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ABSTRACT
In ontology-enhanced database systems, an ontology on
top of the extensional database expresses intensional
knowledge that enhances the database schema. Queries
posed to such systems are to be evaluated considering
all the knowledge inferred from the data by means of
the ontology; in other words, queries are to be evalu-
ated against the logical theory constituted by the data
and the ontology. In this context, tractability of query
answering is a central issue, given that the data size is
normally very large. This paper surveys results on a
recently introduced family of Datalog-based languages,
called Datalog+/-, which is a useful logical toolbox for
ontology modeling and for ontology-based query answer-
ing. We present different Datalog+/- languages and re-
lated complexity results, showing that Datalog+/- can
be successfully adopted due to its clarity, expressiveness
and its good computational properties.

1. INTRODUCTION
Datalog (see, e.g., [1]) has been widely used as a
database programming and query language for long
time. It is rarely used directly as a query language in
corporate application contexts. However, it is used as
an inference engine for knowledge processing within sev-
eral software tools, and has recently gained popularity
in the context of various applications, such as web data
extraction [6, 7, 25], source code querying and program
analysis [28], and modeling distributed systems [2].

At the same time, Datalog has been shown to be too
limited to be effectively used to model ontologies and
expressive database schemata, as explained in [34]. In
this respect, the main missing feature in Datalog is the
possibility of expressing existential quantification in the
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head; this was addressed in the literature by introducing
Datalog with value invention [10, 32].

This paper surveys recently introduced variants of Dat-
alog, grouped in a family of languages that was named
Datalog± (also written Datalog+/- whenever appropri-
ate). Datalog± extends Datalog by allowing features
such as existential quantifiers, the equality predicate,
and the truth constant false to appear in rule heads. On
the other hand, the resulting language has to be syntac-
tically restricted, so as to achieve decidability, and in
some relevant cases even tractability.

A basic Datalog program consists of a set of univer-
sally quantified function-free Horn clauses. The predi-
cate symbols appearing in such a program either refer
to extensional database (EDB) predicates, whose val-
ues are given via an input database, or to intensional
database (IDB) predicates, whose values are computed
by the program. In standard Datalog, EDB predicate
symbols appear in rule-bodies only. A simple example
is the program

s(X) → r(X),
r(X), e(X, Y ) → r(Y ),

which takes as input EDB a directed graph, given by
a binary edge relation e, plus a set of special vertices
of this graph given by a unary relation s. The above
program computes the set r of all vertices in the graph
reachable via a directed path of nonnegative length from
special vertices.

Given an EDB D and a Datalog program Σ, let us de-
note by D ∪ Σ the logical theory containing both the
facts (i.e., ground atoms) of D and the rules of Σ. We
say that a BCQ q evaluates to true over D and Σ iff
D∪Σ |= q. For Datalog± languages, the notion of query
answering is the same, with the difference that rules al-
low for existential quantification in the head; such rules,
in database parlance, are also known as tuple-generating
dependencies (TGDs).

For example, with TGDs we are able to express that
every person has a father who, moreover, is himself a
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person:

person(X) → ∃Y father(X, Y ),
father(X, Y ) → person(Y ).

Note that here the relation person, which is supplied
in the input with an initial value, is actually modified.
Therefore, we no longer require (as in standard Datalog)
that EDB relation symbols cannot occur in rule-heads.

Ontology querying (and possibly a number of other ap-
plications such as data exchange and web data extrac-
tion) can profit from appropriate forms of Datalog ex-
tended by the possibility of using rules with existential
quantifiers in their heads. Other useful features are, for
example, equality in rule-heads —rules with the equality
predicate in the head are known as equality-generating
dependencies (EGDs), and they capture the well-known
functional dependencies (see, e.g., [1]). Unfortunately,
already for sets of TGDs alone, most basic reasoning and
query answering problems are undecidable. In particu-
lar, given a database D and a set Σ of TGDs, checking
whether D ∪ Σ |= q for a ground fact q is undecid-
able [8]. Worse than that, undecidability holds even in
case both q and Σ are fixed, and only D is given as
input [11]. It is therefore important to identify large
classes of Datalog-based rule sets Σ that are expressive
enough for being useful in real applications, and allow
for decidable query answering. A further desirable fea-
ture is the tractability of query answering in data com-
plexity, that is, the complexity calculated by considering
only the data as part of the input, whereas q and Σ are
fixed; this type of complexity is an important measure,
because we can realistically assume that the EDB D is
the only really large object in the input. The languages
in the Datalog± family fulfil the above criteria.

One of the main tools used for proving favorable results
about a number of Datalog± languages is the chase pro-
cedure [29, 31]. The chase is an algorithm that, roughly
speaking, executes the rules of a Datalog± program Σ
on input D in a forward chaining manner, thus inferring
new knowledge by either adding new atoms or unifying
symbols. In general, the chase procedure may terminate
or not. The most notable syntactic restriction guaran-
teeing chase termination is weak acyclicity of TGDs, for
which we refer the reader to the landmark paper [24];
more general syntactic restrictions were studied in [23,
33]. However, none of these restrictions is appropriate
for ontology querying. One of the challenges of study-
ing Datalog± is therefore to tackle the possible non-
finiteness of the chase, which complicates query answer-
ing. The first approach to query answering in case of
infinite chase is found in the milestone paper by Johnson
and Klug [29].

Structure of the paper. After some technical defini-
tions in Section 2, we report in Section 3 on the class
of guarded TGDs, where each rule body is required
to have an atom that covers all body variables of the
rule. We then consider the even more restricted class
of linear TGDs, for which query answering is first-order
rewritable (FO-rewritable) which means that q and Σ

can be transformed into a first-order query qΣ such that
D |= qΣ iff D∪Σ |= q, for every extensional database D.
This property, introduced in [18] in the context of DLs,
is essential if D is a very large database. It implies that
query answering can be deferred to a standard query
language such as (non-recursive) SQL.

We present stickiness, a completely different paradigm
for tractable query answering, in Section 4. Roughly
speaking, the syntactic condition that defines sticky sets
of TGDs, which will be given in detail in the following of
the paper, guarantees that if we perform resolution [1]
(or more precisely a variant of it that considers existen-
tial quantification in the head; see, e.g., [15]) starting
from a subgoal, the newly introduced variables in all
obtained subgoals appear at most once in each subgoal.
The stickiness condition is easily testable. Stickiness
also guarantees the desirable FO-rewritability property.

In Section 5, we first deal with negative constraints, i.e.,
rules whose head is the truth constant false denoted by
⊥. It turns out that negative constraints can be in-
troduced without any increase of complexity, as query
answering can be computed in the same way as with-
out negative constraints, after the evaluation of suitable
queries. We then introduce equality-generating depen-
dencies (EGDs), which are well-known to easily lead to
undecidability of query answering in their simplest form,
even when combined with simple classes of TGDs such
as inclusion dependencies [16, 21]. We focus on a very
simple, nevertheless extremely useful class of EGDs,
namely key dependencies (or simply keys). We discuss
semantic and syntactic conditions ensuring that keys are
usable without destroying decidability and tractability.

Section 6 briefly describes how highly relevant tractable
DL languages, in particular the main languages of the
well-known DL-Lite family [18, 35], can be modeled in
the Datalog± framework. Section 7 concludes the paper,
and gives some directions for further research on the
topic.

2. PRELIMINARIES
In this section we recall some basics on databases,
queries, tuple-generating dependencies, and the chase
procedure.

General. We define the following pairwise disjoint (in-
finite) sets of symbols: a set Γ of constants (constitute
the “normal” domain of a database), a set ΓN of la-
beled nulls (used as placeholders for unknown values,
and thus can be also seen as variables), and a set ΓV

of variables (used in queries and constraints). Different
constants represent different values (unique name as-
sumption), while different nulls may represent the same
value. A lexicographic order is defined on Γ ∪ ΓN , such
that every value of ΓN follows all those of Γ. Sets of
variables (or sequences, with a slight abuse of notation)
are denoted as X = X1, . . . , Xk, where k ! 0. Let [n]
be the set {1, . . . , n}, for any integer n ! 0.
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A relational schema R (or simply schema) is a set of re-
lational symbols (or predicates), each with its associated
arity. We write r/n to denote that the predicate r has
arity n. A position r[i] (in a schema R) is identified by
a predicate r ∈ R and its i-th argument (or attribute).
A term t is a constant, null, or variable. An atomic for-
mula (or simply atom) has the form r(t1, . . . , tn), where
r/n is a relation, and t1, . . . , tn are terms. Conjunctions
of atoms are often identified with the sets of their atoms.

A substitution from one set of symbols S1 to another
set of symbols S2 is a function h : S1 → S2 defined
as follows: (i) ∅ is a substitution (the empty substi-
tution), (ii) if h is a substitution, then h ∪ {X → Y }
is a substitution, where X ∈ S1 and Y ∈ S2, and h
does not already contain some X → Z with Y '= Z.
If X → Y ∈ h, then we write h(X) = Y . A homo-
morphism from a set of atoms A1 to a set of atoms
A2, both over the same schema R, is a substitution
h : Γ ∪ ΓN ∪ ΓV → Γ ∪ ΓN ∪ ΓV such that: (i) if
t ∈ Γ, then h(t) = t, and (ii) if r(t1, . . . , tn) ∈ A1, then
h(r(t1, . . . , tn)) = r(h(t1), . . . , h(tn)) ∈ A2. The notion
of homomorphism naturally extends to conjunctions of
atoms.

Databases and Queries. A relational instance (or
simply instance) I for a schema R is a (possibly infinite)
set of atoms of the form r(t), where r/n is a predicate
of R, and t ∈ (Γ ∪ ΓN )n. We denote as r(I) the set
{t | r(t) ∈ I}. A database is a finite relational instance.

A conjunctive query (CQ) q of arity n over a schema R,
written as q/n, has the form p(X) ← ϕ(X,Y), where
ϕ(X,Y) is a conjunction of atoms over R, X and Y are
sequences of variables of ΓV or constants of Γ, and p is
an n-ary predicate not occurring in R. ϕ(X,Y) is called
the body of q, denoted as body(q). A Boolean CQ (BCQ)
is a CQ of zero arity. The answer to a CQ q/n over an
instance I, denoted as q(I), is the set of all n-tuples
t ∈ Γn for which there exists a homomorphism h : X ∪
Y → Γ∪ΓN such that h(ϕ(X,Y)) ⊆ I and h(X) = t. A
BCQ has only the empty tuple 〈〉 as possible answer in
which case it is said that has positive answer. Formally,
a BCQ has positive answer over I, denoted as I |= q, if
〈〉 ∈ q(I).

Tuple-Generating Dependencies. A tuple-
generating dependency (TGD) σ over a schema R is
a first-order formula ∀X∀Yϕ(X,Y) → ∃Zψ(X,Z),
where ϕ(X,Y) and ψ(X,Z) are conjunctions of atoms
over R, called the body and the head of σ, denoted as
body(σ) and head(σ), respectively. Henceforth, to avoid
notational clutter, we will omit the universal quantifiers
in TGDs. Such σ is satisfied by an instance I for R
if, whenever there exists a homomorphism h such that
h(ϕ(X,Y)) ⊆ I, then there exists an extension h′ of h
(i.e., h′ ⊇ h) such that h′(ψ(X,Z)) ⊆ I.

We now define the notion of query answering under
TGDs. Given a database D for a schema R, and a set
Σ of TGDs over R, the models of D w.r.t. Σ, denoted

as mods(D,Σ), is the set of all instances I such that
I |= D ∪ Σ, i.e., I ⊇ D and I satisfies Σ. The answer
to a CQ q w.r.t. D and Σ, denoted as ans(q, D,Σ), is
the set {t | t ∈ q(I) for each I ∈ mods(D,Σ)}. The
answer to a BCQ q w.r.t. D and Σ is positive, denoted
as D ∪Σ |= q, if ans(q, D,Σ) '= ∅. Note that query an-
swering under (general) TGDs is undecidable [8]. This
holds even when the schema and the set of TGDs are
fixed [11], and also in the case of singleton sets of
TGDs [4].

Following Vardi’s taxonomy [39], the data complexity of
query answering is the complexity w.r.t. the database
only, while the combined complexity is the complexity
calculated by considering also the query and the set of
TGDs as part of the input.

The two problems of CQ and BCQ answering under
TGDs are logspace-equivalent [20, 23, 24, 29]. Hence-
forth, we thus focus only on the BCQ answering prob-
lem. We also recall that query answering under TGDs
is equivalent to query answering under TGDs with sin-
gleton atoms in the head [11]. This is shown by means
of a transformation from general TGDs to TGDs with
single-atom heads [11]. Moreover, the transformation
preserves the properties of the classes of TGDs that
we consider in this paper. Therefore, all results for
TGDs with singleton atoms in the head carry over to
TGDs with multiple head-atoms. We thus always as-
sume w.l.o.g. (unless stated otherwise) that every TGD
has a singleton atom in its head.

The TGD Chase. The chase procedure (or simply
chase) is a fundamental algorithmic tool introduced for
checking implication of dependencies [31], and later for
checking query containment [29]. Informally, the chase
is a process of repairing a database w.r.t. a set of depen-
dencies so that the resulted instance satisfies the depen-
dencies. We shall use the term chase interchangeably
for both the procedure and its result. The chase works
on an instance through the so-called TGD chase rule.
The TGD chase rule comes in two equivalent fashions:
oblivious and restricted [11], where the restricted one
repairs TGDs only when they are not satisfied. In the
sequel, we focus on the oblivious one for technical clar-
ity. The TGD chase rule defined below is the building
block of the chase.

TGD Chase Rule: Consider a database D for a
schema R, and a TGD σ : ϕ(X,Y) → ∃Zψ(X,Z) over
R. If σ is applicable to D, i.e., there exists a homomor-
phism h such that h(ϕ(X,Y)) ⊆ D, then: (i) define
h′ ⊇ h such that h′(Zi) = zi, for each Zi ∈ Z, where
zi ∈ ΓN is a “fresh” labeled null not introduced before,
and following lexicographically all those introduced so
far, and (ii) add to D the set of atoms in h′(ψ(X,Z)),
if not already in D.

Given a database D and a set of TGDs Σ, the chase algo-
rithm for D and Σ consists of an exhaustive application
of the TGD chase, which leads to a (possibly infinite)
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instance, denoted as chase(D,Σ). We assume that the
chase algorithm is fair, i.e., each TGD that must be ap-
plied during the construction of chase(D,Σ) eventually
it is applied. Due to the fairness assumption, the (pos-
sibly infinite) chase for D and Σ is a universal model of
D w.r.t. Σ, i.e., for each instance I ∈ mods(D,Σ), there
exists a homomorphism from chase(D,Σ) to I [23, 24].
Using this fact it can be easily shown that for a BCQ q,
D ∪ Σ |= q iff chase(D,Σ) |= q.

3. GUARDED & LINEAR DATALOG±

For ontology querying purposes, we need to concentrate
on cases where the chase produces an infinite univer-
sal solution, and also where no finite universal solution
exists. Unfortunately, as already mentioned, query an-
swering is undecidable in such cases. The recognition
of expressive decidable classes of TGDs is a challeng-
ing problem. In this section we present the languages
guarded and linear Datalog±.

3.1 Guarded Datalog±

We first discuss the class of guarded TGDs, which forms
the language guarded Datalog±, as a special class of
TGDs which guarantees decidability of query answering,
and even tractability w.r.t. data complexity. Queries
relative to such TGDs can be evaluated over a finite
part of the chase, whose size depends only on the query
and the set of TGDs, but not on the database.

A TGD σ is guarded if it has a body-atom which con-
tains all the universally quantified variables of σ. The
leftmost such atom is the guard atom (or guard) of σ.
The non-guard atoms are the side atoms of σ. For ex-
ample, the TGD r(X, Y ), s(Y, X, Z) → ∃Ws(Z, X, W )
is guarded (via the guard s(Y, X, Z)), while the TGD
r(X, Y ), r(Y, Z) → r(X, Z) is not guarded. Note that
sets of guarded TGDs (with single-atom heads) are the-
ories in the guarded fragment of first-order logic [3].

Complexity Results. The next theorem, presented
in [11], establishes combined complexity results for con-
junctive query answering under guarded Datalog±. The
exptime and 2exptime-completeness results hold even
if the input database is fixed. Note that an atomic query
is a CQ with just one body-atom.

Theorem 1. Consider a BCQ q over a schema R, a
database D for R, and a set Σ of guarded TGDs over
R. Let w be the maximum arity over all predicates of
R. Then, the following hold:

a) If q is an atomic query, then deciding whether
chase(D,Σ) |= q is ptime-complete when Σ is
fixed. The same problem is exptime-complete if
w is bounded, and 2exptime-complete in general.

b) If q is a non-atomic query, then deciding whether
chase(D,Σ) |= q is np-complete when Σ is fixed.
The same problem is exptime-complete if w is
bounded, and 2exptime-complete in general.

The data complexity of query answering under guarded
TGDs turns out to be polynomial in general, and linear
in the case of atomic queries. In the sequel, let R be a
relational schema, D be a database for R, and Σ be a
set of guarded TGDs over R.

We first define the so-called chase relation for D and Σ,

that is, a binary relation denoted
D,Σ−→, as follows. Sup-

pose that during the construction of chase(D,Σ) we ap-
ply a TGD σ ∈ Σ, with homomorphism h, and the atom
a is obtained. Then, for each atom b ∈ body(σ), we have

h(b)
D,Σ−→ a. Intuitively, by exploiting

D,Σ−→, it is possible
to extract all the chase derivations of chase(D,Σ).

The chase graph for D and Σ is the directed graph with
chase(D,Σ) be the set of nodes, and having an edge

from a to b if 〈a, b〉 ∈D,Σ−→. We mark a as guard if a
is the guard of σ. The guarded chase forest for D and
Σ is the restriction of the chase graph for D and Σ to
all atoms marked as guards and their children. The
guarded chase of level up to k ! 0 for D and Σ, denoted
as g-chasek(D,Σ), is the set of all atoms in the forest
of depth at most k.

It can be shown that (homomorphic images of) the
query atoms are contained in a finite, initial part of the
guarded chase forest, whose size is determined only by
the query and the set of TGDs. However, this does not
yet assure that also the whole derivation of the query
atoms are contained in such a part of the guarded chase
forest. This slightly stronger property is captured by
the following definition.

Definition 1. We say that Σ has the bounded guard-
depth property (BGDP) if, for each database D for R
and for each BCQ q over R, whenever there is a homo-
morphism µ that maps q into chase(D,Σ), then there
is a homomorphism λ of this kind such that all ances-
tors of λ(body(q)) in the chase graph for D and Σ are
contained in g-chasek(D,Σ), where k ! 0 depends only
on q and Σ.

It is possible to show that guarded TGDs enjoy the
BGDP. The proof is based on the observation that all
side atoms that are necessary in the derivation of the
query atoms are contained in a finite, initial portion of
the guarded chase forest, whose size is determined only
by the query and the set of TGDs (which is slightly
larger than the one for the query atoms only). By this
result, query answering under guarded TGDs is feasible
in ptime w.r.t. data complexity [11]. It is also hard for
ptime, as can be proved by reduction from propositional
logic programming [12].

Theorem 2. Consider a BCQ q over a schema R,
a database D for R, and a set of guarded TGDs over
R. Then, deciding whether chase(D,Σ) |= q is ptime-
complete w.r.t. data complexity. If q is atomic, then
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the same problem is feasible in linear time w.r.t. data
complexity.

Extensions. It is important to say that guarded
TGDs can be enriched by stratified negation, where non-
monotonic negation may be used in TGD bodies and
queries. A natural stratified negation for query answer-
ing over ontologies, which is in general based on several
strata of infinite models, is proposed in [12].

An expressive language, which forms a generalization
of guarded Datalog±, is weakly-guarded Datalog± intro-
duced in [11]. Roughly speaking, a set Σ of TGDs is
weakly-guarded if, for each σ ∈ Σ, there exists an atom
in body(σ), called a weak-guard, that contains only the
universally quantified variables of σ that occur at posi-
tions where a “fresh” null of ΓN can appear during the
construction of the chase (and not all the universally
quantified variables).

3.2 Linear Datalog±

The class of linear TGDs, which forms the language lin-
ear Datalog±, is a variant of the class of guarded TGDs,
where query answering is highly tractable w.r.t. data
complexity. A TGD is linear if it has only one atom in
its body (which is automatically a guard). Notice that
linear TGDs are strictly more expressive than inclu-
sion dependencies, which are the simplest type of TGDs
with just one body-atom and one head-atom, without
repetition of variables. For example, the linear TGD
supervises(X, X) → manager(X), which asserts that
everyone supervising her/himself is a manager, is not
expressible with inclusion dependencies.

Complexity Results. Query answering under linear
TGDs is pspace-complete w.r.t. combined complexity.
This result is obtained immediately by results in [19, 26,
29, 40].

Theorem 3. Consider a BCQ q over a schema R,
a database D for R, and a set Σ of linear TGDs over
R. Then, deciding whether chase(D,Σ) |= q is pspace-
complete, even when the query is fixed.

Let us now investigate the data complexity of query
answering under linear TGDs. A class C of TGDs is
first-order rewritable (henceforth abbreviated as FO-
rewritable) if for every set Σ of TGDs in C, and for
every BCQ q, it is possible to construct a first-order
query qΣ such that, for every database D, D ∪ Σ |= q
iff D |= qΣ. Since answering first-order queries is in the
highly tractable class ac0 w.r.t. data complexity [41],
it immediately follows that query answering under FO-
rewritable classes of TGDs is in ac0 w.r.t. data com-
plexity.

We next recall the bounded derivation-depth property,
introduced in [12], which is strictly stronger than the
bounded guard-depth property. Informally, this prop-
erty implies that (homomorphic images of) the query

atoms along with their derivations are contained in a
finite, initial part of the chase graph (rather than the
guarded chase forest), whose size depends only on the
query and and the set of TGDs. In the sequel, we de-
note by chasek(D,Σ) the chase of level up to k ! 0 for
D and Σ, that is, the set of all atoms of chase(D,Σ) of
derivation level at most k.

Definition 2. A set Σ of TGDs over a schema R has
the bounded derivation-depth property (BDDP) if, for
every database D for R, and for every BCQ q over
R, whenever chase(D,Σ) |= q, then chasek(D,Σ) |= q,
where k ! 0 depends only on q and Σ.

Clearly, in the case of linear TGDs, for every atom
a ∈ chase(D, Σ), the subtree of a in the guarded chase
forest is determined only by a itself. Therefore, for a
single atom, its depth coincides with the number of ap-
plications of the TGD chase rule that are necessary to
generate it. Therefore, the guarded chase forest coin-
cides with the chase graph. By this observation, we
obtain that linear TGDs have the bounded derivation-
depth property.

It is known that if a class of TGDs enjoys the BDDP,
then it is also FO-rewritable [12]. The main ideas be-
hind the proof of this result are informally as follows.
Since the derivation depth and the number of body-
atoms in TGDs are bounded, the number of all database
ancestors of query atoms is also bounded. Thus, the
number of all non-isomorphic sets of potential database
ancestors with variables as arguments is also bounded.
Take the existentially quantified conjunction of every
such ancestor set where the query q is answered posi-
tively. Then, the FO-rewriting of q is the disjunction
of all these formulas. As an immediate consequence we
get the following result.

Theorem 4. Consider a BCQ q over a schema R,
a database D for R, and a set Σ of linear TGDs over
R. Then, deciding whether chase(D,Σ) |= q is in ac0

w.r.t. data complexity.

Small Query Rewritings. The rewriting algorithm
employed in [12] in order to prove that the BDDP im-
plies FO-rewritability is not very well-suited for practi-
cal implementations. In particular, the rewritten query
obtained by applying this algorithm is of exponential
size w.r.t. the given query and set of TGDs. The ques-
tion that comes up is whether, under linear TGDs, a
polynomially sized first-order query can be constructed.
Interestingly, Gottlob and Schwentick shown recently
that the answer to the above question is affirmative [27].
The key property underlying the proof of this result is
the so-called polynomial witness property [27].

Definition 3. A class of TGDs C has the polynomial
witness property (PWP) if, for every BCQ q over a

SIGMOD Record, September 2011 (Vol. 40, No. 3) 9



schema R, for every database D for R, and for ev-
ery set Σ ∈ C of TGDs over R, the following holds:
if chase(D,Σ) |= q, then there is a sequence of at most
k ! 0 chase steps whose atoms already entail q, where k
is polynomial with respect to q and Σ, and independent
from D.

As established in [27], given a BCQ q over a schema R,
and a set Σ of TGDs over R which falls in a class that
enjoys the PWP, one can compute in polynomial time
a non-recursive Datalog program P of polynomial size
with respect to q and Σ such that, for every database
D for R, chase(D,Σ) |= q iff D |= P . Moreover, it was
shown that the class of linear TGDs enjoys the PWP.

4. STICKY DATALOG±

Unfortunately, none of the formalisms presented in the
previous section is expressive enough to be able to ex-
press simple cases that allow for joins in rule-bodies such
as the rule r(X, Y ), r(Z, X) → s(X); clearly, the above
rule is non-guarded since there is no body-atom that
contains all the universally quantified variables. In this
section, we present another Datalog± language which
hinges on a paradigm, called stickiness, which is very
different from guardedness and allows for joins in rule-
bodies (with some realistic restriction to ensure decid-
ability).

Formal Definition. The formal definition of the class
of sticky sets of TGDs (which forms the language sticky
Datalog±) is based heavily on a variable-marking proce-
dure called SMarking. This procedure accepts as input
a set of TGDs Σ, and marks the variables that occur
in the body of the TGDs of Σ. Formally, SMarking(Σ)
works as follows. First, we apply the so-called initial
marking step: for each TGD σ ∈ Σ, and for each vari-
able V in body(σ), if there exists an atom a in head(σ)
such that V does not appear in a, then we mark each oc-
currence of V in body(σ). Then, we apply exhaustively
(i.e., until a fixpoint is reached) the propagation step:
for each pair of TGDs 〈σ, σ′〉 ∈ Σ×Σ (including the case
σ = σ′), if a universally quantified variable V occurs in
head(σ) at positions π1, . . . , πm, for m ! 1, and there
exists an atom a ∈ body(σ′) such that at each position
π1, . . . , πm a marked variable occurs, then we mark each
occurrence of V in body(σ). We are now ready to give
the formal definition of sticky sets of TGDs.

Definition 4. Consider a set Σ of TGDs over a schema
R. Σ is sticky if there is no TGD σ ∈ SMarking(Σ)
such that a marked variable occurs in body(σ) more than
once.

Example 1. Consider the following set of TGDs. We
mark the body-variables, according to the SMarking pro-

cedure, with hat, e.g., X̂:

r(X̂, Ŷ ) → ∃Z r(Y, Z)

r(X, Ŷ ) → s(X)
s(X), s(Y ) → t(X, Y )

r(X, Ŷ ), r(Ẑ, X) → s(X).

The only variable that occurs more than once in the
body of a TGD, i.e., the variable X in the body of the
last TGD, is non-marked. Therefore, Σ is a sticky set.

Consider the simple database D = {r(a, a)} and the set
Σ of TGDs given in the above example. It is easy to
verify that chase(D,Σ) is infinite; recall that for ontol-
ogy querying purposes we need to focus on cases where
the chase is (in general) infinite. In fact, the first rule
of Σ by itself leads to an infinite chase. Moreover, the
third rule of Σ is a prime example of non-guardedness.

It is straightforward to see that the problem of iden-
tifying sticky sets of TGDs, that is, given a set Σ of
TGDs, decide whether Σ is sticky, is feasible in polyno-
mial time. This follows by observing that at each ap-
plication of the propagation step, during the execution
of the SMarking procedure, at least one body-variable
is marked. Thus, after polynomially many steps the
SMarking procedure terminates.

Sticky Property. It is interesting to see that the chase
constructed under a sticky set of TGDs enjoys a syntac-
tic property called sticky property.

Definition 5. Consider a database D for a schema R,
and a set Σ of TGDs over R. Suppose that in the con-
struction of chase(D,Σ) we apply σ ∈ Σ, with homo-
morphism h, that has a variable V appearing more than
once in its body, and the atoms a1, . . . , ak, for k ! 1,
are generated. We say that chase(D,Σ) has the sticky
property if, for each atom a ∈ {a1, . . . , ak}, h(V ) occurs
in a, and also in every atom b such that 〈a, b〉 is in the

transitive closure of
D,Σ−→.

Intuitively speaking, the sticky property implies that,
during the construction of the chase, whenever a rule σ
is applied, then the symbols (constants or nulls) which
are associated (via homomorphism) to the join body-
variables of σ appear in the generated atom a, and also
in all atoms resulting from some chase derivation involv-
ing a, “sticking” to them (hence the name “sticky sets of
TGDs”).

As established in [14], stickiness is a sufficient condition
for the sticky property of the chase.

Theorem 5. Consider a set Σ of TGDs over a
schema R. If Σ is sticky, then chase(D,Σ) enjoys the
sticky property, for every database D for R.
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Complexity Results. The next theorem, presented
in [14], establishes combined complexity results for con-
junctive query answering under sticky Datalog±.

Theorem 6. Consider a BCQ q over a schema R, a
database D for R, and a sticky set Σ of TGDs over R.
Then, deciding whether chase(D,Σ) |= q is np-complete
if Σ is fixed, and exptime-complete in general.

As shown in [14], the class of sticky sets of TGDs en-
joys the BDDP (see Definition 2), and thus sticky sets
of TGDs are FO-rewritable. The next result follows im-
mediately.

Theorem 7. Consider a BCQ q over a schema R,
a database D for R, and a set Σ of linear TGDs over
R. Then, deciding whether chase(D,Σ) |= q is in ac0

w.r.t. data complexity.

Interestingly, the class of sticky sets of TGDs enjoys
the PWP (see Definition 3)[13]. Therefore, sticky sets
of TGDs are not only FO-rewritable, but also the con-
structed first-order query can be of polynomial size.

Extensions. Several convincing arguments for the use-
fulness of sticky sets of TGDs are given in [14]. How-
ever, sticky sets of TGDs are not expressive enough
for being able to model simple cases such as the TGD
r(X, Y, X) → ∃Z s(Y, Z); clearly, the variable X is
marked, and thus the stickiness condition is violated.
Note that the above rule falls in the FO-rewritable class
of linear TGDs (see Subsection 3.2). A language that
captures both linear and sticky Datalog±, without los-
ing the desirable property of FO-rewritability (and also
the PWP), is sticky-join Datalog± introduced in [14].

A more general class of TGDs, which is called weakly-
sticky sets of TGDs, and which constitute weakly-sticky
Datalog±, is studied in [14]. Roughly, in a weakly-sticky
set of TGDs, the variables that occur more than once in
the body of a TGD are non-marked or occur at positions
where a finite number of symbols can appear during the
construction of the chase.

5. ADDITIONAL FEATURES
In this section we discuss how Datalog± can be extended
with negative constraints and key dependencies.

5.1 Negative Constraints
A negative constraint (or simply constraint) is a first-
order sentence of the form ∀Xφ(X) → ⊥, where φ(X) is
a conjunction of atoms (with no syntactic restrictions)
and ⊥ denotes the truth constant false; the universal
quantifier is omitted for brevity. As we shall see in Sec-
tion 6, constraints are vital when representing ontolo-
gies.

Example 2. Suppose that the unary predicates c and
c′ represent two classes. The fact that these two classes
have no common instances can be expressed by the con-
straint c(X), c′(X) → ⊥. Moreover, if the binary pred-
icate r represents a relationship, the fact that no in-
stance of the class c participates to the relationship r
(as the first component) can be stated by the constraint
c(X), r(X, Y ) → ⊥.

Checking whether a set of constraints is satisfied by a
database given a set of TGDs is tantamount to query
answering [12]. In particular, given a set of TGDs ΣT ,
a set of constraints Σ⊥, and a database D, for each
constraint ν : φ(X) → ⊥ we evaluate the BCQ p ←
φ(X) over D∪ΣT . If at least one of such queries answers
positively, then D ∪ ΣT ∪ Σ⊥ |= ⊥ (i.e., the theory is
inconsistent), and thus D∪ΣT ∪Σ⊥ entails every BCQ;
otherwise, given a BCQ q, we have that D∪ΣT ∪Σ⊥ |= q
iff D ∪ ΣT |= q (or equivalently chase(D,Σ) |= q), i.e.,
we can answer q by ignoring the constraints.

Theorem 8. Consider a BCQ q over a schema R,
a database D for R, a set ΣT of TGDs over R, and a
set Σ⊥ of constraints over R. Then, D ∪ ΣT ∪ Σ⊥ |= q
iff (i) chase(D,ΣT ) |= q or (ii) chase(D,ΣT ) |= qν , for
some constraint ν ∈ Σ⊥.

As an immediate consequence, constraints do not in-
crease the complexity of BCQ answering under TGDs
alone [12].

5.2 Key Dependencies
The addition of key dependencies (KDs) [1] is more
problematic than that of constraints, since the former
easily leads to undecidability of query answering (see,
e.g., [16]). For this reason, the restricted class of non-
conflicting KDs, which has a controlled interaction with
TGDs, and thus decidability of query answering is guar-
anteed, was proposed in [12]. Nonetheless, as we shall
see in Section 6, this class is expressive enough for mod-
eling ontologies.

A key dependency (KD) κ is an assertion of the form
key(r) = A, where r is a predicate symbol and A is a
set of attributes of r. It is equivalent to the set of EGDs
{r(X, Y1, . . . , Ym), r(X, Y ′

1 , . . . , Y ′
m) → Yi = Y ′

i }i∈[m],
where the variables X = X1, . . . , Xn appear exactly at
the attributes of A (w.l.o.g., the first n attributes of
r). Such a KD κ is applicable to a set of atoms B iff
there exist two (distinct) tuples t1, t2 ∈ {t | r(t) ∈ B}
such that t1[A] = t2[A], where t[A] is the projection
of tuple t over A. If there exists an attribute i '∈ A of
r such that t1[i] and t2[i] are two (distinct) constants
of Γ, then there is a hard violation of κ, and the chase
fails. Otherwise, the result of the application of κ to
B is the set of tuples obtained by either replacing each
occurrence of t1[i] in B with t2[i], if t1[i] follows lexi-
cographically t2[i], or vice-versa otherwise.
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The chase of a database D, in the presence of two sets
ΣT and ΣK of TGDs and KDs, respectively, is computed
by iteratively applying: (i) a single TGD once, and (ii)
the KDs as long as they are applicable.

We continue by introducing the semantic notion of sep-
arability [16, 12], which formulates a controlled interac-
tion of TGDs and KDs, so that the KDs do not increase
the complexity of query answering.

Definition 6. Let R be a relational schema. Consider
a set Σ = ΣT ∪ ΣK over R, where ΣT and ΣK are sets
of TGDs and KDs, respectively. Then, Σ is separable
iff for every database D for R the following conditions
are satisfied: (i) if chase(D,Σ) fails, then there is a hard
violation of some KD κ ∈ ΣK , when κ is applied directly
on D, and (ii) if there is no chase failure, then for every
BCQ q over R, chase(D,Σ) |= q iff chase(D,ΣT ) |= q.

In the presence of separable sets of TGDs and KDs,
the complexity of query answering is the same as in
the presence of the TGDs alone. This was established
in [12] (generalizing [16]) by showing that in such a case
we can first perform a preliminary check to see whether
the chase fails, which has the same complexity as BCQ
answering, and if the chase does not fail, then proceed
with query answering under the TGDs alone.

We now give the formal definition of the class of non-
conflicting KDs, as defined in [12], which is actually
a sufficient syntactic condition for separability. Let us
say that the class of non-conflicting KDs generalizes the
class of non-key-conflicting inclusion dependencies in-
troduced in [16]. This condition is crucial for using
TGDs to capture ontology languages, as we shall see
in Section 6. Notice that, in the following definition,
TGDs are assumed w.l.o.g. to have single-atom heads.

Definition 7. Let R be a relational schema. Consider
a TGD σ : ϕ(X,Y) → ∃Z r(X,Z) over R, and a set ΣK

of KDs over R. We say that ΣK is non-conflicting (NC)
relative to σ if for each κ ∈ ΣK of the form key(r) = A,
the following conditions are satisfied: (i) the set of the
attributes of r in head(σ) where a universally quantified
variable occurs is not a strict superset of A, and (ii)
each existentially quantified variable in σ occurs just
once. We say that ΣK is NC relative to a set ΣT of
TGDs if ΣK is NC relative to each TGD σ ∈ ΣT .

Example 3. Consider the TGD σ of the form
p(X, Y ) → ∃Z r(X, Y, Z), and the KDs κ1 : key(r) =
{1, 2} and κ2 : key(r) = {1}. Clearly, the set of the
∀-attributes of r in head(σ) is U = {1, 2}. Observe that
{κ1} is NC relative to σ; roughly, every atom generated
during the chase by applying σ will have a “fresh” null
of ΓN in some key attribute of κ1, thus never firing this
KD. On the contrary, {κ2} is not NC relative to σ since
U ⊃ {1}.

6. ONTOLOGY QUERYING
In this section we briefly describe how the main lan-
guages of the well-known DL-Lite family of DLs [18, 35],
namely, DL-LiteF , DL-LiteR and DL-LiteA can all of
them be reduced to linear (resp., sticky) Datalog± with
(negative) constraints and non-conflicting KDs, called
linear (resp., sticky) Datalog±[⊥, =], and that the for-
mer are strictly less expressive than the latter. Let us
recall that DL-LiteR is able to fully capture the (DL
fragment of) RDF Schema [9], the vocabulary descrip-
tion language for RDF; see [22] for a translation.

Intuitively, DLs model a domain of interest in terms of
concepts and roles, which represent classes of individ-
uals and binary relations on classes of individuals, re-
spectively. For instance, a DL knowledge base (or ontol-
ogy) in DL-LiteF encodes subset relationships between
concepts and between roles, the membership of indi-
viduals to concepts and of pairs of individuals to roles,
and functional dependencies on roles. The following ex-
ample, taken from [12], illustrates some DL axioms in
DL-LiteF and their translation into Datalog± rules.

Example 4. The following are some concept inclusion
axioms, which informally express that (i) conference
and journal papers are articles, (ii) conference papers
are not journal papers, (iii) every scientist has a publi-
cation, (iv) isAuthorOf relates scientists and articles:

ConPaper 1 Article,
JouPaper 1 Article,
ConPaper 1 ¬JouPaper,
Scientist 1 ∃isAuthorOf,

∃isAuthorOf 1 Scientist,
∃isAuthorOf − 1 Article.

They are translated into the following TGDs and con-
straints (we identify atomic concepts and roles with
their predicates):

ConPaper(X) → Article(X),
JouPaper(X) → Article(X),

ConPaper(X), JouPaper(X) → ⊥,
Scientist(X) → ∃Z isAuthorOf(X, Z),

isAuthorOf(X, Y ) → Scientist(X),
isAuthorOf(Y, X) → Article(X).

The following role inclusion and functionality axioms
express that (v) isAuthorOf is the inverse of hasAuthor,
and (vi) hasFirstAuthor is a functional binary relation-
ship:

isAuthorOf − 1 hasAuthor,
hasAuthor− 1 isAuthorOf,

(funct hasFirstAuthor).

They are translated into the following TGDs and KDs:

isAuthorOf(Y, X) → hasAuthor(X, Y ),
hasAuthor(Y, X) → isAuthorOf(X, Y ),
hasFirstAuthor(X, Y ), hasFirstAuthor(X, Y ′) → Y = Y ′.

The following concept and role memberships express
that the individual i1 is a scientist who authors the ar-
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ticle i2:

Scientist(i1), isAuthorOf(i1, i2), Article(i2).

They are translated to identical database atoms (where
we also identify individuals with their constants).

Formally speaking, every knowledge base K in DL-
LiteX , where X ∈ {F , R, A}, is translated into a
database DK, a set of TGDs ΣT , a set of KDs ΣK , and
a set of constraints Σ⊥. Notice that ΣT is a set of linear
TGDs and also a sticky set of TGDs. Moreover, ΣK

is non-conflicting relative to ΣT . The next result, es-
tablished in [12, 14], shows that query answering under
DL-LiteX , where X ∈ {F , R, A}, knowledge bases can
be reduced to query answering under linear and sticky
Datalog±[⊥, =].

Theorem 9. Let K be a knowledge base in DL-LiteX ,
where X ∈ {F , R, A}, and q be a BCQ for K. If DK |=
ΣK , then q holds in K iff either (i) chase(DK,ΣT ) |= q,
or (ii) chase(DK,ΣT ) |= qν , for some constraint ν ∈
Σ⊥.

The next result follows immediately from the fact that
the simple linear and sticky TGD r(X) → s(X, X) is
not expressible in DL-LiteX , where X ∈ {F , R, A} [12].

Theorem 10. Both linear and sticky Datalog±[⊥, =]
are strictly more expressive than DL-LiteX , where X ∈
{F , R, A}.

By observing that concept products [38], that is, rules
of the form p(X), q(Y ) → r(X, Y ) which express the
cartesian product of two concepts (unary relations) p
and q, are very special cases of sticky sets of TGDs, it is
possible to show that the above DL-Lite languages can
be extended with concept product, without increasing
the complexity of query answering.

7. DISCUSSION AND FUTUREWORK
In this paper we have surveyed some of the key lan-
guages in the Datalog± famliy. From a database point
of view, these languages are in fact syntactically defined
sets of TGDs (possibly enriched with non-monotonic
negation and other features) that are especially suited
for ontological query answering. We believe that the
Datalog± family is a useful logical toolbox for tackling
ontology reasoning tasks. Datalog± languages have a
simple syntax and are easy to understand; they are de-
cidable and enjoy good complexity properties. They can
easily express very popular DL languages, and in addi-
tion they can be extended by non-monotonic stratified
negation, a desirable feature which is not expressible in
current DL languages.

Datalog± is still the subject of active research, and there
are many challenging research problems to be tackled,
some of wich we list below.

• We would like to find more general decidable
fragments; the first goal is to combine the two
tractability paradigms guardedness and stickiness
in a natural way.

• Transitive closure, introduced in some expressive
DL languages in a limited form, is easily express-
ible in Datalog, but only through non-guarded
rules, whose addition to decidable sets of rules
may easily lead to undecidability. We would like
to study whethere there are limited forms of tran-
sitive closure that can be safely added to various
versions of Datalog±.

• A class of TGDs is finite controllable if it guaran-
tees that query answering under arbitrary (finite
or infinite) models coincide with query answering
under finite models only. Finite controllability was
shown recently for the guarded fragment of first-
order logic [5], and thus holds for guarded TGDs
(and it easily extends to weakly-guarded TGDs).
We plan to study this property in the context of
sticky sets of TGDs.

• For non-finitely-controllable Datalog± languages,
we would like to study the complexity of query
answering under finite models. Pioneering work
on finite model reasoning was done in [17, 30, 36,
37].

• We plan to study optimizations of rewritings ob-
tained for FO-rewritable Datalog± languages. As
for now, such rewritings are in general quite large
and therefore not very efficient in practice.
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