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ABSTRACT
Information Extraction commonly refers to the task of
populating a relational schema, having predefined un-
derlying semantics, from textual content. This task is
pervasive in contemporary computational challenges as-
sociated with Big Data. In this article we provide an
overview of our work on document spanners—a rela-
tional framework for Information Extraction that is in-
spired by rule-based systems such as IBM’s SystemT.

Categories and Subject Descriptors
F.4.3 [Mathematical Logic and Formal Languages]:
Formal Languages—Algebraic language theory, Classes
defined by grammars or automata, Operations on lan-
guages; F.1.1 [Computation by Abstract Devices]: Mod-
els of Computation—Automata, Relations between mod-
els; H.2.4 [Database Management]: Systems—Textual
databases ; I.5.4 [Pattern Recognition]: Applications—
Text processing

General Terms
Theory

Keywords
Information extraction, document spanners, regular ex-
pressions, automata, inconsistency, prioritized repairs

1. INTRODUCTION
Information Extraction (IE) refers to the task of dis-

covering structured information in textual content. More
precisely, the goal in IE is to populate a predefined re-
lational schema that has predetermined underlying se-
mantics, by correctly detecting the values of records in
a given text document or a collection of text documents.
Popular tasks in the space of IE include named entity
recognition [29] (identify proper names in text, and clas-
sify those into a predefined set of categories such as per-
son and organization), relation extraction [34] (extract
˚Taub Fellow, supported by the Taub Foundation

tuples of entities that satisfy a predefined relationship,
such as person-organization), event extraction [3] (find
events of predefined types along with their key players,
such as nomination and nominee), temporal informa-
tion extraction [15,25] (associate mentions of facts with
mentions of their validity period, such as nomination-
date), and coreference resolution [27] (match between
phrases that refer to the same entity, such as “Obama,”
“the President,” and “him”).

As a discipline, IE began with the DARPA Message
Understanding Conference (MUC) in 1987 [22]. While
early work in the area focused largely on military ap-
plications, this task is nowadays pervasive in a plethora
of computational challenges, in particular those associ-
ated with Big Data, such as social media analysis [6],
machine data analysis [21], healthcare analysis [33], se-
mantic search [35], and customer relationship manage-
ment [2]. In a typical text-analytics pipeline (e.g., [32]),
the output of IE is fed into a cleaning and/or fusion com-
ponent, such as an entity-resolution algorithm, that in
turn produces input for a global processing phase (e.g.,
statistical analysis or data mining). Contemporary busi-
ness models like cloud computing, along with analytics
platforms like Hadoop, facilitate such data analyses for
a broad range of individuals and organizations.

Most information extraction systems incorporate a no-
tion of rules in a domain-specific rule language. These
rules may define the entire extraction task, or produce
features for downstream statistical models. The rules
may be manually coded, or automatically learned. The
choice of a rule language comprises an important part
of an IE system’s design. Designing such a language in-
volves navigating a number of tradeoffs, with the most
important of these being that of simplicity versus ex-
pressivity. Keeping a rule language simple pays divi-
dends in multiple ways. A simple rule language, with
relatively few language constructs and a straightforward
semantics, is easier for users to understand and debug,
easier for learning algorithms to train, and easier for a
rule engine to execute with high throughput. But such
simplicity can easily compromise the expressiveness of



the rule language, and thus lower the quality of extrac-
tion results. Limited expressiveness of a rule language
may force developers to augment the rules with custom
code in a general-purpose language like Java or Python.
This practice, though often necessary to achieve accept-
able accuracy, makes development, maintenance, and
performance tuning significantly more difficult.

This article describes our recent work on a formal
framework for examining the expressivity of IE rule lan-
guages. The framework, called document spanners, lever-
ages known principles of database management. The
framework itself is introduced in Sections 2 and 3. In
Section 4 we give results on expressiveness, and in Sec-
tion 5 we discuss conflict resolution within the frame-
work. We discuss the impact of the string-equality op-
erator in Section 6, and conclude in Section 7.

2. DOCUMENT SPANNERS
In this section, we give some preliminary definitions

and recall the formalism of document spanners [19].
We fix a finite alphabet Σ of symbols. We denote by

Σ˚ the set of all finite strings over Σ, and by Σ` the
set of all finite strings of length at least one over Σ. For
clarity of context, we will often refer to a string in Σ˚ as
a document. 1 A language over Σ is a subset of Σ˚. Let
d “ σ1 ¨ ¨ ¨σn P Σ˚ be a document. The length n of d
is denoted by |d|. A span identifies a substring of d by
specifying its bounding indices. Formally, a span of d
has the form ri, jy, where 1 ď i ď j ď n`1. If ri, jy is a
span of d, then dri,jy denotes the substring σi ¨ ¨ ¨σj´1.
Note that dri,iy is the empty string, and that dr1,n`1y

is d. The more standard notation would be ri, jq, but
we use ri, jy to distinguish spans from intervals. For
example, r1, 1q and r2, 2q are both the empty interval,
hence equal, but in the case of spans we have ri, jy “
ri1, j1y if and only if i “ i1 and j “ j1 (and in particular,
r1, 1y ‰ r2, 2y). We denote by Spanspdq the set of all
the spans of d. Two spans ri, jy and ri1, j1y of d are
disjoint if j ď i1 or j1 ď i, and they overlap otherwise.
Finally, ri, jy contains ri1, j1y if i ď i1 ď j1 ď j.

EXAMPLE 2.1. In all of the examples throughout the
article, we consider the example alphabet Σ which con-
sists of the lowercase and capital letters from the English
alphabet (i.e., a,. . . ,z and A,. . . ,Z), the comma symbol
(“,”), and the underscore symbol (“ ”) that stands for
whitespace. (We use a restricted alphabet for simplic-
ity.) Figure 1 depicts an example document d in Σ˚.
For ease of later reference, it also depicts the index of
each character in d. Figure 2 shows two tables contain-
ing spans of d. Observe that the spans in the left table
of Figure 2 are those that correspond to words in d that
are names of US states (Georgia, Washington and Vir-
1This is a text-only document without figures or tables.

ginia). For example, the span r21, 28y corresponds to
Georgia. We will further discuss the meaning of these
tables later.

We fix an infinite set SVars of (span) variables; spans
may be assigned to these variables. The sets Σ˚ and
SVars are disjoint. For a finite set V Ď SVars of vari-
ables and a document d P Σ˚, a pV,dq-tuple is a map-
ping µ : V Ñ Spanspdq that assigns a span of d to
each variable in V . A pV,dq-relation is a set of pV,dq-
tuples. A document spanner (or just spanner for short)
is a function P that is associated with a finite set V of
variables, denoted SVarspP q, and that maps every doc-
ument d to a pV,dq-relation.

EXAMPLE 2.2. Throughout the article we will define
several spanners. Two of those are denoted as JρsttK and
JρlocK, where SVarspJρsttKq “ txu and SVarspJρlocKq “
tx1, x2, yu. Later we will explain the meaning of the
J¨K brackets , and specify what exactly each spanner ex-
tracts from a given document. For now, the span rela-
tions (tables) in Figure 2 show the results of applying
the two spanners to the document d of Figure 1.

Let P be a spanner with SVarspP q “ V . Let d P Σ˚

be a document, and let µ P P pdq be a pV,dq-tuple.
We say that µ is hierarchical if for all variables x, y P
SVarspP q one of the following holds: (1) the span µpxq
contains µpyq, (2) the span µpyq contains µpxq, or (3)
the spans µpxq and µpyq are disjoint. As an example,
the reader can verify that all the tuples in Figure 2 are
hierarchical. We say that P is hierarchical if µ is hier-
archical for all d P Σ˚ and µ P P pdq. Observe that
for two variables x and y of a hierarchical spanner, it
may be the case that, over the same document, one tu-
ple maps x to a subspan of y, another tuple maps y to a
subspan of x, and a third tuple maps x and y to disjoint
spans. Finally, we say that P is Boolean if SVarspP q is
empty. Note that when P is Boolean, its application to
a string d is either the empty set (false) or the singleton
that consists of the empty tuple (true).

3. SPANNER REPRESENTATION
By a spanner representation system we refer collec-

tively to any manner of specifying spanners through fi-
nite objects. In this section we recall several representa-
tion systems that we have proposed and studied in pre-
vious work [18, 19]: regex formulas, spanner algebra,
basic extraction programs, and automata.

3.1 Regex Formulas
Regular expressions are one of the oldest types of in-

formation extraction rule languages. Many of the sys-
tems deployed in early MUC competitions used regular
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Figure 1: Document d in the running example

expressions over characters or token streams as their pri-
mary rule languages. A more recent example of a sys-
tem with a regular expression-based rule language is the
JAPE system [14], in which rules comprise regular ex-
pressions over streams of tokens, and rule evaluation is
via a finite-state transducer.

A regular expression with capture variables, or just
variable regex for short, is an expression in the follow-
ing syntax that extends that of regular expressions:

γ
def
“ H | ε | σ | γ _ γ | γ ¨ γ | γ˚ | xtγu (1)

The added alternative is xtγu, where x P SVars. We
denote by SVarspγq the set of variables that occur in γ.
We use γ` as abbreviations of γ ¨ γ˚.

A variable regex can be matched against a document
in multiple ways, or more formally, there can be multi-
ple parse trees showing that a document matches a vari-
able regex. Each parse tree associates variables with
spans. It is possible, however, that in a parse tree a
variable is not associated with any span, or is associ-
ated with multiple spans. If every variable is associated
with precisely one span, then the parse tree is said to be
functional. A variable regex is called a regex formula if
it has only functional parse trees on every input docu-
ment. An example of a variable regex that is not a regex
formula is pxtauq˚, because a match against aa assigns
x to two spans. We refer to Fagin et al. [19] for the full
formal definition of regex formulas. By RGX we denote
the class of regex formulas. A regex formula γ is nat-
urally viewed as representing a spanner, and by JγK we
denote the spanner that is represented by γ. Following
are examples of spanners represented as regex formulas.

EXAMPLE 3.1. In the regex formulas of our running
examples we will use the following conventions.
‚ [a-z] denotes the disjunction a_ ¨ ¨ ¨ _ z;
‚ [A-Z] denotes the disjunction A_ ¨ ¨ ¨ _ Z;
‚ [a-zA-Z] denotes [a-z]_ [A-Z];
‚ Σ, by abuse of notation, denotes the regex formula

recognizing all symbols in Σ, i.e., Σ denotes the
disjunction [a-zA-Z]_ ,_ .

We now define several regex formulas that we will use
throughout the article.

The following regex formula extracts tokens (which
for our purposes now are simply complete words) from
text. (Note that this is a simplistic extraction for the sake
of presentation.)

γtkn
def
“
`

ε_pΣ˚ ¨ q
˘

¨ xtra-zA-Zs`u

¨

´

`

p,_ q ¨ Σ˚
˘

_ ε
¯

When applied to the document d of Figure 1, the result-
ing spans include r1, 7y, r8, 12y, r13, 19y and so on.

The following regex formula extracts spans that begin
with a capital letter.

γ1cap
def
“ Σ˚ ¨ xt[A-Z] ¨ Σ˚u ¨ Σ˚

When applied to the document d of Figure 1, the result-
ing spans include r1, 7y, r1, 3y, r13, 19y, and so on.

The following regex formula extracts all the spans
that span names of US states. For simplicity, we include
just the three in Figure 1. For readability, we omit the
concatenation symbol ¨ between two alphabet symbols.

γstt
def
“ Σ˚ ¨ xtGeorgia_ Virginia_

Washingtonu ¨ Σ˚

When applied to the document d of Figure 1, the result-
ing spans are r21, 28y, r30, 40y, and r60, 68y.

The following regex formula extracts all the triples
px1, x2, yq of spans such that the string “, ” separates
x1 and x2, and y is the span that starts where x1 starts
and ends where x2 ends.

γ,
def
“ Σ˚ ¨ y

 

x1tΣ
˚u ¨ , ¨ x2tΣ

˚u
(

¨ Σ˚

Let d be the document of Figure 1, and let V be the
set tx1, x2, yu of variables. The pV,dq-tuples that are
obtained by applying γ, to d map px1, x2, yq to triples
like pr13, 19y, r21, 28y, r13, 28yq, and in addition, triples
that do not necessarily consist of full tokens, such as the
triple pr9, 19y, r21, 23y, r9, 23yq.

3.2 Algebra over Spanners
Some IE systems use rule languages whose seman-

tics derive from the relational calculus. For example, the
Xlog system [28] system has a Datalog-based rule lan-
guage, while SystemT [10] has a rule language based on
SQL. These systems use rule engines that combine the
relational algebra with automata for evaluating character-
level primitives such as regular expressions. Such an al-
gebraic runtime allows for efficient rule execution via
query optimization. We can model this class of execu-

JρsttKpdq
x

µ1 r21, 28y

µ2 r30, 40y

µ3 r60, 68y

JρlocKpdq
x1 x2 y

µ5 r13, 19y r21, 28y r13, 28y

µ4 r21, 28y r30, 40y r21, 40y

µ6 r46, 58y r60, 68y r46, 68y

Figure 2: Results of spanners in the running example



tion environment by extending regex formulas with a re-
lational algebra.

Let R be a representation system for spanners. Given
a collection O of relational algebraic operators, we de-
note by RO the closure of R under the operators of
O. Here relational operators are extended pointwise to
spanners. For example, consider O “ t’u, where ’ is
the natural join operator. Then RO consists of all span-
ners in R, along with, for all spanners P1 and P2 defin-
able in R, the spanner JP1 ’ P2K, which is defined by
JP1 ’ P2Kpdq “ P1pdq ’ P2pdq for all documents d.
Note in particular that the natural join here is based on
span equality, not on string equality, since our relations
contain spans.

We consider here three operators of positive relational
algebra: union (Y), projection (π), and natural join (’).
Observe that the projection operator is parameterized by
a sequence of variables from it operand spanner; that is,
the operator has the form πx where x is a sequence of
variables. The standard typing rules for union and pro-
jection apply: union can only be applied to spanners P1

and P2 if SVarspP1q “ SVarspP2q, and πx is only appli-
cable to spanner P if every member of x is in SVarspP q.
As usual, by JρK we denote the spanner that is repre-
sented by the algebraic expression ρ.

In the next example, we use the following notation.
Let ρ be an expression in an algebra over RGX and let
x “ x1, . . . , xn be a sequence of n distinct variables
containing all the variables in SVarspρq (and possibly
additional variables). Let y “ y1, . . . , yn be a sequence
of distinct variables of the same length as x. We denote
by ρry{xs the expression ρ1 that is obtained from ρ by
replacing every occurrence of xi with yi. If x is clear
from the context, then we may write just ρrys.

EXAMPLE 3.2. Using the regex formulas from Ex-
ample 3.1, we define several RGXtY,π,’u-spanners.

‚ The spanner ρstt
def
“ γtkn ’ γstt extracts all the to-

kens that are names of US states. Note that, since
SVarspγtknq “ SVarspγsttq “ txu, the natural join
actually computes an intersection.

‚ The spanner ρ1cap
def
“ γtkn ’ γ1cap extracts all the

tokens beginning with a capital letter.

‚ The spanner ρloc
def
“ ρ1caprx1{xs ’ ρsttrx2{xs ’

γ, extracts spans of strings including “city, state.”

The results of applying the spanners JρsttK and JρlocK
to the document d of Figure 1 are in Figure 2. Note that
the right column of the right table in the figure is ob-
tained through the spanner πypρlocq, and the union of the
left and middle columns is obtained through the spanner
`

πx1
pρlocq

˘

Y
`

πx2
pρlocq

˘

.

Later on, we will discuss several additional operators,
including selection, difference and complement.

Loc

f1 r13, 28y

f2 r21, 40y

f3 r46, 68y

Per

f4 r1, 7y

f5 r13, 19y

f6 r21, 28y

f7 r30, 40y

f8 r46, 58y

f9 r60, 68y

PerLoc

f10 r1, 7y r13, 28y

f11 r1, 7y r46, 68y

f12 r30, 40y r46, 68y

Figure 3: A d-instance I over the signature of the
running example

3.3 Basic Extraction Programs
In [18], we used the Datalog syntax for specifying

spanners. We describe a basic form of this syntax (which
we later extend) in this section.

A signature is a finite sequence S “ xR1, . . . , Rmy
of distinct relation symbols, where each Ri has an ar-
ity ai ą 0. In this work, the data is a document d,
and entries in the instances of a signature are spans of
d. Formally, for a signature S “ xR1, . . . , Rmy and a
document d P Σ˚, a d-instance (over S) is a sequence
xr1, . . . , rmy, where each ri is a relation of arity ai over
Spanspdq; that is, ri is a subset of Spanspdqai . A d-
fact (over S) is an expression of the formRps1, . . . , saq,
where R is a relation symbol of S with arity a, and each
si is a span of d. If f is a d-fact Rps1, . . . , saq and I is
a d-instance, both over the signature S, then we say that
f is a fact of I if ps1, . . . , saq is a tuple in the relation
of I that corresponds to R. For convenience of notation,
we identify a d-instance with the set of its facts.

EXAMPLE 3.3. The signature S for our running ex-
ample consists of three relation symbols:
‚ The unary relation symbol Loc stands for location;
‚ The unary relation symbol Per stands for person;
‚ The binary relation symbol PerLoc associates per-

sons with locations.
We continue with our running example. Figure 3 shows
a d-instance over S, where d is the document of Fig-
ure 1. This instance has 12 facts, and for later refer-
ence we denote them by f1,. . . , f12. Note that there are
quite a few mistakes in the table (e.g., the annotation of
Virginia as a person by fact f9); in the next section
we will show how these are dealt with in the framework
of this article.

Let R be a spanner representation system. A basic
extraction program in R, or just basic R-program, for
short, is a triple xS, U, ϕy, where S is a signature, U
is a finite sequence u1, . . . , um of Horn rules, and ϕ is
an atomic formula over S (representing the result of the
program). Here, an atomic formula ϕ is an expression
of the form Rpx1, . . . , xaq, where R is an a-ary relation
symbol in S. A Horn rule has the formRpy1, . . . , yaq :´



α1^¨ ¨ ¨^αk, whereR is a relation symbol of S of arity
a, and each αi is either an atomic formula over S or a
spanner in R. We make the requirement that each yj
occurs in at least one αi. We denote by BPRxRy the
class of basic R-programs.

EXAMPLE 3.4. We now define a basic RGXtY,π,’u-
program E in our running example. Intuitively, the goal
of the program is to extract pairs px, yq, where x is a
person and y is a location associated with x.2 The sig-
nature is that of Example 3.3. The sequence U of rules
is the following. Note that we are using the notation we
established in the previous examples.

1. Locpxq :´ ρlocrxs (see Example 3.2)
2. Perpyq :´ ρ1caprys (see Example 3.2)
3. PerLocpx, yq :´ Perpxq ^ Locpyq ^ precederx, ys
4. RETURN PerLocpx, yq

In the above program, precede is the regex formula Σ˚ ¨
xtΣ˚u ¨ Σ˚ ¨ ytΣ˚u ¨ Σ˚. Hence, precede states that x
terminates before y begins.

3.4 Automata
Next, we recall a representation by means of automata.

A variable-set automaton (or vset-automaton) is a tuple
pQ, q0, qf , δq, where: Q is a finite set of states, q0 P Q
is an initial state, qf P Q is an accepting state, and δ
is a finite transition relation consisting of triples, each
having one of the forms pq, σ, q1q, pq, ε, q1q, pq, x$, q1q
or pq,%x, q1q, where q, q1 P Q, σ P Σ, and x P SVars.
We denote by SVarspAq the set of variables that occur
in the transitions of A.

Let d “ σ1 ¨ ¨ ¨σn be a document. A configuration
of a vset-automaton A “ pQ, q0, qf , δq, when running
on d, is a tuple c “ pq, V, Y, iq, where q P Q is the
current state, V Ď SVarspAq is the set of active vari-
ables, Y Ď SVarspAq is the set of available variables,
and i is an index in t1, . . . , n ` 1u. A run c of A
on d is a sequence c0, . . . , cm of configurations, where
c0 “ pq0,H,SVarspAq, 1q, and for j “ 0, . . . ,m ´ 1
one of the following holds for cj “ pqj , Vj , Yj , ijq and
cj`1 “ pqj`1, Vj`1, Yj`1, ij`1q:

1. Vj`1 “ Vj , Yj`1 “ Yj , and either (a) ij`1 “

ij ` 1 and pqj , sij , qj`1q P δ (ordinary transition),
or (b) ij`1 “ ij and pqj , ε, qj`1q P δ (epsilon
transition).

2. ij`1 “ ij and for some x P SVarspAq, either
(a) x P Yj , Vj`1 “ Vj Y txu, Yj`1 “ Yjztxu,
and we have pqj , x$, qj`1q P δ (variable insert),
or (b) x P Vj , Vj`1 “ Vjztxu, Yj`1 “ Yj and
pqj ,%x, qj`1q P δ (variable remove).

Note that in a run, each configuration pq, V, Y, iq is such
that V and Y are disjoint. The run c “ c0, . . . , cm is ac-
2In real life, such a program would of course be much more
involved; here it is simplistic, for the sake of presentation.

% y1, . . . ,% ym

Σ

y1 $, . . . , ym $,

Figure 4: A vset-automaton that generates all tuples
over y1, . . . , ym

cepting if cm “ pqf ,H,H, n`1q. We let ARunspA,dq
denote the set of all accepting runs of A on d. If c P
ARunspA,dq, then for each x P SVarspAq the run c has
a unique configuration cb “ pqb, Vb, Yb, ibq where x oc-
curs in the current version of V (i.e., Vb) for the first
time; and later than that c has a unique configuration
ce “ pqe, Ve, Ye, ieq where x occurs in the current ver-
sion of V (i.e., Ve) for the last time; the span rib, iey
is denoted by cpxq. By µc we denote the d-tuple that
maps each variable x P SVarspAq to the span cpxq. The
spanner JAK that is represented by A is the one where
SVarspJAKq is the set SVarspAq, and where JAKpdq is
the pSVarspAq,dq-relation tµc | c P ARunspA,dqu.
We denote by VAset the set of all variable-set automata.

As a simple example, Figure 4 depicts a vset-automaton
that generates all tuples over y1, . . . , ym

We remark that in [19] we have defined another type
of automata for representing spanners, called variable-
stack automata. We do not consider those in this article.

4. REGULAR SPANNERS AND EXPRES-
SIVENESS

We now give results on the expressiveness of the rep-
resentation systems of the previous section. Given a rep-
resentation system R, we denote by JRK the class of
spanners definable by R. The following theorem shows
that several of the representation systems defined in the
previous section have the same expressive power.

THEOREM 4.1. [18,19] The following representation
systems have precisely the same expressive power.

‚ The closure of regex formulas under union, projec-
tion and natural join.

‚ The basic RGX-programs.

‚ The vset-automata.

That is, JRGXtY,π,’uK “ JBPRxRGXyK “ JVAsetK.

A spanner is regular if it is definable in the repre-
sentation systems of Theorem 4.1. We denote by REG

the set of expressions in RGXtY,π,’u. Hence, all of the
representation systems of the theorem capture precisely



JREGK. Note, however, that regex formulas are strictly
less expressive than regular spanners. This is true, since
a spanner defined by a regex formula is necessarily hi-
erarchical. The following theorem shows that regex for-
mulas capture precisely those regular spanners that are
hierarchical.

THEOREM 4.2. [19] A spannerP is definable in RGX
if and only if P is both regular and hierarchical.

Next, we discuss the selection operator. Let R be a
k-ary string relation, and let P be a spanner. The string-
selection operator ςR is parameterized by k span vari-
ables x1, . . . , xk and may be written as ςRx1,...,xk

. If P 1

is ςRx1,...,xk
P , then P 1pdq is the restriction of P pdq to

those d-tuples µ such that pdµpx1q, . . . ,dµpxkqq P R.
For example, if R is the binary relation consisting of all
the pairs of strings that start with the same symbol, then
ςRx,y P pdq is obtained from P pdq by removing all the tu-
ples γ in which the strings spanned by γpxq and γpyq
start with different symbols.

A string relation is a relation over Σ˚. A k-ary string
relation R is recognizable [7,16] if it is a finite union of
Cartesian products L1 ˆ ¨ ¨ ¨ ˆ Lk, where each Li is a
regular language over Σ. We have the following.

THEOREM 4.3. [19] LetR be a string relation. RGX
is closed under the selection operator ςR if and only if
R is recognizable.

Finally, we discuss difference and complementation.
We denote by z the difference operator, and by „ the
complement operator. Here, the complement of a span-
ner P is the spanner Q that has the same variables as
P , and for every document d, the tuples in Qpdq are
precisely those involving spans of d that are not in P .
(Note that Qpdq is finite since there only finitely many
spans over d.) Difference is defined as usual.

THEOREM 4.4. [19] Regular spanners are closed un-
der difference and complement; that is:

REG “ REGtz,„u “ RGXtY,π,’,z,„u

5. CONFLICT RESOLUTION
It is a common practice for different rules of an IE rule

set to match the same region of text in different ways.
Allowing this kind of overlap simplifies the task of de-
veloping and maintaining the rules if the rules are writ-
ten by hand; and it simplifies the learning problem in
systems that induce rules from examples. Nearly every
IE rule system in use today allows for conflicting rules
and provides language features for resolving these con-
flicts. Examples of such language features include the
controls in the JAPE rule language [14] and the “consol-
idate” clause in SystemT’s AQL [10]. The sections that

PerLocLoc Per
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Figure 5: A conflict graph with priorities in the run-
ning example

follow describe our theoretical framework for a declara-
tive language for specifying policies for conflict resolu-
tion [18].

5.1 Conflicts and Priorities
Observe that the instance of Figure 3 contains several

conflicting facts. For example, f2 represents a location,
but it has a nonempty intersection with f6 and f7, which
stand for person mentions. The database research com-
munity has established the concept of repairs as a mech-
anism for handling inconsistencies in a declarative fash-
ion [5]. Conventionally, denial constraints are specified
to declare sets of facts that cannot co-exist in a consis-
tent instance. A repair of an inconsistent instance is a
consistent subinstance that is not properly contained in
any other consistent subinstance.

We adapt the concept of denial constraints to our set-
ting. In the world of IE, the repairs are not necessarily
all equal. In fact, in every example we are aware of, the
developer has a clear preference as to which facts to ex-
clude when a denial constraint is violated. Therefore,
instead of the traditional repairs, we will use the notion
of prioritized repairs of Staworko et al. [30], which ex-
tends repairing by incorporating priorities.

Let S be a signature, let d be a document, and let I
be a d-instance over S. A conflict hypergraph for I is a
hypergraph H over the facts of I; that is, H “ pV,Eq
where V is the set of I’s facts and E is a collection of
hyperedges (subsets of V ). Intuitively, the hyperedges
represent sets of facts that together are in conflict. A
priority relation for I is a binary relation ą over the
facts of I . If f and f 1 are facts of I , then f ą f 1 means
intuitively that f is preferred to f 1. A repair of I is a
maximal subinstance of I that does not contain any hy-
peredge of H . To accommodate priorities in cleaning,
we use the notion of Pareto optimality [30]: a consistent
subinstance J is an improvement of a consistent subin-
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Figure 6: A d-instance J3 over the signature of the
running example

stance J 1 if there is a fact f P JzJ 1 such that f ą f 1 for
all f 1 P J 1zJ ; an optimal repair is a consistent subin-
stance that has no improvement. It is easy to see that
every optimal repair is also a repair in the sense of Are-
nas et al. [5].

EXAMPLE 5.1. Recall the instance I of our running
example (Figure 3). Figure 5 shows both a conflict hy-
pergraph (which is a graph in this case) and a priority
relation over I . Specifically, the figure has two types of
edges. Dotted edges (with small arrows) define priori-
ties, where fi Ñ fj denotes that fi ą fj . Later, we
shall explain the preferences (such as f1 ą f4). Solid
edges (with bigger arrows) define both conflicts and pri-
orities: fi Ñ fj denotes that tfi, fju is an edge of the
conflict hypergraph, and that fi ą fj .

Consider the following sets of facts.

J1
def
“ tf2, f3, f4, f5, f11u

J2
def
“ pJ1 Y tf1, f7uqztf2, f5u

J3
def
“ pJ2 Y tf10, f12uqztf11u

Observe that each Ji is consistent. J2 is an improve-
ment of J1, since both f1 ą f2 and f1 ą f5 hold, and
J3 (depicted in Figure 6) is an improvement of J2, since
f10 ą f11 (and f12 ą f11). Note that J3 is not an im-
provement of J1, since no fact in J3 is preferred to both
f2 and f11. So “is an improvement of” is not transitive.
The reader can verify that J3 is an optimal repair, and in
fact, the unique optimal repair.

We note that another notion of optimality proposed
by Staworko et al. [30] is global optimality, where J
is an improvement of J 1 if J ‰ J 1 and for every fact
f 1 P J 1zJ there is a fact f P JzJ 1 such that f ą f 1.
For the cases considered in this article, the two seman-
tics coincide [18]. But in general, the two concepts
are different. For example, in a traditional relational
database with functional dependencies, optimal repair
checking (i.e., given I and J , determine whether J is
an optimal repair) is solvable in polynomial time in the
Pareto semantics, but coNP-complete in the global se-
mantics [17, 30].

5.2 Denial Constraints and Priority Gen-
erating Dependencies

We now discuss the syntactic declaration of conflicts
and priorities. To specify a conflict hypergraph at the

signature level (i.e., to specify the conflict hypergraph
for every instance), we use the formalism of denial con-
straints. Let S be a signature, and let R be a spanner
representation system. A denial constraint in R (over
S), or just R-dc (or simply dc) for short, has the form

@xrP Ñ  Ψpxqs

where x is a sequence of variables in SVars, P is a span-
ner specified in R with all of its variables in x, and Ψ
is a conjunction of atomic formulas over S. We usually
omit the universal quantifier, and specify a dc simply by
P Ñ  Ψpxq. Semantically, P Ñ  Ψpxq is interpreted
in the usual first-order-logic sense while viewing P as a
predicate that contains all of the tuples in its output; that
is, P Ñ  Ψpxq is satisfied in a document d if for every
px,dq-tuple µ, if P pdq contains the restriction of µ to
SVarspP q, then at least one of the conjuncts of Ψ must
be false under µ.

EXAMPLE 5.2. We now define dcs in our running
example. Recall that precede is a regex formula stating
that x terminates before y begins. We denote by disjoint
the regex formula precederx, ys_precedery, xs. We de-
note by overlap an expression in REG that represents the
complement of disjoint. Note that overlap is indeed ex-
pressible by a regular spanner, since regular spanners are
closed under complement (Theorem 4.4). Finally, we
denote by overlap‰ an expression in REG that restricts
the pairs in overlap to those px, yq satisfying x ‰ y (i.e.,
x and y are not the same span). It is easy to verify that
overlap‰ indeed is expressible by a regular spanner.

The following dc, denoted dloc, states that the spans
of locations are disjoint.

dloc :“ overlap‰rx, ys Ñ  
`

Locpxq ^ Locpyq
˘

Similarly, the following dc, denoted dlp, states that spans
of locations are disjoint from spans of persons.

dlp :“ overlaprx, ys Ñ  
`

Locpxq ^ Perpyq
˘

To specify a priority relation ą, we use what is called
in [18] a priority generating dependency, or just pgd for
short. Let S be a signature, and let R be a spanner rep-
resentation system. A pgd in R (for S) has the form
@xrP Ñ pϕpxq ą ϕ1pxqqs, where x is a sequence of
variables in SVars, P is a spanner specified in R with all
of its variables in x, and ϕ and ϕ1 are atomic formulas
over S. Again, we usually omit the universal quantifier
and write just P Ñ pϕpxq ą ϕ1pxqq. And again, the
semantics of P Ñ pϕpxq ą ϕ1pxqq is the obvious one:
for all px,dq tuples µ, if P pdq contains the restriction of
µ to SVarspP q, then f ą f 1 where f and f 1 are the facts
that are obtained from ϕpxq and ϕ1pxq, respectively, by
replacing every variable x with the span µpxq.



EXAMPLE 5.3. The following pgd, ploc, states (us-
ing the expression ρrx, ys, which is defined shortly) that
for spans in the unary relation Loc, spans that start ear-
lier are preferred, and moreover, when two spans begin
together, the longer one is preferred.

ploc :“ ρrx, ys Ñ
`

Locpxq ą Locpyq
˘

Here, ρrx, ys is the following expression in REG.

πx,y

´

`

Σ˚ ¨ xtztεu ¨ Σ˚u ¨ Σ˚
˘

’

`

Σ˚ ¨ ztεu ¨ Σ` ¨ ytΣ˚u ¨ Σ˚u
˘

¯

_

`

Σ˚ ¨ xtytΣ˚uΣ`u ¨ Σ˚
˘

Intuitively, the first disjunct says that x begins before y,
because x begins with the empty span z, and y begins
strictly after z begins. The second disjunct says that x
and y begin together, but x ends strictly after y ends.

The following pgd, denoted plp, states that all the facts
of Loc are preferred to all the facts of Per (e.g., because
the extraction made for Loc is deemed more precise).
We use the Boolean spanner true that is true on every
document.

plp :“ trueÑ
`

Locpxq ą Perpyq
˘

As we will discuss in Section 5.4, common resolution
strategies translate into a dc and a pgd, such that the
dc is binary, and the pgd defines priorities precisely on
the facts that are in conflict. To refer to such a case
conveniently, we write P Ñ pϕpxq � ϕ1pxqq to jointly
represent the dc P Ñ  pϕpxq ^ ϕ1pxqq and the pgd
P Ñ pϕpxq ą ϕ1pxqq. We call such a constraint a
denial pgd.

EXAMPLE 5.4. We use contains‰rx, ys to denote a
regex formula that produces all pairs px, yq of spans
where x strictly contains y. Let encloserz, x, ys denote a
specification in REG that produces all the triples pz, x, yq,
such that z begins where x begins and ends where y
ends. For presentation’s sake, we avoid the precise spec-
ification of these formulas.

The following denial pgd, denoted dpenc, states that
in the relation PerLoc, two facts are in conflict if the
span that covers the two elements (person and location)
of the first fact strictly contains that span that covers the
two elements of the second; in that case, the shorter span
is prioritized (since a shorter span indicates closer rela-
tionship between the person and the location).

encloserz, x, ys’ encloserz1, x1, y1s’ contains‰rz
1, zs

Ñ PerLocrx, ys� PerLocrx1, y1s

EXAMPLE 5.5. Consider again the d-instance I of
Figure 3. The reader can verify that dcs dloc and dlp
from Example 5.2, the pgds ploc and plp in Example 5.3

and the denial pgd dpenc of Example 5.4, together de-
fine the conflicts and priorities discussed in Example 5.1
(Figure 5).

Let R be a spanner representation system. An extrac-
tion program in R, or just R-program for short, is sim-
ilar to a basic R-program, except that we now allow for
cleaning rules in addition to the Horn rules. A cleaning
rule has the form form CLEANpδ1, . . . , δdq, where each
δi is a dc or a pgd in R (for convenience, we will also
allow denial pgds).

In the program of the following example, we spec-
ify an extraction program xS, U, ϕy using only U (a se-
quence of rules) along with a special RETURN statement
that specifies ϕ. We then assume that S consists of pre-
cisely the relation symbols that occur in the program.

EXAMPLE 5.6. We now define the REG-program E
of our running example. Intuitively, the goal of the pro-
gram is to extract pairs px, yq, where x is a person and
y is a location associated with x.3 The signature is, as
usual, that of Example 3.3. The sequence U of rules is
the following. Note that we are using the notation we
established in the previous examples.

1. Locpxq :´ ρlocrxs (Example 3.2)
2. Perpyq :´ ρ1caprys (Example 3.2)
3. CLEANpdloc, dlp, ploc, plpq (Examples 5.2 and 5.3)
4. PerLocpx, yq :´ Perpxq^Locpyq^precederx, ys

(Example 5.2)
5. CLEANpdpencq (Example 5.4)
6. RETURN PerLocpx, yq

Note that lines 1, 2 and 4 are Horn rules, whereas lines 3
and 5 are cleaning rules.

Let E “ xS, U, ϕy be an R-program and let d be a
document. Suppose that U “ xu1, . . . , umy. Let I0 be
the singleton tIHu, where IH is the empty instance over
S. For i “ 1, . . . ,m, we denote by Ii the result of exe-
cuting the rules u1, . . . , ui as we describe below. Since
the cleaning operation can result in multiple instances
(optimal repairs), each Ii is a set of d-instances, rather
than a single one. For i ą 0 we define the following.

1. If ui is the Horn ruleRpx1, . . . , xaq :´ α1^¨ ¨ ¨^

αk, then Ii is obtained from Ii´1 by adding to each
I P Ii´1 all the facts (over R) that are obtained by
evaluating the rule over I .

2. If ui is the cleaning rule CLEANpδ1, . . . , δdq, then
Ii is obtained from Ii´1 by replacing each I P
Ii´1 with all the optimal repairs of I , as defined
by the conflict hypergraph and priorities implied
by all the δj .

3Again, our program is simplistic, for the sake of presentation.



Recall that a spanner is a function that maps a docu-
ment into a pV,dq-relation (see Section 2). An extrac-
tion program acts similarly, except that a document is
mapped into a set of pV,dq-relations (since it branches
into multiple optimal repairs); these are all the possible
resulting relations ϕ. For a more precise definition of
the output of an extraction program, see [18]. In prac-
tice, the common case is where the extraction program
produces precisely one pV,dq-relation, and then we will
view the extraction program simply as a spanner.

EXAMPLE 5.7. Consider again the REG-program E
of Example 5.6. We will now follow the steps of evalu-
ating the program E on the document d of our running
example (Figure 1). It turns out that, in this example,
each Ii is a singleton, since every cleaning operation re-
sults in a unique optimal repair. Hence, we will treat the
Ii as instances.

1. In I1, the relation Loc is as shown in Figure 3, and
the other two relations are empty.

2. In I2, the relations Loc and Per are as shown in
Figure 3, and PerLoc is empty.

3. In I3, the relations Loc and Per are as shown in
Figure 6, and PerLoc is empty. The cleaning pro-
cess is described throughout Sections 5.1 and 5.2.

4. In I4, the relations Loc and Per are as in I3, and
PerLoc is as shown in Figure 3.

5. I5 is the instance shown in Figure 6.
The result Epdq is the ptx, yu,dq-relation that has two
mappings: the first maps px, yq to pr1, 7y, r13, 28yq, and
the second to pr30, 40y, r46, 48yq.

5.3 Cleaning in REG-Programs
We now discuss fundamental properties of extraction

programs, where we focus on the class of REG-programs.
In the framework of prioritized repairs [30], the pri-

ority relation is assumed to be acyclic. We did not make
such an assumption, and a pgd can indeed define a cyclic
priority relation in a given program. We would like to be
able to test whether acyclicity is guaranteed, but unfor-
tunately, as the next theorem implies, no such algorithm
exists for general pgds.

Let c be a cleaning rule. We say that c is acyclic if, for
every document d and d-instance I over S, the priority
relation implied by the pgds of c is acyclic.

THEOREM 5.8. [18] Whether a pgd in REG is acyclic
is co-recursively enumerable but not recursively enu-
merable. In particular, it is undecidable.

Recall that a spanner maps a document d into a pV,dq-
relation, for a set V of variables, while an extraction
program maps d into a set of pV,dq-relations. The next
property we discuss for extraction programs is that of
unambiguity, which is the property of having a single

possible world when the program is evaluated over any
given document. Formally, we say that extraction pro-
gram E is unambiguous if Epdq is a singleton pV,dq-
relation for every document d. We may view an unam-
biguous extraction program E simply as a specification
of a spanner. The following theorem states that, unfor-
tunately, in the presence of cleaning rules unambiguity
cannot be verified for regular extraction programs.

THEOREM 5.9. [18] Whether a REG-program is un-
ambiguous is co-recursively enumerable but not recur-
sively enumerable. In particular, it is undecidable.

We now give a sufficient and decidable condition for
unambiguity, in the case where acyclicity is guaranteed.
Let I be a d-instance over a signature S. Let H and
ą be a conflict hypergraph for I and a priority relation
over I , respectively. We say that pą, Hq satisfies the
minimum property if every hyperedge h of H contains a
minimum element, that is, an element a such that b ą a
for every member of h other than a. Let c be a clean-
ing rule. We say that c is minimum generating if, for
every document d and d-instance I over S, for the pri-
ority relation ą and conflict hypergraph H implied by
c we have that pą, Hq satisfies the minimum property.
We note that for acyclic priority relations, the minimum
property is less strict than the totality property that Sta-
worko et al. [30] gave as a condition for unambiguity.
We have the following theorem.

THEOREM 5.10. [18] Let E be an R-program for
some spanner representation system R. If every clean-
ing rule of E is acyclic and minimum generating, then E
is unambiguous.

In addition, we have shown that the property of being
minimum generating is decidable for regular spanners.

THEOREM 5.11. [18] Whether a given cleaning rule
in REG is minimum generating is decidable.

Unfortunately, the property of being acyclic is unde-
cidable, as stated in Theorem 5.8, and so is the property
of being both acyclic and minimum generating. Hence,
as future research it is of interest to find decidable prop-
erties that imply these two properties.

Next, we address the question of whether cleaning
rules increase the expressive power of extraction pro-
grams. Let R be a spanner representation system. A
cleaning rule c defined in R is said to be R-disposable
if the following holds: for every R-program E that has
c as its single cleaning rule, there exists a basic (non-
cleaning) R-program that is equivalent to E . Of course,
if every cleaning rule of E is R-disposable, then E is
equivalent to a basic R-program.

We say that a denial pgd p is R-disposable if the
cleaning rule that consists of only p is R-disposable.



The following theorem implies that cleaning rules, and
in fact a single acyclic denial pgd, increase the expres-
sive power of regular extraction programs. Recall that
a program that uses an acyclic denial pgd as its single
cleaning rule is unambiguous (Theorem 5.10).

THEOREM 5.12. [18] There exists an acyclic denial
pgd in REG that is not REG-disposable.

5.4 JAPE Controls
JAPE [14] is an instantiation of the Common Pat-

tern Specification Language (CPSL) [4], a rule based
framework for IE. A JAPE program (or “phase”) can be
viewed as an extraction program where all the relation
symbols are unary. JAPE has several built-in cleaning
strategies called “controls.” Here, we will define these
strategies in our own terminology—denial pgds.

JAPE provides four controls (in addition to the All
control stating that no cleaning is to be applied). These
translate to the following denial pgds. Here, R is as-
sumed to be a unary relation in an extraction program.
Under the Appelt control, Rpxq�Rpyq holds if (1) x and
y overlap and x starts earlier than y, or (2) x and y start
at the same position but x is longer than y. The same
strategy is used is also provided by SystemT [10] (as
a “consolidator”). The First control is similar to Appelt
with “longer” replaced with “shorter.” The Brill control
is similar to Appelt, with the exclusion of option (2); that
is, Rpxq � Rpyq holds if x and y overlap and x starts
earlier than y. The Once control states that a single fact
should remain in R (unless R is empty), which is the
one that starts earliest, where a tie is broken by taking
the one that ends earliest. Hence, Rpxq � Rpyq if and
only if x is that remaining fact and x ‰ y.

It is easy to show that each of the above denial pgds
is acyclic, and can be expressed in REG. For example,
the Appelt control is presented in Example 5.3 with R
being the relation symbol Loc. While the JAPE controls
can significantly simplify the programming of spanners,
they do not add expressive power to regular programs,
as the following theorem states.

THEOREM 5.13. [18] Each of the denial pgds that
correspond to the four JAPE controls is REG-disposable.

5.5 Regular Spanners and POSIX
A regex formula γ defines a spanner by considering

all possible ways that input document d can be matched
by γ; that is, it considers all possible (functional) parse
trees of γ on d. Each such parse tree generates a new
pV,dq-tuple, where V “ SVarspγq, in the resulting span
relation. In contrast, regular-expression pattern-matching
facilities of common UNIX tools, such as sed and awk,
or programming languages such as Perl, Python, and
Java, do not construct all possible parse trees. Instead,

they employ a disambiguation policy to construct only
a single parse tree among the possible ones. As a re-
sult, a regex formula in these tools always yields a sin-
gle pV,dq-tuple per matched input document d instead
of multiple such tuples.4

In this section, we discuss the POSIX disambigua-
tion policy [20, 23], a policy which is followed by all
POSIX compliant tools such as sed and awk. For-
malizations of this policy have been proposed by Van-
summeren [31] and Okui and Suzuki [26], and multi-
ple efficient algorithms for implementing the policy are
known [12, 24, 26].

POSIX disambiguates as follows when matching a
document d against regex formula γ.5 A formal defi-
nition may be found in [26, 31]. If γ is one of H, ε, or
σ P Σ then at most one parse tree exists; disambigua-
tion is hence not necessary. If γ is a disjunction γ1_γ2,
then POSIX first tries to match d against γ1 (recursively,
using the POSIX disambiguation policy to construct a
unique parse tree for this match). Only if this fails it tries
to match against γ2 (again, recursively). If, on the other
hand, γ is a concatenation γ1 ¨ γ2 then POSIX first de-
termines the longest prefix d1 of d that can be matched
by γ1 such that the corresponding suffix d2 of d can
be matched by γ2. Then, d1 (respectively, d2) is recur-
sively matched under the POSIX disambiguation policy
by γ1 (respectively, γ2) to construct a unique parse tree
for γ. When γ is a Kleene closure δ˚, there are two
cases. If d is empty, then the entire pattern γ is taken
to match d (irrespective of whether δ itself matches d),
and disambiguation is not necessary. If, on the other
hand, d is nonempty, then POSIX expands γ to δ ¨ δ˚.
In line with the rule for concatenation, it hence first de-
termines the longest prefix d1 of d that can be matched
by δ such that the corresponding suffix d2 of d can be
matched by δ˚. Then, a unique parse tree for d against
γ is constructed by matching d1 recursively against δ
and d2 against δ˚.

The following example illustrates the POSIX policy.

EXAMPLE 5.14. Consider γ “ xtp0_ 01qu ¨ ytp1_
εqu and d “ 01. Under the POSIX disambiguation pol-
icy, subexpression xtp0 _ 01qu will match as much of
d as possible while still allowing the rest of the expres-
sion, namely ytp1_εqu, to match the remainder of d. As
such, xtp0_ 01qu will match d entirely, and ytp1_ εqu
will match the empty string. We hence bind x to the
span r1, 3y and y to r3, 3y.

4While our syntax xtγu for variable binding is not directly
supported in these tools, it can be mimicked through the use of
so-called parenthesized expressions and submatch addressing.
5For simplicity, we restrict ourselves here to the setting where
the entire input is required to match γ. Our results naturally
extend to the setting where partial matches of d against γ are
sought.



As another example, when γ “ pxt0u ¨ ytp1_ εquq_
pxt01u ¨ ytp1 _ εquq and d “ 01, we bind x to the
span r1, 2y and y to the span r2, 3y under the POSIX
disambiguation policy.

By posixrγswe denote the spanner represented by the
regex formula γ under the POSIX disambiguation pol-
icy; this is the spanner such that posixrγspdq is empty
if d cannot be matched by γ, and consists of the unique
pV,dq-tuple resulting from matching d against γ under
the POSIX disambiguation policy otherwise.

The following theorem shows that the POSIX policy
can be expressed in our cleaning framework.

THEOREM 5.15. [18] For all regex formulas γ there
exists a REG-program E such that for every document d,

Epdq “ tposixrγspdqu .

While proving Theorem 5.15, we have observed that
every cleaning rule we used in E is REG-disposable.
Moreover, since the spanner posixrγs is hierarchical, it
follows by Theorem 4.2 that posixrγs is itself definable
in RGX by a regex formula δ. We then conclude the
following theorem about POSIX, which is of interest in-
dependently of our framework.

THEOREM 5.16. [18] For every regex formula γ, the
spanner posixrγs is definable in RGX.

6. STRING EQUALITY
In this section we discuss the enrichment of regular

spanners with the binary string-selection operator, de-
noted ς“. Given a spanner P and two variables x, y P
SVarspP q, the application of ς“x,y selects all the tuples µ
in which dµpxq “ dµpyq. A core spanner [19] is a span-
ner definable in the algebra RGXtY,π,’,ς

“
u. We denote

this algebra by Core.
It follows immediately from known literature on finite-

state automata that core spanners have a strictly greater
expressive power than regular spanners; that is, every
regular spanner is a core spanner, and there are core
spanners that are not regular [19]. An example of a non-
regular core spanner is the following spanner, extracting
all the pairs of spans with equal strings.

ς“x,y
`

pΣ˚xtΣ˚uΣ˚q ˆ pΣ˚ytΣ˚uΣ˚q
˘

Recall from Theorem 4.4 that regular spanners are
closed under difference. The following theorem states
that this is no longer the case for core spanners.

THEOREM 6.1. [19] Assume that the alphabet Σ con-
tains at least two symbols. Core spanners are not closed
under difference; that is,

JRGXtY,π,’,ς
“
uK Ĺ JRGXtY,π,’,ς

“,zuK .

Next, we discuss the proof of Theorem 6.1. As noted
in [19], the authors originally believed that the way to
prove Theorem 6.1 would be to show that core spanners
cannot simulate string inequality (i.e., select the tuples
µ in which dµpxq ‰ dµpyq). However, surprisingly, it
turned out that this argument is false.

PROPOSITION 6.2. [19] Core spanners are closed
under the string-inequality operator.

As a part of the proof of Theorem 6.1, we established
the following lemma, which is of independent interest.

LEMMA 6.3. Every core spanner is definable by an
expression of the form πV SP , where P defines a reg-
ular spanner, V Ď SVarspP q, and S is a sequence of
selections ς“x,y for x, y P SVarspP q.

The proof of Theorem 6.1 then completes as follows.
An easy observation is that core spanners are closed un-
der the substring-of selection operator (i.e., select the tu-
ples µ in which dµpxq is a substring of dµpyq). But using
Lemma 6.3 we have proved the following theorem.

THEOREM 6.4. [19] Assume that the alphabet Σ con-
tains at least two symbols. Core spanners are not closed
under the not-a-substring-of binary operator.

We complete this section with the following theorem,
which implies that disposability of the JAPE controls no
longer holds in the case of core spanner.

THEOREM 6.5. [18] None of the JAPE denial pgds
is Core-disposable.

7. CONCLUDING REMARKS
We conclude this paper by some observations relating

spanners to other formalisms, and some open questions.
Many practical regular expression pattern matching

engines (such as the ones found in sed, awk, Perl, Java
and Python) support a feature called backreferences. Us-
ing this feature, variables can not only bind to a sub-
string during matching, but can also be used to repeat a
previously matched substring. Regular expressions that
have this feature are called extended regular expressions
(xregex for short) [1, 8, 9]. It is known that xregex can
recognize non-regular languages, such as tss | s P Σ˚u.
Note that this language can be recognized by a Boolean
core spanner. In [19] we established that xregex can also
recognize languages that are not recognizable by any
Boolean core spanner. The reverse question, whether
Boolean core spanners can recognize languages that are
not recognizable by any xregex, is still open.

Various languages for querying semi-structured and
graph databases are based on regular expressions. A
simple form of such queries are the regular path queries



(RPQs) that are applied to directed graphs with labeled
edges [11, 13]. An RPQ identifies node pairs connected
by a path such that the word formed by the edge labels
belongs to a specified regular language. A conjunctive
regular path query (CRPQ) applies conjunction and ex-
istential quantification (over nodes) to RPQs [11], and
has been the subject of much investigation.

Superficially speaking, spanners and CRPQs are in-
herently different concepts: spanners operate on strings
while CRPQs operate on graphs (directed, edge-labeled
graphs); and the variables in the spanner world repre-
sent spans, while those in the CRPQ world represent
nodes. However, it is possible to adjust CRPQs to repre-
sent spanners [19]. In terms of the data model, a string
can be viewed as a special case of a graph, namely a
simple path. Formally, given a string s “ σ1 ¨ ¨ ¨σn, we
denote by ppdq the simple path 1 Ñ 2 Ñ ¨ ¨ ¨ Ñ n ` 1
(with the natural numbers 1, . . . , n` 1 as nodes), where
for i “ 1, . . . , n the label of the edge iÑ i`1 is σi. For
technical reasons, it is necessary to mark the begin node
1 and end node n in this simple path with the two loops
1 Ñ 1 and pn`1q Ñ pn`1q, labeled with new labels �
and � (not in the alphabet Σ). On this so-called marked
path, a CRPQ can define a spanner over a set of span
variables V by introducing, for each x P V , two CRPQ
variables: one that will indicate the start position of the
span matched by x and one that indicates the end posi-
tion of the span matched by x. Using this representation
of spanners through CRPQ, one can show that JREGK
is exactly captured by unions of CRPQs, while JCoreK
is exactly captured by unions of CRPQs extended with
string equality [19].

As we have seen in this article, we have identified
several representation systems for regular and core span-
ners that are equivalent in expressive power. While our
proofs of these equivalences describe effective transla-
tions between the representation systems, it would be in-
teresting to study the inherent complexity of these trans-
lations in order to establish their relative succinctness.
A second question that deserves further attention is the
complexity of evaluating spanners expressed in the var-
ious representation systems.
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intranet with high precision. In WWW, pages 491–500. ACM, 2007.


