
define non-local classes of XML documents. Surpris-
ingly, in 90% of these cases, types only depend on
the parent context like in Figure 3 where an item has
type item; when its parent has label order and type
itemg otherwise. In the few remaining cases, types
depend on the grand- or the great grand-parent con-
text as for instance exemplified in Figure 7. The
interpretation is simple: a j' element can only oc-
cur as the great grandchild of a b element while a 52
element can only occur as the great grandchild of a
c element.

a — b[b] +c[c] 't — 3]

b — ele] d[d'] £[f] h? -]

¢ — ele]d[d?] £[f] it - k[k] (]
d* — g[g] n[r'] i[d] 7% — m[m]n[n]
d*> — glg] b[r*] i[i]

Figure 7: An XSD abstracted from the most com-
plicated XSD found in [19]: the type of j-elements
depends on their great grand-parent.

9.2 Content models

In [1] it was noted that in most regular expres-
sions each element name occurs at most once. This
observation lead to the definition of single occur-
rence reqular expressions (SORFEs). For instance,
a((b* + ¢)*d)* is a SORE while a(a + b)* is not as a
occurs twice. An earlier look at the same corpus of
DTDs and XSDs in [2] revealed that most (99%) reg-
ular expressions occurring in practical schemas are
in fact chain regular expressions (CHAREs).? Each
such expression is a SORE which can be written as a
sequence of factors fy - f,, where every factor is an
expression of the form (a; +---+ag), (a1 +---+ax)?,
(a1 + -+ +ag)t, or (a; + -+ + ax)*. Here, k > 1
and every a; is an element name. For instance, the
expression a(b + ¢)*d* (e + f)? is a CHARE, while
(ab + ¢)* and (a* + b?)* are not. Note that every
SORE, and therefore also every CHARE is determin-
istic (or one-unambiguous) as required by the XML
specification.

9.3 Implications

The discussion above implies that a large portion
of practical XSDs is captured by the fragment of
pattern-based XSDs where all vertical patterns are
restricted to //w and all horizontal patterns are
SOREs. Here, // is XPath’s descendant axis and
w is a path of element names. The pattern-based
XSD of Figure 6 using this notation is depicted in
Figure 8.

In [3] algorithms for learning this practical sub-
class of XSDs have been proposed. Furthermore, in

2The single-occurrence property was initially missed.

e Ly store
//store L, order® stock
//order L, customer item™
//customer L, name email®
//order/item L, id price
//stock L, item™
//stock/item L, id qty(supplier + item™)
//item/item L, id qty (supplier + item%)
//supplier L, name email®
//id L € //aty L € //price L ¢
//name L, € //email L, €

Figure 8: A pattern-based XSD for the store in
XPath notation.

strong contrast to general pattern-based schemas (cf.
Theorem 3), when assuming a mild disjointness cri-
terion, translating between existential and universal
semantics, and translating back and forth to single-
type XSchemas can be done in polynomial time [11].

10 Inexpressibility

Let t1,t2 be two valid XML fragments for a DTD d
and let v; and ve be nodes of ¢; and t9, respectively,
with the same element name a. It is not hard to
see that the fragment resulting from replacing the
subtree t} rooted at v1 in ¢; by the subtree ¢}, rooted
at v in to is again valid w.r.t. d. We say that DTDs
(or the sets of fragments they define) have the label-
guarded subtree exchange property. Figure 9 gives an
illustration.

t ty
eT eT = eT
vy V9

Figure 9: Label-guarded subtree exchange. Nodes
v1 and vy are both labeled with the same label.

It turns out that XSDs also have a subtree ex-
change property, but this time it is ancestor-guarded,
i.e., a subtree exchange can take place if v; and vo
have the same ancestor-string.

The importance of the characterization of XSDs
by a subtree-exchange property stems from the fact
that inexpressibility results can be formally proved

rather than vaguely stated: a set of XML frag-
ments lacking this property can not be character-
ized by any XSD. For instance, a shortcoming at-
tributed to XSDs is their inability to express cer-
tain co-constraints [8]. A simple example of such
a co-constraint is the following: there must be an
order-element with at least two item-children. Us-
ing the ancestor-guarded subtree exchange property,
it is very easy to prove that this co-constraint cannot
be expressed with XSDs. Indeed, let f; and fs be
two XML fragments with two orders each. In f; the
first order has two items and the second order has
one item. In f5 the first order has one items and the
second order has two items. By replacing the first
order of fi by the first order of fy we obtain an XML
fragment without two-item orders.

Finally, in the same spirit it can be easily shown
that XSDs, just as DTDs, lack some of the basic
closure properties: they are not closed under union
nor under negation.

11 Optimization

Because of the correspondence with regular tree au-
tomata, the inclusion and equivalence of XSchemas
is EXPTIME-complete [23], even when regular expres-
sions are restricted to be deterministic [18]. For
single-type XSchemas, these decision problems re-
duce to the corresponding decision problems on the
class of allowed regular expressions [18, 19] and are
therefore in polynomial time for XSDs. Further-
more, given an XSchema, it can be decided in EXP-
TIME whether an equivalent XSD or DTD exist. If
so, an equivalent schema can also be constructed in
EXPTIME [19].

12 Conclusions

We presented a detailed account of the structural
expressiveness of XSDs. The most important mes-
sage being that, in contrast to what is mostly as-
sumed, XML Schema is much closer to DTDs than
to tree automata. In brief, it can be seen as DTDs
extended with vertical regular expressions. Further-
more, both vertical and horizontal expressions can

be greatly simplified to capture all practical XSDs.

An important omission from the abstraction pre-
sented here are the counting and shuffling expres-
sions allowed in content models. These have a seri-
ous impact on the complexity of decision problems

[10,

12, 14]. Moreover, one-unambiguity for such ex-

pressions is not yet fully understood [15, 16].

Acknowledgments

We thank Wouter Gelade for his comments.

References

(1]

G.J. Bex, F. Neven, T. Schwentick, and K. Tuyls. In-
ference of concise DTDs from XML data. In VLDB,
pages 115-126, 2006.

G.J. Bex, F. Neven, and J. Van den Bussche. DTDs
versus XML Schema: A practical study. In WebDB,
pages 79-84, 2004.

G.J. Bex, F. Neven, and S. Vansummeren. Inferring
XML Schema Definitions from XML data. In VLDB,
pages 998-1009, 2007.

A. Briiggemann-Klein. Regular expressions into
finite automata. Theoretical Computer Science,
120(2):197-213, 1993.

A. Briiggemann-Klein and Wood D. One-
unambiguous regular languages. Information and
Computation, 140(2):229-253, 1998.

A. Briiggemann-Klein, M. Murata, and D. Wood.
Regular tree and regular hedge languages over un-
ranked alphabets: Version 1, april 3, 2001. Tech-
nical Report HKUST-TCSC-2001-0, The Hongkong
University of Science and Technology, 2001.

J. Clark and M. Murata. RELAX NG Specification.
OASIS, December 2001.

C. Sacerdoti Coen, P. Marinelli, and F. Vitali.
Schemapath, a minimal extension to XML Schema
for conditional constraints. In WWW, pages 164—
174, 2004.

R. Cover. The
http://xml.coverpages.org/, 2005.

Cover pages.

W. Gelade, W. Martens, and F. Neven. Optimizing
schema languages for XML: Numerical constraints
and interleaving. In ICDT, pages 269-283, 2007.

[11]

[12]

[13]

[14]

[18]

[19]

[20]

[26]

W. Gelade and F. Neven. Succinctness of pattern-
based schema languages for XML. In DBPL, 2007.

G. Ghelli, D. Colazzo, and C. Sartiani. Efficient in-
clusion for a class of XML types with interleaving
and counting. In DBPL, 2007.

G. Kasneci and T. Schwentick. The complexity of
reasoning about pattern-based XML schemas. In
PODS, pages 155-164, 2007.

P. Kilpeldinen and R. Tuhkanen. Regular expressions
with numerical occurrence indicators — preliminary
results. In SPLST, pages 163-173, 2003.

P. Kilpeldinen and R. Tuhkanen. Towards efficient
implementation of XML schema content models. In
DOCENG, pages 239241, 2004.

P. Kilpeldinen and R. Tuhkanen. One-unambiguity
of regular expressions with numeric occurrence indi-
cators. Inf. Comput., 205(6):890-916, 2007.

M. Mani. Keeping chess alive — Do we need 1-
unambiguous content models? In Extreme Markup
Languages, Montreal, Canada, 2001.

W. Martens, F. Neven, and T. Schwentick. Com-
plexity of decision problems for simple regular ex-
pressions. In MFCS, pages 889-900, 2004.

W. Martens, F. Neven, T. Schwentick, and G.J. Bex.
Expressiveness and complexity of XML Schema.
ACM Transactions on Database Systems, 31(3):770—
813, 2006.

M. Murata, D. Lee, M. Mani, and K. Kawaguchi.
Taxonomy of XML schema languages using formal
language theory. ACM Transactions on Internet
Technology, 5(4):1-45, 2005.

F. Neven. Automata theory for XML researchers.
SIGMOD Record, 31(3):39-46, 2002.

L. Segoufin and V. Vianu. Validating streaming
XML documents. In PODS, pages 53-64, 2002.

H. Seidl. Deciding equivalence of finite tree au-
tomata. SIAM Journal on Computing, 19(3):424—
437, 1990.

C.M. Sperberg-McQueen. XML Schema 1.0: A lan-
guage for document grammars. In XML — Confer-
ence Proceedings, 2003.

C.M. Sperberg-McQueen and H. Thompson. XML
Schema. Technical report, World Wide Web Consor-
tium, 2005. http://www.w3.org/XML/Schema.

E. van der Vlist. XML Schema. O’Reilly, 2002.

