
Algorithms for regular languages that use algebra

Mikołaj Bojańczyk
∗

University of Warsaw

ABSTRACT

This paper argues that an algebraic approach to regular
languages, such as using monoids, can yield efficient
algorithms on strings and trees.

1. INTRODUCTION

A practically minded reader might have doubts
about using monoids and other algebras for regu-
lar languages, instead of automata. The goal of
this paper is to show that algebra is actually quite
straightforward and can be practically useful in al-
gorithms for words and trees.

2. MONOIDS

A monoid is a method of recognizing regular lan-
guages, which is an alternative to automata and
regular expressions. We illustrate the differences
between recognizing a language with a determinis-
tic finite automaton and a monoid.

In a deterministic automaton, a state q ∈ Q rep-
resents a prefix of an input word:

The state captures all the relevant information that
the automaton needs to know about the prefix. This
can be stated as the following compositionality prin-
ciple: swapping a prefix with another prefix that
gives the same state does not affect the run of an au-
tomaton on the remaining part of the input. There-
fore, a prefix can be abstracted away as just its
state:

∗Supported by FET-Open grant agreement FOX, num-
ber FP7-ICT-233599. I would like to thank Jakub Łącki
and an anonymous referee for comments that improved
this paper.

In the monoid approach, instead of an automa-
ton, we have a function α, which maps every word
w to an element of a set M , called the monoid. The
idea is that the function α can be applied not just
to prefixes of the input, but also to infixes:

The values assigned by the function α to an infix
should capture all the relevant information about
the infix. This can be stated as the following com-
positionality principle: swapping an infix with an-
other infix of the same value does not affect the
value of the whole input. In other words,

α(v) = α(v′) implies α(w1vw2) = α(w1v
′w2)

holds for all words v, v′, w1, w2 ∈ A∗. A function
that is compositional in the above sense is called a
monoid morphism. In a monoid morphism α, an
infix of the input can be abstracted away by its
value under the monoid morphism:

We say that a monoid morphism α : A∗ → M
recognizes a language L ⊆ A∗ if there is some set
F ⊆ M of accepting elements such that a word
belongs to L if and only if it is mapped to F . A
monoid morphism can recognize several languages,
depending on the choice of F .

Examples of monoid morphisms and languages
that they recognize include:

• The function {a, b}∗ → {0, 1} which maps a
word to 1 if and only if it contains some a. If
we choose the accepting set F as {0}, then the
morphism recognizes the language b∗.

• The function which maps a word to its length.
The monoid used is not finite. This morphism

SIGMOD Record, June 2012 (Vol. 41, No. 2) 5

recognizes, e.g. the set of words of prime length.
We are not interested in this kind of monoid
morphism, because we only care about finite
monoids.

• For n ∈ N, the function

αn : {a, b}∗ → {a, b}≤n

which maps words of length < n to themselves,
and longer words to their prefix of length n.
This morphism recognizes the language “the n-
th letter is a”. The set {a, b}≤n is exponential
in n; it is not difficult to see that this language
cannot be recognized using a smaller set. A de-
terministic automaton for this language needs
only n + 2 states, since it corresponds to the
function

βn : {a, b}∗ → {a, b} ∪ {0, . . . , n− 1}

which maps words of length < n to their length,
and longer words to their n-th letter. The
function βn is not a monoid morphism, be-
cause

α(an−1) = α(bn−1) but α(aan−1) = α(abn−1)

A corollary of compositionality is that for every
words w1, w2, the value α(w1w2) depends only on
the values of α(w1) and α(w2). The operation

(α(w1), α(w2)) ∈ M2 �→ α(w1w2) ∈ M

is called the monoid operation in M . If the monoid
morphism is surjective, the operation is defined on
all pairs in M2. It is not difficult to see that because
of compositionality, the monoid operation must be
associative, which means that the result of the monoid
operation for a sequence m1, . . . ,mk does not de-
pend on its bracketing. Finally, the image of the
empty word is a neutral element for the monoid op-
eration.

A monoid morphism is uniquely represented by:
the images of single letters and the empty word, and
the multiplication table for the monoid operation.

From automata to monoids and back. Monoid mor-
phisms are just another way of talking about regular
languages.

Theorem 1. A language L ⊆ A∗ is regular if
and only if it is recognized by a morphism into a
finite monoid.

Proof. Suppose that L is recognized by a monoid
morphism α : A∗ → M . Then one constructs an au-
tomaton, with states M , which maps every infix of
the input to its value under α.

A bit more effort is required to go from an au-
tomaton to a monoid. The construction even works
for nondeterministic automata. Consider a nonde-
terministic automaton with states Q. Consider a
function which maps a word w ∈ A∗ to the set

{(p, q) ∈ Q2 : some run over w goes from p to q}.

It is not difficult to see that this mapping is com-
positional in the monoid sense.

As seen in the above proof, the conversion from a
monoid to a deterministic automaton, is linear. In
the other direction, sometimes the exponential ex-
plosion from the theorem’s proof cannot be avoided,
as witnessed by the example “the n-th letter is a”.
Languages, for which the monoid has approximately
the same size as a nondeterministic automaton in-
clude “the word contains at least n letters a”.

The exponential blowup from automata to monoids
is a problem for some algorithms; but it will not be a
problem for the algorithms presented in this paper.

Expository Note. Typically, monoids are introduced
as follows. One defines a monoid as an abstract al-
gebraic structure, which is a carrier M equipped
with an associative binary operation and a neutral
element. Then one observes that the set of all words
is a monoid. Finally, one defines a monoid mor-
phism α : A∗ → M to be any function which pre-
serves the structure of a monoid, namely the monoid
operation and the monoid identity.

In this paper, a monoid is presented in the oppo-
site order: we have seen that any surjective mapping
from words to a set M which is compositional in the
appropriate sense uniquely determines a structure
of a monoid in its image M . The reason for this
choice is that sometimes it is easier to think of a
compositional mapping than an abstract algebraic
structure.

3. ALGORITHMS FOR WORDS

As explained in the previous section, a monoid
morphism assigns values to all infixes of an input
word, and not just the prefixes. This means that a
monoid morphism is a more flexible structure, and
it is better suited to some algorithms. We illustrate
this on several examples.

3.1 Incremental updates

We begin with a very straightforward algorithm,
which introduces a data structure that is heavily
used in the rest of the paper. The data structure is
a hierarchical decomposition of the input, decorated
by values of a monoid morphism.

6 SIGMOD Record, June 2012 (Vol. 41, No. 2)

Here is the problem we want to solve. Let L ⊆ A∗

be a regular language of words. We begin with some
initial word in a1 · · · an ∈ A∗. A user produces a se-
quence of edits of the form “change the label of letter
i ∈ {1, . . . , n} to a”. We want an algorithm which
can tell, after a sequence of edits, if the current
state of the word belongs to L. This problem can
be solved with linear preprocessing and logarithmic
cost per edit.

Theorem 2. Let L ⊆ A∗ be a regular language.
There is an algorithm which:

1. inputs an initial word and builds a data struc-
ture in linear time;

2. receives a sequence of edits and updates the
data structure in logarithmic time for each edit;

3. can tell in constant time, using the data struc-
ture, if the word after the edits belongs to L.

Proof. The algorithm uses a straightforward tree
decomposition approach. Let a1 · · · an ∈ A∗ be the
initial word. Divide the set of all positions in the
word into two infixes, of approximately the same
lengths, and then do this division recursively for the
infixes. As a result, we get a tree decomposition of
the initial word, as depicted in the following picture,
where the circles denote positions in the word, and
the triangles denote nodes in the tree (and nodes
correspond to infixes):

.

In general, if the length of the initial word is not
a power of two, then not all leaves have the same
depth, but the maximal depth is still logarithmic.The
tree has at most 2n nodes and can be computed in
linear time (of course, we store the infixes by keep-
ing their first and last positions).

Suppose that α is a monoid morphism which rec-
ognizes the language L. Such a monoid morphism
exists by Theorem 1. For a node x of the tree, let

us denote by wx the infix of the word that corre-
sponds to x. Because a node x with children y and
z satisfies

α(wx) = α(wy) · α(wz), (1)

we can do leaf-to-root pass through the tree t and
compute in time linear in |w| the values

{α(wx)}x∈nodes(t).

The tree t together with the values (1) is our data
structure. We have just argued that it can be com-
puted in linear time.

Consider an edit operation, which changes the
label of letter i ∈ {1, . . . , n}. The infixes in the data
structure that contain i form a root-to-leaf path in
the tree t, which is illustrated by a darker shade of
gray in the following picture:

This path has logarithmic length. We only need to
change the labels for these infixes, in a leaf-to-root
pass. We can do this in logarithmic time using (1).

Finally, if we want to know if the current word
belongs to the language L, we just need to look at
the root of the tree, and see if the monoid element
stored there belongs to the accepting set.

When describing the running time of the algo-
rithm in Theorem 2, we assumed that the language
L was fixed. Suppose now that the language L is
also given on the input, and represented by a non-
deterministic automaton with states Q. What is
the running time of the algorithm, in terms of both
the input word a1 · · · an and the state space Q? We
claim that the data structure is built in time

poly(Q) ·O(n),

and each update operation is processed in time

poly(Q) · log n.

This is despite the fact that the algorithm uses
monoids, and that monoids can be exponentially

SIGMOD Record, June 2012 (Vol. 41, No. 2) 7

larger than automata. The reason is that the algo-
rithm does not need to compute the whole monoid.
It only needs to store elements of the monoid in the
tree nodes; and the space to store a monoid element
is logarithmic in the size of the monoid, and there-
fore polynomial in Q. The algorithm also needs to
consult the multiplication table of the monoid, but
this multiplication table can be generated on-the-
fly, in time polynomial in Q.

3.2 Evaluation of binary queries

In this section, we adapt the algorithm from The-
orem 2 to evaluate binary queries on words.

Binary queries. A binary query on words over al-
phabet A is a function ϕ, which maps every word
w ∈ A∗ to a set of pairs of nodes in w. Typical
queries include:

• Select pairs x ≤ y such that there is at least
one a in the interval {x, . . . , y}.

• Select pairs x ≤ y such that there an even
number of a’s in the interval {x, . . . , y}.

In this paper, we are interested in regular binary
queries, which are the query equivalent of regular
languages. Just like for regular languages, there are
multiple ways of defining regular queries. We use a
definition based on monoids.

Binary query recognized by a monoid morphism.
Let x, y be two distinct positions in a word w. There
are two possible scenarios:

1. x is before y. In this case, the positions of the
word can be partitioned into: x, y, and three
infixes as in the picture below:

2. The second scenario is when x is after y. A
decomposition similar to the one in the first
scenario exists.

Suppose that α : A∗ → M is a monoid morphism.
We define the α-type of a pair (x, y) of distinct po-
sitions in a word w ∈ A∗ to be the following infor-
mation: which scenario holds, what are the labels
of x and y, what are the values under α of the three
infixes in the scenario. The α-type belongs to

{<,>} ×A2 ×M3

A monoid morphism is said to recognize a binary
query if one can choose a subset F of accepting α-
types, such that for every word and every pair of
positions, the pair of positions satisfies the query if
and only if its α-type belongs to F .

We say that a binary query is regular if it is recog-
nized by some monoid morphism. The examples at
the beginning of Section 3.2 are regular. Also, the
class of regular binary queries coincides with the
class of binary queries that can be defined by for-
mulas of monadic second-order logic with two free
first-order variables.

Theorem 3. Let ϕ be a regular binary query.
There is an algorithm which:

1. inputs a word w ∈ A∗ and builds a data struc-
ture in linear time;

2. using the data structure, answers in logarith-
mic time questions of the form: is the pair
(i, j) selected by ϕ?

Proof. Suppose that the binary query is recog-
nized by a monoid morphism α : A∗ → M . We use
the same data structure as in Theorem 2.

The key observation is the following one: every
infix v of the input word can be decomposed as a
concatenation

v = v1 · · · vk
of at most logarithmically many infixes v1, . . . , vk
that correspond to nodes in the data structure. This
decomposition can be computed in logarithmic time,
given the first and last position in the infix v. By
this observation, we can use the data structure to
compute the α-type of any pair of positions in log-
arithmic time.

4. SIMON FACTORIZATION

The algorithms we have seen so far used a tree-
like decomposition of the input word, of logarithmic
depth. What if we could have a constant depth
decomposition, with the depth only depending on
the monoid morphism, and not on the input word?

In this section, we provide such a constant depth
decomposition. The underlying result is called the
Simon Factorization Forest Theorem. This section
is where monoids and their theory start to do some
real work.

Simon factorization trees. Let α : A∗ → M be a
monoid morphism. Let w be a word with n posi-
tions. A Simon α-factorization tree is similar to the
tree from Theorem 2 in the following ways:

8 SIGMOD Record, June 2012 (Vol. 41, No. 2)

• Every node of x of the tree corresponds to an
infix wx of the word w. The leaves correspond
to single letters; the root corresponds to the
whole word w.

• If a node x has children x1, . . . , xn then

wx = wx1 · · ·wxn .

• Every node x stores the value α(wx) ∈ M .

The difference is that in a Simon factorization tree,
a node can have more than two children. Having
an unbounded number of children is necessary if we
want to have trees of constant depth for words of
unbounded length. In a Simon factorization tree,
there is a restriction for nodes x with three or more
children:

• If x has at least three children x1, . . . , xn, then

α(wx1
), . . . , α(wxn

)

are the same element, call it m ∈ M . Fur-
thermore, m is idempotent, which means that
m ·m = m. It follows that

α(wx) = α(wx1
) · · ·α(wxn

) = m · · ·m = m.

Consider a Simon α-factorization tree as in the
definition above. Let x and y be siblings such that
y is to the right of x. Let

x = z1, . . . , zk = y

be all of the siblings between x and y. Define

wx...y = wz1 · · ·wzk .

Observe that the monoid element α(wx...y) can be
computed in constant time; as a function of x and y.
Indeed, when k = 1, 2, then α(wx...y) is α(wx) and
α(wx) · α(wy), respectively. The more interesting
case is when k ≥ 3. In this case, the parent of x
and y has at least three children. Let m be the
(idempotent) monoid element stored in the parent.
By the definition of Simon factorization trees,

α(wx...y) = α(wz1) · · ·α(wzk) = m.

Lemma 1. For every infix v one can compute a
sequence of sibling pairs

(x1, y1), . . . , (xm, ym)

such that

v = wx1...y1
· wx2...y2

· . . . · wxm...ym

The number of sibling pairs and the time to compute
them is proportional to the depth of the tree.

Proof by picture.

Corollary 1. The value under α of an infix can
be computed in time linear in the depth of the tree1.

Proof. We use the decomposition of the infix
from Lemma 1. For each sibling interval, its value
under α can be computed in constant time: either it
corresponds to at most two nodes, or its value is the
same as the value in the parent of the interval.

Constant depth. The key result about Simon fac-
torization trees is that they can be built so that
their height depends only on the monoid, and not
the length input word:

Theorem 4. Let α : A∗ → M be a monoid mor-
phism. Every word w ∈ A∗ has a Simon α-factorization
tree of depth at most 3|M |, which can be computed
in time poly(M) · |w|.

The proof of this theorem, although not difficult,
relies on results about monoids that cannot be easily
recovered by treating monoids as a decoration on
automata.

From Corollary 1 and Theorem 4 it follows that
the algorithm from Theorem 3 can be improved
from logarithmic time to constant time query eval-
uation:

Theorem 5. Let ϕ be a regular binary query.
There is an algorithm which:

1. inputs a word w ∈ A∗ and builds a data struc-
ture in linear time;

2. using the data structure, answers in constant
time questions of the form: is the pair (i, j)
selected by ϕ?

Proof. The same proof as for Theorem 3, but
use Corollary 1 to compute the values of infixes.

1By adding accelerating pointers, this can be improved
to time logarithmic in the depth of the tree, see [4]

SIGMOD Record, June 2012 (Vol. 41, No. 2) 9

Incremental updates. We have just shown how to
use Theorem 4 to improve the algorithm for binary
query evaluation. What about the algorithm for
incremental updates? Could Simon factorization
trees be used to get an algorithm that processes ed-
its in constant time? Unfortunately [6] shows that
some languages require at least

log n

log log n

operations per edit.

4.1 References

A survey on the Simon factorization theorem,
and some other applications for algorithms, can be
found in [3]. The original version of Theorem 4 is
from [9]. The 3|M | bound on the depth of the fac-
torization tree, which is optimal, comes from [7]. A
version of the theorem where the factorization tree
is constructed by a deterministic left-to-right au-
tomaton is shown in [5]. The case when the monoid
is obtained from a nondeterministic automaton is
studied in [4].

5. REGULAR TREE LANGUAGES

We now move from regular languages of words to
regular languages of trees. We used node-labelled,
unranked (which means that there is no bound on
the number of children), sibling-ordered trees, which
are a common model for XML documents.

Nondeterministic tree automata. A nondeterminis-
tic tree automaton is given by the following ingre-
dients:

1. An input alphabet A;

2. A set of states Q, with a distinguished accept-
ing subset F ⊆ Q of root accepting states.

3. A finite set δ of transitions. Each transition
is a triple (q, a, L) where q ∈ Q, a ∈ A, and
L ⊆ Q∗ is a regular language.

Of course, when representing such an automaton,
one needs to choose some representation for the reg-
ular word languages in the transitions, e.g. by using
regular expressions or maybe nondeterministic word
automata. This choice of representation influences
the complexity of algorithms that deal with the au-
tomata.

Consider an input tree t. An run of such an au-
tomaton is a labeling ρ : nodes(t) → Q such that for
every node x with children x1, . . . , xn written from
left to right, there exists a transition (q, a, L) ∈ δ
such that the run maps x to q, the label of x is a, and

the language L contains the word ρ(x1) · · · ρ(xn).
In the special case when x is a leaf, the language L
should contain the empty word. This special case
explains why initial states are not needed in the
definition of the automaton.

A tree is accepted if there is a run where the root
is mapped to a root accepting state. The language
recognized by an automaton is the set of accepted
trees. A tree language is called regular if it is rec-
ognized by some automaton.

Just like for regular word languages, the class of
regular tree languages is very robust and can be
described in many other equivalent ways, including
deterministic/alternating automata, Myhill-Nerode
equivalence and monadic second-order logic2.

6. FOREST ALGEBRA

Just as in the case of words, an automaton can
be seen as a device which assigns a value to parts
of its input. In the case of nondeterministic tree
automaton, the parts which get a value are subtrees,
such as in the following picture:

Since we are using a nondeterministic automaton
model, one should think of a subtree as being mapped
to a set of states.

Forests. Subtrees are not general enough for the
purposes of some of the algorithms we use. They
suffer from the same problems as prefixes (as op-
posed to infixes) for words, together with some new
problems. For instance, if you are only allowed to
use subtrees, then how are you going to hierarchi-
cally decompose a tree with one root and many chil-
dren, such as the one below?

That is why our basic object of interest will not be a
subtree, but an (ordered) forest, which is an ordered
2One of the choices of definition that does not lead to
regular tree languages is the very natural model of deter-
ministic root-to-leaves automata. Deterministic leaves-
to-root automata, on the other hand, are equivalent to
nondeterministic ones, and therefore to regular tree lan-
guages.

10 SIGMOD Record, June 2012 (Vol. 41, No. 2)

sequence of trees. In other words, a forest is a tree
with multiple (ordered) roots. Inside a bigger forest
we can find a smaller forest, by distinguishing a set
of nodes called forest zone. A forest zone is a set of
nodes in a forest which is closed under descendants,
and such that the roots of the zone (which means
the least nodes with respect to the ancestor rela-
tion) form a sequence of consecutive siblings. Here
is a picture of a forest zone inside a tree

Contexts. Forests alone are also not general enough
for the purposes of our algorithms. Recall that in
Theorem 2, we used a data structure where each
infix was split into two infixes, and so on recursively.
This will not work for forests — for instance a tree
cannot be split into two forests in any way. That is
why we use a second kind of object, which is called
a context. Formally, a context is a forest with one
distinguished leaf, which is called a port, as in the
following picture:

The idea is that the port can be filled by any forest.
After the port in the picture above is filled by a
forest with n roots, then parent of the port will
have n+ 2 children (because there are already two
siblings of the port).

A context can be seen as a part of a forest, by
distinguishing a set of nodes called context zone. A
context zone inside a forest is defined as a difference
of two forest zones X − Y . Here is a picture:

Partitioning zones. We claim that forest and con-
text zones are general enough to do decompositions.
As a first example, consider the complement of a
(forest or context) zone. Although the complement
is not necessarily a zone itself, it can be partitioned
into at most two zones. The following pictures illus-
trates a forest (respectively, context) zone in light
gray, and its complement in darker gray.

Generally speaking, since zones are sets of nodes,
we can do the boolean operations on them: union,
intersection and complementation. Although the
result of a boolean combination of zones is not nec-
essarily a zone itself, it can be partitioned into a
small number of zones, as the following lemma shows.

Lemma 2. A boolean combination of n zones can
be partitioned into O(n) zones.

Substitution. Suppose that we have a forest t and a
context C. If we distinguish a context zone X inside
t, then we can replace the contents of that context
zone by C, with the result being called t[X := C].
This process is illustrated below:

SIGMOD Record, June 2012 (Vol. 41, No. 2) 11

In general, there are four kinds of substitution: the
enclosing object can be a context or a forest, and
the substituted object can be a context or forest.

Forest algebra morphism. We now introduce for-
est algebra. Forest algebra is for forests and con-
texts, as monoids are for infixes. Like we did for
monoids, we focus on the morphisms. A forest al-
gebra morphism over the alphabet A consists of two
sets (H,V) and functions:

1. a function αH from forests over A to H;

2. a function αV from contexts over A to V ;

which are compositional in the following sense. Let
t be a forest, X a context zone inside t, and let C
and C ′ be two contexts. Then

αV (C) = αV (C
′) implies

αH(t[X := C]) = αH(t[X := C ′]).

Likewise for the other three kinds of substitutions.
In other words, all we need to know about a zone
(forest or context) is its value under αH or αV .

A forest algebra morphism can be used to recog-
nize a set of forests. This is done by distinguishing
an accepting subset F ⊆ H; the recognized lan-
guage is then the set of forests that are mapped to
F by the morphism. If you want to recognize a tree
language, you should make sure that only trees are
mapped to elements of F .

The following theorem shows that forest algebras,
as a recognizing device for tree languages, are equiv-
alent to automata.

Theorem 6. A tree language is recognized by a
nondeterministic tree automaton if and only if it is
recognized by a forest algebra morphism.

As in the word case, there is a (singly) exponen-
tial blowup when going from a nondeterministic au-
tomaton to a forest algebra morphism.

6.1 References

For a survey on regular tree languages with a
database angle, see [8]. A discussion of forest alge-
bra and other algebras for trees can be found in [2].

7. ALGORITHMS FOR TREES

In this section, we show how forest algebra can
be used to generalize from words to trees the algo-
rithms that we have seen in Section 3.

7.1 Hierarchical decompositions of forests

The data structure that we used in Section 3 was
a hierarchical decomposition, where the word was
split into halves, quarters, and so on. We now show
that a similar decomposition is possible for forests.

Lemma 3. Every (forest or context) zone X can
be partitioned into at most four (forest or context)
zones such that each of the parts has at most 2/3·|X|
nodes.

Proof. Let n be the size of X.
We say that a node x ∈ X is small if at most

one third of the nodes of X are descendants of x.
Suppose that not all nodes in X are small (the de-
generate case when all nodes are small is treated
the same way). There must be a node x ∈ X which
is not small, but which has only small children, call
them x1, . . . , xk. For each i ∈ {1, . . . , k}, define Di

to be the nodes in X that are (not necessarily strict)
descendants of one of the nodes x1, . . . , xi. The set
D1 has at most n/3 nodes and the set of Dk has at
least n/3 − 1 nodes, because otherwise the parent
x would be small. Take i to be the first index such
that Di has at least n/3 nodes. Then

n

3
≤ |Di| <

2n

3

because the difference between consecutive sizes of
Di is at most n/3.

We now show the decomposition.

• X is a forest zone. We partition X into the for-
est zone Di and the context zone X−Di. Both
parts have between a third and two thirds the
nodes.

• X is a context zone, which means that X is the
difference Y −Z of two forest zones. There are
two cases to consider.

12 SIGMOD Record, June 2012 (Vol. 41, No. 2)

– Di is a context zone, which means that
Z ⊆ Di. In this case we decompose X
into two context zones Di and X −Di.

– Di is a forest zone. In this case, the set
X − Di, which itself is not a zone, can
be partitioned into at most three zones,
all of which have at most one third of the
nodes.

Corollary 2. Let t be a forest. There exists
exists a tree s, where each node x is labelled by a
(forest or context) zone in t such that

• The root of s is labelled by the set of all nodes
in t.

• Leaves of s are labelled by singletons.

• Let x be a non-leaf node of s, and let x1, . . . , xk

be its children. Then k ≤ 4, and the zones in
the labels of x1, . . . , xk form a partition of the
zone in the label of x.

• The depth of s is logarithmic in the size of X.

Proof. Apply Lemma 3 to the zone contain-
ing all nodes, and then recursively apply the same
lemma to the resulting zones. Each time, the size
of the zone decreases to at most 2/3, so the process
creates a tree of depth at most log3/2 n.

7.2 Incremental updates

Using the hierarchical decomposition from Corol-
lary 2, we can generalize to trees the algorithms
from Section 3. The algorithm for incremental up-
dates for tree languages is exactly the same as in
the case of words. We just use the data structure
given in Corollary 2.

7.3 Binary queries on forests

As in Section 3, we can use the hierarchical de-
composition to evaluate binary queries. Most of the
discussion in this section is devoted to defining reg-
ular binary queries for trees; once these are defined,
a straightforward application of the hierarchical de-
composition can be used to evaluate them.

In this section, we consider regular binary queries
on trees (actually, on forests). Let x, y be two nodes
in a forest t. There are four possible scenarios for
their relative positions in the forest.

1. The first scenario is when x is an ancestor of
y. In this case, the nodes of the forest can be
partitioned into: x, y, two context zones and
one forest zone, as in the picture below:

2. The second scenario is when x is a descendant
of y. A decomposition similar to the one in
the first scenario can be found.

3. The third scenario is when x and y are incom-
parable with respect to the descendant rela-
tion, but x comes first in document order. Let
z be the closest common ancestor of x and y.
In this case the complement of {x, y} can be
partitioned into three context zones and two
forest zones, as in the following picture:

4. There is a degenerate variant of the third sce-
nario, when x and y are descendants of differ-
ent roots, and z does not exist. In this degen-
erate case when z does not exist, the upper-
most context zone is empty.

5. The fifth scenario is when x and y are incom-
parable with respect to the descendant rela-
tion, but y comes first in document order. A
decomposition similar to the one in the third
scenario can be found.

6. The sixth scenario is the degenerate version of
the fifth.

Suppose that α is a forest algebra morphism. Then
type α-type of a pair of nodes (x, y) in a forest t
consists of the following information:

SIGMOD Record, June 2012 (Vol. 41, No. 2) 13

• the labels of x and y;

• which scenario holds;

• for the appropriate scenario, the values assigned
by α to the zones

A query is said to be recognized by α if there is
a set F of α-types such that for every forest and
pair of nodes (x, y), the pair (x, y) is selected by
the query if and only if its α-type belongs to F . A
query is called regular if it is recognized by some α.
A similar definition makes sense queries of higher
arities, such as three or four, but the number of
scenarios grows with the arity of the query.

The above definition of regular queries coincides
with more standard definitions of regular binary
queries for trees or forests, such as queries defined
by a formula of monadic second-order logic with two
free variables.

Theorem 7. Let ϕ be a regular binary query on
forests. There is an algorithm which:

1. on input forest t, builds a data structure in
linear time;

2. using the data structure, answers in logarith-
mic time questions of the form: is a pair of
nodes (x, y) selected by ϕ?

Proof. The same proof as for Theorem 3, except
using the decomposition from Corollary 2.

7.4 References

The first algorithm for incremental updates of
regular tree languages is from [1]. The algorithm
here is a slight improvement over [1], because for a
tree with n nodes it runs in time O(log n) and not
O(log2 n).

8. REFERENCES

[1] Andrey Balmin, Yannis Papakonstantinou, and
Victor Vianu. Incremental validation of xml
documents. ACM Trans. Database Syst.,
29(4):710–751, 2004.

[2] Mikołaj Bojańczyk. Algebra for trees. In
Handbook of Automata Theory. European
Mathematical Society Publishing House. To
appear.

[3] Mikołaj Bojańczyk. Factorization forests. In
Developments in Language Theory, pages 1–17,
2009.

[4] Mikołaj Bojańczyk. and Paweł Parys. Efficient
evaluation of nondeterministic automata using
factorization forests. In ICALP (1), pages
515–526, 2010.

[5] Thomas Colcombet. Factorization forests for
infinite words and applications to countable
scattered linear orderings. Theor. Comput.
Sci., 411(4-5):751–764, 2010.

[6] Gudmund Skovbjerg Frandsen, Johan P.
Hansen, and Peter Bro Miltersen. Lower
bounds for dynamic algebraic problems. Inf.
Comput., 171(2):333–349, 2001.

[7] Manfred Kufleitner. The height of factorization
forests. In MFCS, pages 443–454, 2008.

[8] Frank Neven. Automata theory for xml
researchers. SIGMOD Record, 31(3):39–46,
2002.

[9] Imre Simon. Factorization forests of finite
height. Theor. Comput. Sci., 72(1):65–94, 1990.

14 SIGMOD Record, June 2012 (Vol. 41, No. 2)

