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ABSTRACT
A fitting algorithm for conjunctive queries (CQs) is an al-
gorithm that takes as input a collection of data examples
and outputs a CQ that fits the examples. In this column,
we propose a set of desirable properties of such algorithms
and use this as a guide for surveying results from the au-
thors’ recent papers published in PODS 2023, IJCAI 2023,
and Inf. Proc. Letters 2024. In particular, we explain and
compare several concrete fitting algorithms, and we discuss
complexity and size bounds for constructing fitting CQs with
desirable properties.

1. INTRODUCTION
The fitting problem for conjunctive queries (CQs) is

the problem to construct a CQ q that fits a given set of
labeled data examples. This fundamental problem has a
long history in database research. It lies at the heart of
the classic Query-By-Example paradigm [41] that aims
to assist users in query formation and query refinement,
and that is also known as query reverse engineering. It
has been intensively studied for CQs [38, 33, 7] and other
types of queries (e.g., [10, 4, 20]). The fitting problem
is also central to Inductive Logic Programming [21, 27],
where CQs correspond to the basic case of non-recursive
single-rule Datalog programs, and has close connections
to fitting problems for schema mappings [2, 12]. More re-
cent motivation comes from automatic feature generation
in machine learning with relational data [30, 8]. Here,
the CQ fitting problem arises because a CQ that sepa-
rates positive from negative examples in (a su�ciently
large subset of) a labeled dataset is a natural contender
for being added as an input feature to the model [8].
Examples illustrating the fitting problem are given

in Table 1. In each example, certain values from the
database instance are labeled as positive and/or negative,
and a fitting query must include the positive examples
in its output and exclude the negative examples.

Depending on the application, desirable properties of
a fitting algorithm may include the following:
1This paper was written in response to a dual invitation from
the SIGMOD Record Database Principles column and the
ACM SIGMOD Research Highlight Award committee.

E�ciency Ideally, the fitting algorithm should run in
polynomial time in the size of the input examples,
or at least in polynomial time in the size of the
input examples plus the size of the smallest fitting
query. We call the latter weakly polynomial.

Succinctness Ideally, the fitting algorithm outputs a
query of small size, i.e., not much larger than
the smallest fitting query. This can be formal-
ized through the notion of the “Occam property”,
which requires that the size of the output concept is
bounded polynomially in the size of a target query
and sublinearly in the number of input examples.

Producing Extremal Fittings When several fitting
queries exist, it may be desirable to output a query
that is either most-general or most-specific among
all fitting queries.

Generalization to Unseen Examples Ideally, we would
like the fitting algorithm to come with a (prob-
abilistic) guarantee that the output query not
only fits the input examples, but performs well
on future unseen examples (drawn from the same
distribution as the input examples and labeled
according to the same “target query”). This is
formalized by the well-known PAC (“Probably
Approximately Correct”) property.

Completeness for Design Ideally, the fitting algorithm
can be compelled to produce any CQ (up to
equivalence) by giving it the right input examples.

It turns out that some of these properties are di�cult
or impossible to attain. Also, there are properties that
can be obtained in isolation, but not in combination.
A fundamental di�culty is that the fitting problem is
computationally hard, and it is known that the smallest
fitting CQ for a given collection of labeled examples is in
general exponential in size [40]. To make things worse,
the hardness pertains already to very small subclasses of
CQs and natural restrictions on the fitting problem ob-
tained by requiring, for instance, that all input examples
use the same database instance (cf. Section 4).
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Example database instance I:

Businessman
donald
fred
james

Economist
barack-sr

Democrat
barack
franklin

Republican
donald

Father
barack-sr barack
fred donald
james franklin

Labeled examples: A fitting query:

E+ = {(I, franklin), (I, barack)} q(x) :- Democrat(x).
E� = {(I, donald)}

E+ = {(I, franklin), (I, donald)} q(x) :- Father(y, x),
E� = {(I, barack)} Businessman(y).

E+ = {(I, barack), (I, donald)} the union of CQs
E� = {(I, franklin)} q(x) :- Republican(x)

q(x) :- Father(y, x),
Economist(y).

Table 1: Examples of the fitting problem

Strongly
Occam

Occam Polynomial PAC

Complete for
Design

Producing a
most-specific

fitting

Producing a
most-general fitting

when it exists

⇥
⇥

⇥

Figure 1: Summary of interactions between desirable

properties (the edge label ⇥ means incompatibility)

Despite these roadblocks, there are ways forward. One
may opt to bite the bullet and live with the high com-
putational complexity, for example by employing SAT
solvers. One may also extend the capabilities of the
fitting algorithm by allowing it to interactively ask ques-
tions to an oracle that provides black-box access to a
fitting CQ (the “target CQ”). Specifically, the algorithm
may produce a database instance and a tuple and ask
whether the tuple belongs to the output of the target
CQ on that instance. In reality, the oracle may be a pre-
existing compiled CQ (in reverse-engineering scenarios)
or a user (in interactive query specification settings). A
third option is to resort to incomplete approaches that
do not always return a fitting CQ when one exists.
In this column, we (i) compare several di↵erent fit-

ting algorithms based on the above considerations and
(ii) discuss structural interactions between the above
desiderata. In particular, we will study three fitting
algorithms for CQs, described at a high level as follows:

Algorithm P This algorithm takes as input a collection
of labeled examples and outputs the canonical CQ
of the direct product of the positive examples,
which is known to fit whenever a fitting CQ exists.

Algorithm M can be viewed as an optimized version of

Algorithm P that additionally interacts with an
oracle as described above. It computes the product
of the positive examples in an iterative way and uses
the oracle to minimize the query in each iteration.

Algorithm B proceeds by solving a size-bounded version
of the fitting problem for increasing size bounds,
until a fitting CQ is found. This is also known as
the “bounded fitting approach”.

Each of the five desirable properties listed above will
be discussed in a separate section of this column. We will
discuss how the three algorithms fare, explain how this
is complemented by lower bounds, and discuss structural
interactions between the di↵erent desiderata. Table 2
provides a summary of the interactions between the
considered properties. The technical results we present
are mostly drawn from the recent papers [14, 17, 16].
Indeed, our motivation for writing this column is to fit
these results into a unified picture.
Fitting problems for CQs and especially also for

broader classes of logic programs have been investigated
extensively in the literature on Inductive Logic Program-
ming (ILP), with a strong emphasis on systems imple-
mentation. The most common technique used in ILP
systems is based on refinement operators. In the case of
CQs it is known that fitting algorithms based on refine-
ment operators are incomplete. Nevertheless, refinement-
operator based approaches have been successfully im-
plemented and used. Therefore, in Section 9, we also
discuss them and their relationship to our algorithms.

Outline. In Section 2, we define the fitting problem. In
Section 3 we describe the three algorithms in more detail.
In Sections 4–8, we investigate the above five desiderata
one by one. In Section 9, we discuss refinement-based
approaches to fitting. Finally, we conclude in Section 10.

2. THE FITTING PROBLEM FOR CQS
As usual, a schema S is a set of relation symbols, each

with associated arity. A database instance over S is
a finite set I of facts of the form R(a1, . . . , an) where
R 2 S is a relation symbol of arity n and a1, . . . , an are
values. We use adom(I) to denote the set of all values
used in I. We can then view a query over a schema S,
semantically, as a function q that maps each database
instance I over S to a set of k-tuples q(I) ✓ adom(I)k,
where k � 0 is the arity of the query.

Data Examples. A data example for a query q consists
of a database instance I together with information about
the intended query output q(I). We focus on two types
of data examples (cf. Remark 2.4 for other types):

• a positive example for q is a pair (I, a) with a 2 q(I);

• a negative example for q is a pair (I, a) with a 2
adom(I)k \ q(I)
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Needs oracle Running time Extremal fitting Occam PAC Complete for design

Alg P no Exponential in the input yes no no yes
(not weakly polynomial) (most-specific)

Alg M yes Exponential in the input no yes yes yes
(weakly polynomial) (strongly) (polynomially)

Alg B no Doubly exponential no yes yes yes
(not weakly polynomial) (strongly) (polynomially)

Table 2: Summary of our comparison of fitting algorithms

with k the arity of the query q. We also say that k is
the arity of the example.
By a collection of labeled examples we mean a pair

E = (E+, E�), where E+ and E� are sets of examples.
We say that a query q fits E if each member of E+ is
a positive example for q and each member of E� is a
negative example for q, or, in other words, if a 2 q(I)
for all (I, a) 2 E+ and a 62 q(I) for all (I, a) 2 E�. Note
that for a fitting to exist, all examples in the collection
must have the same arity.

Example 2.1. Consider the database instance I de-
picted in Table 1, over a schema that consists of unary
and binary relation symbols, storing information about
American presidents. Table 1 lists several collections of
labeled examples, and, for each, a fitting query. Note
that in the third case, no fitting conjunctive query exists,
but a fitting union of conjunctive queries exists.

Fitting Problems. We discuss three algorithmic prob-
lems related to fitting, relative to a query language Q:

Fitting Construction Given a collection E of labeled
examples that has a fitting query in Q, construct
such a query.

Fitting Existence Given a collection E of labeled exam-
ples, decide whether a fitting query from Q exists.

Fitting Verification Given a collection E of labeled ex-
amples and a query q 2 Q, decide if q fits E.

Among the three problems above, fitting construction
is the main problem of interest and we sometimes refer
to it also as the fitting problem. Note that we have
formulated fitting construction as a promise problem, in
order to study its complexity in isolation from the fitting
existence problem. In practice, one may combine a fitting
construction algorithm with a fitting existence test.
A solution to the fitting construction problem, as

defined above, is any query that fits. In particular,
the query is not required to generalize from the input
collection of labeled examples to other examples, i.e.,
there is no penalty for overfitting.
If Q is the class of all relational algebra queries, the

above problems are trivial. Indeed, if constants are

admitted in the query, a fitting relational algebra query
exists for (E+, E�) if and only if E+ \ E� = ;; as a
fitting query one can pick, intuitively, the union of the
complete descriptions of the positive examples. Without
constants, a fitting relational algebra query exists if and
only if no member of E+ is isomorphic to a member of
E� (cf. [23]). This situation changes for more restricted
query languages Q; we consider conjunctive queries.

Conjunctive Queries and tree CQs. By a k-ary conjunc-
tive query (CQ) over a schema S, we mean an expression
of the form q(x) :- ↵1, . . . ,↵n where x = x1, . . . , xk is a
sequence of variables and each ↵i is a relational atom
that uses a relation symbol from S and no constants.
The variables in x are called answer variables and the
other variables used in the atoms ↵i are the existential
variables. Each answer variable is required to occur in at
least one atom ↵i, a requirement known as the safety con-
dition. A CQ of arity 0 is called Boolean. With the size
of a CQ, we mean the number of atoms in it. The query
output q(I) is defined as usual, cf. any standard database
textbook. Two CQs q1 and q2 are equivalent, written
q1 ⌘ q2 if q1(I) = q2(I) for all database instances I.
Besides CQs we will also consider a more restricted

class of queries, namely tree CQs. In order to define it,
we need to talk about canonical database instances. The
canonical database instance of a CQ q is the instance
Iq (over the same schema as q) whose active domain
consists of the variables that occur in q and whose facts
are the atomic formulas in q. The definition of tree CQs
is restricted to schemas that consist of unary and binary
relation symbols only. Note that every instance over
such a schema can naturally be viewed as a directed,
edge-labeled and node-labeled graph. A tree CQ is then
a unary CQ q(x) such that Iq, viewed in the above way, is
a directed node-labeled and edge-labeled tree with root x
(without parallel edges, and where all edges are directed
away from the root). Our interest in this class of CQs
stems from the fact that they form a notational variant of
concept expressions in the description logic EL, and that
they are in some ways computationally more attractive.

The fitting construction, fitting existence, and fitting
verification problems have been studied extensively for
the case of CQs as well as for the case of tree CQs. We
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will review the known results in the subsequent sections.
Here, we briefly comment on the fitting verification
problem. It was observed in [14] that this problem is DP-
complete for CQs, where DP is the class of problems that
are the intersection of a problem in NP and a problem
in coNP. Tree CQs, on the other hand, can be evaluated
in polynomial time (combined complexity) and it follows
that the fitting verification problem for tree CQs is
solvable in polynomial time (cf. [14]). In summary:

Theorem 2.2 ([14]). Fitting verification is DP-
complete for CQs and in PTime for tree CQs.

Remark 2.3. As defined above, CQs do not con-
tain constants, so we may not write, for instance,
q(x) :- R(x, 100). Filipetto [22] studied the impact of
allowing constants on the fitting problem. For CQs, it
turns out, whether we allow constants does not a↵ect the
fitting problem, modulo simple reductions. Specifically,
given a collection of labeled examples E, we can take
an isomorphic copy E0 of E in which every constant is
renamed, and take the union E [E0. Then (assuming E
contains at least one positive example) the CQs that fit
E [ E0 are precisely the CQs that do not contain con-
stants and fit E. Conversely, constants can be simulated
by unary relations. The same applies to tree CQs.
While we do not consider unions of conjunctive queries

(UCQs) here, it is interesting to point out that they be-
have di↵erently: allowing constants in UCQs trivializes
the fitting problem. There are several ways to address
this, including specifying a set of allowed constants as
part of the input to the fitting problem, or restricting the
number of allowed constants in the query. Both variants
can be solved by a reduction to the constant-free fitting
problem. Furthermore, identifying a small set of mean-
ingful constants from data is an interesting problem by it-
self that deserves further study. See [22] for more details.

Remark 2.4. Depending on the application scenario,
it may be natural to consider other types of examples
besides positive and negative examples. In particular,
an input-output example is a pair (I, q(I)) consisting
of a database instance together with the entire query
output. Such an example can be viewed as a succinct
representation of a collection of |adom(I)|k many posi-
tive and negative examples, and therefore all the fitting
algorithms that we will discuss can also be applied to
input-output examples, although the complexity bounds
do not necessarily carry over. See also [13, Section 6].

Also, depending on the application scenario, it may be
the case that E+ and E� consist of examples with the
same database instance. Many of the complexity bounds
we will discuss hold already in this restricted setting.

3. THREE FITTING ALGORITHMS
We now define in detail the three algorithms for the

fitting construction problem for CQs.

Algorithm 3.1: Algorithm P

Input : collection (E+, E�) of labeled examples for
which a fitting CQ exists

Output : a fitting CQ
1 e⇤ := ek> where k is the arity of (E+, E�);
2 foreach e 2 E+

do

3 e⇤ := e⇤ ⇥ e

4 return the canonical CQ of e⇤

Algorithm P. This algorithm simply returns the canoni-
cal CQ of the direct product of the positive examples.
Intuitively, it extracts the commonalities of the positive
examples. We make this more precise.
The canonical CQ of a data example (I, a1, . . . , an)

is simply the CQ q(xa1 , . . . , xan) whose atoms are the
facts of I, where each value a 2 adom(I) is uniformly
replaced by a fresh variable xa.
The direct product I ⇥ J of two instances I and J

(over the same schema), is the database instance over S
that consists of all facts R(ha1, b1i, ha2, b2i, . . . , han, bni),
where R(a1, . . . , an) is a fact in I and R(b1, . . . , bn)
is a fact in J . Note that the active domain of I ⇥ J
consists of pairs from adom(I) ⇥ adom(J). The
direct product (I, a) ⇥ (J, b) of two examples, with
a = a1, . . . , ak and b = b1, . . . , bk of the same length, is
given by (I⇥J, (ha1, b1i, ha2, b2i . . . , hak, bki). In general,
this may not yield a well-defined example because
there is no guarantee that the distinguished elements
ha1, b1i, ha2, b2i, . . . , hak, bki belong to adom(I ⇥ J).
For a finite set of examples E = {e1, . . . , en}, we writeQ

e2E(e) for the direct product e1 ⇥ · · ·⇥ en (note that
⇥ is associative up to isomorphism). The direct product
operation should not be confused with the Cartesian
product operation from relational algebra: the former
preserves the schema, including the arity of each
relation, but changes the domain; the latter preserves
the domain but produces a relation of increased arity.
We need one more notion. With ek>, we denote the

strongest example of arity k. More precisely, ek> takes
the form (I,a) where I is an instance with a single value
a that contains all possible facts over the schema and a,
and a is the tuple (a, . . . , a) of length k. With these
notions in place, Algorithm P is given as Algorithm 3.1.
It simply computes ⇧e2E+(e), the negative examples are
not used. Note that taking the product of n instances
may result in an active domain of size exponential in n.

Example 3.1. In almost all of the remaining exam-
ples in this paper and without further notice, we use a
schema S that consists of a single binary relation symbol
R and consider Boolean queries. Note that, then, we may
view an example simply as a database instance, without
distinguished values. Also, many examples will refer to
database instances that take the form of a cycle. For ev-
ery i � 1, we use Ci to denote the database instance that
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Algorithm 3.2: Algorithm M

Input : collection (E+, E�) of labeled examples for
which a fitting CQ exists

Output : a fitting CQ
1 e⇤ := ek> where k is the arity of (E+, E�);
2 foreach e 2 E+

do

3 e⇤ := e⇤ ⇥ e;
4 e⇤ := minimize(e⇤);

5 return the canonical CQ of e⇤

6 procedure minimize(I,a)
7 foreach f 2 I do

8 if a 2 bq(I \ {f}) according to MEMBbq then

9 I := I \ {f}

consists of the facts R(a1, a2), R(a2, a3), . . . , R(ai, a1).
In other words, Ci is a cycle with i edges.
Now consider the collection of labeled examples E =

(E+, E�) where E+ = {C2, C3} and E� consists of the
single-fact instance {R(a, b)}. Then Algorithm P outputs
the canonical CQ of C6. Note that the direct product
of any two instances Cn and Cm with n,m prime is
isomorphic to Cn·m. Clearly, this is a fitting CQ for E.

The following well-known fact (cf. for instance [40]) im-
plies the correctness of Algorithm P .

Theorem 3.2. If any CQ fits a collection of labeled
examples E = (E+, E�), then the canonical CQ of the
direct product ⇧e2E+(e) is well-defined and fits E.

This also implies that Algorithm P can be turned into
an algorithm for fitting existence by checking whether
the constructed CQ fits the negative examples.

Algorithm M. We next consider Algorithm M, first given
in [17]. Algorithm M di↵ers from Algorithms P and B
in having access via a membership oracle (whence the
“M”) to a concrete target CQ bq that fits the collection
of examples given as an input. Given an example e,
the oracle returns (in unit time) the status of e, that
is, whether e is a positive or negative example for bq.
We denote such an oracle with MEMB bq. Membership
oracles play a central role in exact learning in the style of
Angluin [3]. Note that, just like the other two algorithms,
Algorithm M only needs to solve the fitting construction
problem: it may return any CQ that fits the input
examples, not necessarily one that is equivalent to bq.
Algorithm M is given as Algorithm 3.2. It works

essentially in the same way as Algorithm P except that,
between any two product constructions, it minimizes
the constructed example. With the latter, we mean to
drop facts as long as the oracle MEMBbq tells us that
the resulting example is still positive for bq. This relies
on the invariant that, during the run of the foreach loop
in Line 2, all constructed examples e⇤ are positive for bq.

It is not hard to see that Algorithm M returns a CQ
q such that q ✓ bq, i.e., q(I) ✓ bq(I) for all instances I.

Algorithm 3.3: Algorithm B

Input : collection (E+, E�) of labeled examples for
which a fitting CQ exists

Output : a fitting CQ
1 foreach s = 1, 2, . . . do
2 if there is a fitting CQ of size s then

3 return a fitting CQ of size s

However, q need not be equivalent to bq. If q⇧ is the
CQ returned on the same input by Algorithm P, then
q⇧ ✓ q, but again the two CQs need not be equivalent.

Example 3.3. Consider again the collection of data
examples E = (E+, E�) from Example 3.1, that is,
E+ = {C2, C3} and E� contains the single instance
{R(a, b)}. The output of Algorithm M depends on the
choice of the query bq used by the membership oracle. If
bq is the CQ with canonical database C6, then the output
is bq. If bq is bq :- R(x, y), R(y, z), the output also is bq. If
bq is Cn with n a multiple of 6, the output is the CQ with
canonical database C6.

Algorithm B. We finally introduce Algorithm B which
implements in a straightforward way the bounded fitting
approach proposed in [16]. It is based on a size-bounded
version of the fitting construction problem that also
incorporates fitting existence. This is again defined
relative to a query language Q:

Size-Bounded Fitting Given a collection E of labeled
examples and a size bound s 2 N (in unary), con-
struct a fitting query from Q of size at most s if it
exists and report non-existence otherwise.

Size-bounded fitting tends to be of significantly lower
computational complexity than fitting construction and
existence without a size bound, Section 4 has details.
Algorithm B calls an algorithm for the size-bounded
fitting problem on E with increasing size bounds, see
Algorithm 3.3. More details on algorithms for the size-
bounded fitting problem are given in Section 4.

Example 3.4. Consider once more the collection of
labeled examples E = (E+, E�) from Example 3.1. Algo-
rithm B outputs a fitting CQ of smallest size. In this case,
there is a unique such CQ, which is q :- R(x,y), R(y,z).

4. RUNNING TIME AND SIZE BOUNDS
We discuss the computational complexity of fitting

construction and fitting existence and, closely related,
the size that the smallest CQ that fits a collection of
examples may have in the worst case.

Fundamental Considerations. It was shown in [40] that
the smallest fitting CQ for a given collection of labeled
examples is in general of size exponential in the size of
the examples. We illustrate this with an example.
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Example 4.1. Let pi denote the i-th prime number
(where p1 = 2). For n � 1, let En = (E+, E�) be the col-
lection of labeled examples with E+ = {Cp2 , . . . , Cpn+1},
and E� = {C2}. By the prime number theorem, the total
size of the examples in En is polynomial in n. However,
every fitting CQ has size greater than 2n. More precisely,
let k = ⇧n+1

i=2 pi. The canonical CQ of Ck fits En and
no smaller fitting CQ exists. Indeed, every fitting CQ q
must contain a directed cycle in order to fit the negative
example, and, in order to fit to the positive examples,
the length of each directed cycle in q must be a multiple
of pi for 2  i  n+ 1, and hence a multiple of k.

It follows immediately that the fitting problem cannot
be solved by an algorithm with sub-exponential running
time, simply because it does in general not have enough
time to output a fitting. Less trivially, the inherent
complexity of the problem also precludes the existence
of such an algorithm. This is witnessed by the following.

Theorem 4.2. The fitting existence problem for CQs
is coNExpTime-complete.

This result was first shown in [40] and later improved to
hold for a fixed finite schema in [12]. The upper bound is
actually shown by running Algorithm P, whose output q
is guaranteed to fit all positive examples, and then check-
ing in coNP whether q fits the negative examples. One
can show that this is the case if and only if a fitting exists.

Theorem 4.2 does not preclude the possibility of a
fitting algorithm that runs in time polynomial in the
size of the input plus the size of the smallest fitting CQ.
Recall that we call such an algorithm weakly polynomial.
Unfortunately, it follows from the results in [17] that
there is no weakly polynomial fitting algorithm for CQs
unless P=NP. In fact, it is shown in [17] that there is a
class of examples E such that

(i) fitting existence for CQs is NP-hard on collections
of examples from E ;

(ii) if there exists any fitting for such a collection E,
then there is one of size bounded by p(||E||) for
some polynomial p;

(iii) CQs can be evaluated in polynomial time (in com-
bined complexity) on E .

Any weakly polynomial fitting algorithm for CQs would
allow us to decide the problem in (i) in polynomial time,
thus showing P=NP, as follows. Given a collection E
of examples from E that may or may not have a fitting
CQ, we run the algorithm. Note that the algorithm’s
behavior is unspecified in the case that E has no fitting:
it may return something else than a fitting CQ or never
terminate. If the algorithm makes an output, then by (iii)
we may check in polynomial time if it is a fitting CQ for
E and return ‘yes’ or ‘no’ accordingly. If the algorithm

exceeds the running time of q(|E|+ p(|E|)), where q is
the polynomial running time bound of the algorithm on
collections of data examples that are promised to have
a fitting and p the polynomial from point (ii), then we
know that E has no fitting CQ and thus may return ‘no’.

Restricted Fitting Problems. It is natural to ask
whether the complexity of the fitting problem can be
reduced by restricting attention to a subclass of CQs.
Fitting existence is ExpTime-complete for tree

CQs [25] and thus still far from tractable. The upper
bound extends to classes of CQs whose treewidth is
bounded by a constant [7]. Smallest fitting tree CQs
may even be of double exponential size [14]. For CQs
that take the form of a path, fitting existence is still
NP-complete and thus intractable [17]. In this case,
however, there is always a polynomially-size fitting (if a
fitting exists at all). Nevertheless, what was said above
about weakly polynomial fitting algorithms applies
already to these restricted classes.
Other (rather strong) types of syntactic restrictions,

such as limitations on the use of existential variables, de-
terminacy conditions pertaining to functional relations,
and restricted variable depth, were proposed and studied
in the literature on ILP in order to gain tractability. An
overview can be found in [35].

Instead of changing the class of queries, one may also
adopt other restrictions. Requiring that all examples are
based on the same database instance, and even that every
tuple of domain elements from that instance occur as a
positive or negative example (cf. Remark 2.4), does not
improve the complexity [40, 12]. An interesting variation
motivated by the bounded fitting approach that underlies
our Algorithm B is the size-bounded fitting problem, see
Section 3. However, also this restriction does not bring
tractability. It was shown in [27] that the size-bounded
fitting problem for CQs is ⌃p

2-complete (over a schema
with an infinite number of relation symbols of arity at
most three). Even for tree CQs that take the form of a
path, size-bounded fitting is still NP-complete [17].

How Our Three Algorithms Fare. Algorithm P runs in
single exponential time, which is worst-case optimal
in light of the above considerations. Note, however,
that Algorithm P also has best case exponential running
time which clearly makes it impractical. Of course,
Algorithm P is also not weakly polynomial—we had
argued above that no algorithm can be. Example 5.1
below gives a concrete family of example collections
where a constant-size fitting CQ exists, but Algorithm P
computes a fitting that has exponential size.
Algorithm M, which may be viewed as a refinement

of Algorithm P, has single exponential running time
(independently of the choice of bq). In contrast to
Algorithm P, however, it is weakly polynomial provided
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that the CQ bq chosen for the oracle MEMBbq is the
smallest fitting CQ [17]. The intuitive reason is that,
after each minimization step, the size of the example
e⇤, which represents the current candidate query, must
be bounded from above by the size of bq; this is because
we need at most one fact in e⇤ for each atom in bq.
Note that the result on the non-existence of weakly
polynomial algorithms from above does not apply to
Algorithm M because of its use of membership queries.

The worst case running time of Algorithm B is even
double exponential (and it is not weakly polynomial). In
fact, we have seen in Example 4.1 that smallest fitting
CQs may be (single) exponentially large. Moreover, the
size of the smallest fitting determines the size bound
s that Algorithm B needs to solve the size-bounded
fitting problem for and, as noted above, for CQs
this problem is ⌃p

2-complete. Algorithm B is thus a
NExpTimeNP algorithm and has the highest worst-case
complexity among our three algorithms. Interestingly,
it is nevertheless a promising approach to the e�cient
implementation of the fitting problem. This is based on
the expectation that, in practical cases, the size of the
smallest fitting query tends to not be excessively large.

An implementation of Algorithm B (“bounded fitting”)
as well as practical experiments have been presented
in [16] for the case of tree CQs. In that case, the size-
bounded fitting problem can be translated in a natural
way into the satisfiability problem of propositional
logic which enables an e�cient implementation based
on SAT solvers. The SPELL system described in [16]
shows competitive performance and often outperforms
state-of-the-art systems based on refinement operators
(which are discussed in Section 9). For unrestricted
CQs, one may attempt to replace the SAT solver with
a system for answer set programming or disjunctive
logic programming, but we are not aware that this has
been done in practice. As we will see in Section 7, Al-
gorithm B has the additional advantage of constructing
fittings that generalize well to unseen examples.

5. SUCCINCT FITTINGS
One desirable property of a fitting algorithm is suc-

cinctness: for many applications, one wants to find a
fitting query of small size. We saw in Example 4.1 that
the smallest fitting CQ for a given collection of labeled
examples may be exponentially large in the worst case.
Therefore, the best one can hope for is to produce a
fitting query of size not much larger than that of the
smallest fitting CQ. For fitting algorithms with access to
a membership oracle MEMB bq, even this is to much: we
can only hope to produce a fitting CQ of size not much
larger than that of (the smallest query equivalent to) bq.
Intuitively, this is because the membership oracle ‘guides’
the fitting algorithm to bq and not to a smaller fitting CQ.
Let us consider Algorithm P (which does not use a

membership oracle). The following example shows that
it may produce a fitting CQ that is much larger than a
fitting CQ of minimal size. In fact, the size of the CQ
produced by Algorithm P cannot be uniformly bounded
by any function in the size of the smallest fitting CQ.

Example 5.1. Consider again Example 4.1. We
modify the example slightly: for n > 0, let En =
(E+, E�) where E+ = {Cp2 , . . . , Cpn+1} (as before), and
E� = ;. On input En, Algorithm P outputs a CQ of
size ⇥(⇧n+1

i=2 pi) (and not equivalent to any smaller CQ),
whereas there is a single (and thus constant size) CQ
that fits En for all n, namely q :- R(x, y).

As we have just seen, Algorithm P does not even
produce a fitting CQ of “near-minimal” size. In the
context of PAC learning as discussed in Section 7, fittings
of near-minimal size play an important role. It will be
beneficial to formalize this notion already here:

Occam Property A fitting algorithm has the Occam
property if the following holds for some ↵ 2 [0, 1)
and polynomial p: if the input is a collection of
examples labeled according to a “target CQ” qt,
then the output is a fitting CQ of size at most
|E|↵ · p(|qt|). If ↵ = 0, we say that the fitting
algorithm has the strong Occam property.2

In other words, when a fitting algorithm has the Oc-
cam property, it outputs a CQ whose size depends poly-
nomially on the size of the target CQ and sublinearly
on the number of the examples (if at all). The above
definition of the Occam property is designed to apply
both to ordinary fitting algorithms and to fitting algo-
rithms that use a membership oracle. In the latter case,
the target CQ qt in the above definition is required to
be the CQ used by the oracle. In the former case, we
can always assume without loss of generality that qt is
a fitting CQ of minimal size. Consequently, a fitting
algorithm without membership oracle has the Occam
property if and only if it outputs a CQ of size at most
|E|↵ · p(n), where n is the size of the smallest CQ that
fits. The latter is indeed the standard condition used
to define Occam algorithms in the literature on compu-
tational learning theory (where Occam algorithms with
membership oracles are typically not considered).

2The terminology “Occam property” is not entirely standard.
In the literature, it is more common to talk about an Occam

algorithm, meaning a fitting algorithm that has the Occam
property and is weakly polynomial. We already saw that
there is no weakly polynomial fitting algorithm for CQs
(without oracle) and thus in particular there is no such
Occam algorithm. By decoupling the size of the output
from the running time of the algorithm, we can more easily
acknowledge that there are super-polynomial-time fitting
algorithms with the Occam property (as we will see below).
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How Our Three Algorithms Fare. Example 5.1 shows
that Algorithm P does not have the Occam property. As
we will see, this is an instance of a general phenomenon
related to extremal fitting CQs, see Example 6.2.
Algorithm B does have the strong Occam property:

indeed, it is immediate from the definition of the algo-
rithm that the output CQ is a fitting CQ of minimal
size. Note that this does not depend on the fact that
Algorithm B increases the size bound by 1 in each itera-
tion. In fact, under the scheme s = 1, 2, 4, 8 it still has
the strong Occam property (with p(x) = 2x).

For Algorithm M, it was shown in [17] that it outputs
a CQ whose size is bounded by the size of the query bq
used by the membership oracle. Therefore, Algorithm
M has the strong Occam property.

6. EXTREMAL FITTINGS
We have already seen that there may be several non-

equivalent fitting CQs for the same collection of data
examples, and in fact it is easy to see that there may be
infinitely many. As was observed in [14], the fitting CQs
always form a convex set. More precisely, whenever two
queries q1, q2 fit a set of labeled examples, the same holds
for every query q with q1 ✓ q ✓ q2. Recall that ✓ denotes
the relation of query containment, i.e., q1 ✓ q2 means
that q1(I) ✓ q2(I) for all instances I. The maximal
elements of the convex set of fitting CQs can be viewed
as “most-general” fitting CQs while minimal elements
can be viewed as “most-specific” fitting CQs. We refer to
these, collectively, as “extremal” fitting CQs. When they
exist, they can thus be viewed as demarcating the entire
set of fitting CQs, in the spirit of the version-space repre-
sentation theorem used in machine learning [34, Chapter
2.5]. In applications such as ML feature engineering over
relational data [30, 8], extremal fitting CQs are partic-
ularly natural candidates to consider as features [14].

Most-Specific Fitting CQs. There are two natural ways
to define “most-specific fitting CQs” for a collection of
labeled examples E: a CQ q is a

• strongly most-specific fitting CQ for E if q fits E
and for every CQ q0 that fits E, we have q ✓ q0;

• weakly most-specific fitting CQ for E if q fits E and
for every CQ q0 that fits E, q0 ✓ q implies q ⌘ q0.

There can clearly be at most one strongly most-specific
fitting CQ up to equivalence, for any collection of labeled
examples. In contrast, the existence of multiple weakly
most-specific fitting CQs is not excluded a priori. It turns
out, however, that also weakly most-specific fitting CQs
are unique and in fact the two notions coincide and are
characterized by the product of the positive examples.

Theorem 6.1. For all CQs q and collections of labe-
led examples E = (E+, E�), the following are equivalent:

1. q is a strongly most-specific fitting for E,

2. q is a weakly most-specific fitting for E,

3. q fits E and is equivalent to the canonical CQ of
⇧e2E+(e) (which must then be well-defined).

Since Algorithm P computes the canonical CQ of
the direct product of the positive examples, it in fact
produces a most-specific fitting CQ. This also means
that most-specific fitting CQs always exist (if any fitting
CQ exists). In contrast, Algorithm M and Algorithm B
do not in general produce a most-specific fitting:

Example 6.2. Recall that for the collections En of
labeled examples from Example 5.1, there exists a fitting
CQ with a single atom, which is thus output by Algo-
rithms M and B. In contrast, we had seen in Example 5.1
that Algorithm P produces a CQ of exponential size. We
claim that, in fact, every most-specific fitting CQ q for
En must be of size at least k = ⇧n+1

i=2 pi. Indeed, let q be
any most-specific fitting CQ q and let q0 be the query that
expresses the existence of a directed cycle of length k.
Since q fits En and q0 is a (strongly) most-specific fitting
CQ, it follows that q0 ✓ q. Consequently, q0 must contain
a directed cycle. However, as we argued in Example 4.1,
the length of any such directed cycle must be a multiple
of k. Therefore, q must be of size at least k.

More generally, the example shows that no fitting
algorithm with the Occam property will always output
a most-specific fitting CQ.

Most-General Fitting CQs. For most-general fittings,
the story gets more complicated. There are again two
natural ways to define “most-general fitting CQs” for a
collection of labeled examples E: a CQ q is a

• strongly most-general fitting CQ for E if q fits E
and for every CQ q0 that fits E, we have q0 ✓ q;

• weakly most-general fitting CQ for E if q fits E and
for every CQ q0 that fits E, q ✓ q0 implies q ⌘ q0.

This time, however, the two notions do not coincide.
While every strongly most-general fitting CQ is clearly
also weakly most-general, the converse fails:

Example 6.3. Consider a schema consisting of three
unary relation symbols P1, P2, P3. Let E = (E+, E�)
where E+ = ; and E� consists of the single-fact instance
{P1(a)}. Then q :- P2(x) and q0 :- P3(x) are weakly
most-general fitting CQs for E and there is no strongly
most-general fitting CQ.

Another natural variation is the following [14]:

• a finite set of CQs {q1, . . . , qn} is a basis of most-
general fitting CQs for E if each qi fits E and for all
CQs q0 that fit E, we have q0 ✓ qi for some i  n.
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It is easy to see that a strongly most-general fitting CQ
is simply a fitting CQ that forms a basis of size 1, and
that every member of a minimal basis of most-general
fitting CQs is a weakly most-general fitting.
Unlike for most-specific fitting CQs, the existence of

a fitting CQ does not, in general, imply the existence
of a most-general fitting CQ. For the strong version,
this is shown by Example 6.3. For the weak version, we
consider the following example [14].

Example 6.4. Let E = (E+, E�) be the collection
of labeled examples with E+ = {C1} and E� = {C2}.
Clearly, the Boolean CQ q0 :- R(x, x) fits E. It follows
from results in [14] that no weakly most-general fitting
CQ exists for E. Intuitively, this is because a CQ q fits
E if and only if its canonical instance, viewed as a graph,
is not two-colorable. A graph is two-colorable if and only
if it does not contain a cycle of odd length. Thus, each
fitting CQ for E must contain a cycle of odd length, and
for each such CQ q one can construct a strictly more
general fitting CQ q0 by increasing the length of this cycle.

Thus, one cannot reasonably require a fitting algo-
rithm to always output a most-general fitting CQ. Still,
one may wish for a fitting algorithm that, on inputs for
which a most-general fitting CQ exists, produces such a
CQ. The “most-general fitting” here may refer to weakly
most-general fitting CQs or to strongly most-general
ones, so there are two variants of this requirement. It is
not hard to see that the first variant implies the second.
As it turns out, even if we restrict attention to in-

stances of the fitting problem for which a strongly most-
general fitting CQ exists, Algorithm P, M and B are
not guaranteed to produce one. The following example
shows this for Algorithm P.

Example 6.5. For n > 1, let Tn be the database
instance with adom(Tn) = {a1, . . . , an} consisting of
all facts of the form R(ai, aj) with i < j. Let En =
(E+, E�) where E+ = {C1} and E� = {Tn}. The
following two queries both fit En:

q :- R(x, x)

q0 :- R(x1, x2), R(x2, x3), . . . , R(xn, xn+1).

Observe that q ( q0. In fact, q is the fitting CQ for
En of smallest size while it can be shown that q0 is the
strongly most-general fitting CQ for En.

It is easy to see that Algorithm P outputs q on input E.
Therefore, Algorithm P does not, in general, output a
strongly most-general fitting CQ when such a CQ exists.

More generally, the example shows that no fitting
algorithm with the Occam property will always return
a strongly most-general fitting CQ whenever it exists.
Since Algorithms B and M have the Occam property, it
follows that they do not, in general, output a strongly
most-general fitting CQ when such a CQ exists.

Algorithms for Most-General Fitting CQs. Since none
of our three fitting algorithms produces most-general
fitting CQs even when they exist, it is natural to ask
whether there are fitting algorithms with this property.
The existence problem for weakly/strongly most-general
fitting CQs and the problem of constructing them, when
they exist, were studied extensively in [14]. Both of
these problems turn out to be decidable and we briefly
review the core insights underlying the algorithms.

Weakly most-general fitting CQs can be characterized
in terms of frontiers [14]. A frontier for a CQ q is a
finite set of CQs F (q) = {q1, . . . , qn} with the property
that q ( qi for all i  n, and for all CQs q0, if q ( q0

then qi ✓ q0 for some i  n. Thus, a frontier for a CQ q
is a finite complete set of minimal generalizations of q.

Theorem 6.6 ([14]). For all queries q and collec-
tions of labeled examples E, the following are equivalent:

1. q is a weakly most-general fitting CQ for E,

2. q fits E, q has a frontier F (q) = {q1, . . . , qn} and
no qi 2 F (q) fits E.

This characterization, together with known results
regarding the existence of frontiers for CQs [24, 13], was
used in [14] to obtain e↵ective algorithms for the exis-
tence, verification, and construction problem for weakly
most-general fitting CQs. Regarding the computational
complexity, we only mention here that the existence
problem is ExpTime-complete [14]. It is worth to point
out, however, that the known lower bound only applies
when we do not require that the collection of labeled
data examples E given as an input has a fitting CQ.
Theorem 6.6 also sheds light on the shape of weakly

most-general fitting CQs. In fact, it is known that any
CQ that has a frontier must be c-acyclic [1, 24, 13]
which means that every cycle in the incidence graph of
the CQ contains an answer variable. By Theorem 6.6,
the same is true for weakly most-general fitting CQs.
This is crucially exploited by the algorithms in [14].

Strongly most-general fitting CQs and, more generally,
finite bases of most-general fitting CQs turn out to be
closely related to homomorphism dualities, a fundamen-
tal concept that originates from combinatorial graph
theory and has found diverse applications in di↵erent
areas, including the study of constraint satisfaction prob-
lems, database theory, and knowledge representation.
With adom(I), we denote the set of values used in

database instance I. Recall that a homomorphism
h : I ! J from instance I to instance J (over the same
schema) is a function h : adom(I) ! adom(J) such that
the h-image of every fact of I is a fact of J . We write
I ! J to indicate the existence of a homomorphism from
I to J . A homomorphism duality is a pair of finite sets
of instances (F ,D) such that for all instances I, F ! I
for some F 2 F i↵ I 6! D for all D 2 D. This notion
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can be further refined by relativizing it: a pair (F ,D)
being a homomorphism duality relative to an instance
J is defined in exactly the same way except that only
instances I are considered that satisfy I ! J .

Theorem 6.7 ([14]). For all Boolean CQs
q1, . . . , qn and collections of labeled examples E, the
following are equivalent:

1. {q1, . . . , qn} is a basis of most-general fitting CQs
for E

2. each qi fits E and ({Iq1 , . . . , Iqn}, E�) is a homo-
morphism duality relative to ⇧e2E+(e).

This characterization (and an extension of it for non-
Boolean CQs), together with known results on the ex-
istence of homomorphism dualities, was used in [14] to
obtain e↵ective algorithms for the existence, verifica-
tion, and construction of bases of most-general fitting
CQs. Regarding the computational complexity, we only
mention here that the existence problem is NExpTime-
complete [14]. The lower bound applies even if the
collection of labeled data examples E given as an input
is promised to have a fitting CQ. Note that since every
member of a minimal basis of most-general fittings CQs
is a weakly most-general fitting, it must be c-acyclic.

7. GENERALIZATION
By definition, a fitting algorithm constructs a CQ that

fits the labeled examples in its input. Ideally, we would
like the constructed CQ to correctly predict the label
also of unseen examples. This can only be expected
if those examples are drawn from the same probability
distribution (over the space of all examples) as the in-
put examples, and labeled according to the same target
CQ. If it is the case, then we can legitimately say that
the fitting generalizes from the input. This is formally
captured by the framework of PAC (Probably Approxi-
mately Correct) learning [39]. To give precise definitions,
we first introduce some terminology and notation. An
example distribution is a probability distribution D over
the space of all examples (for some fixed schema and
arity). Given CQs q, qt and an example distribution D,

errorD,qt(q) = Pr
(I,a)2D

(a 2 q(I)4 qt(I))

is the expected error of q relative to qt and D where
4 denotes symmetry di↵erence. Hence, errorD,qt(q) is
the probability that q disagrees with qt on any example
drawn at random from the example distribution D.

(Polynomial) PAC Property A fitting algorithm has the
(polynomial) PAC property if there is a (polyno-
mial) function f(·, ·, ·, ·) such that for all CQs qt,
�, " 2 (0, 1), m 2 N and probability distributions
D over examples of size at most m, if the input

consists of at least f(1/�, 1/", |qt|,m) many exam-
ples drawn from D that are labeled according to qt,
then with probability at least 1� �, the algorithm
outputs a CQ q with errorqt,D(q) < ".3

Other common definitions of e�cient PAC learning do
not even demand that the learning algorithm produces
a fitting query, but require that the algorithm is weakly
polynomial. However, it is known that there is no such
e�cient PAC learning algorithm for CQs. A detailed
discussion can be found in [17], also for subclasses of CQs
such as tree CQs and path-shaped CQs which are not
e�ciently PAC learnable either. This is closely related
to the fact that there is no weakly polynomial fitting
algorithm for (these subclasses of) CQs, see Section 4.
A fundamental result in computational learning the-

ory states that every fitting algorithm with the Occam
property also has the polynomial PAC property, first
shown in [9]. This result is usually stated only for fitting
algorithms without a membership oracle, but the same
holds in the presence of such an oracle. This relies on the
fact that, in Section 5, we defined the Occam property in
terms of a target CQ rather than a smallest fitting CQ.
Since Algorithm M has the Occam property, we can

conclude that it has the polynomial PAC property. The
same applies to Algorithm B. Algorithms P, on the other
hand, lacks the polynomial PAC property. In fact:

Theorem 7.1 ([16, 15]). Let A be a fitting algori-
thm that either (i) always produces a most-specific fitting
or (ii) produces a strongly most-general fitting whenever
it exists. Then A lacks the polynomial PAC property.

The intuitive reason behind Theorem 7.1 is that ex-
tremal fittings tend to overfit to the input examples.
Most-specific fittings focus too much on the positive
examples in the input and tend to incorrectly predict
the label of unseen positive examples. Similarly, most-
general fittings focus too much on the negative examples
in the input. It is worth contrasting Theorem 7.1 with
the result from [5, 29] that, for concept classes with
finite VC dimension that are intersection-closed, fitting
algorithms that produce most-specific fittings have the
polynomial PAC property.
3We deviate here from standard textbook definitions of the
PAC model by including the bound m on the size of examples
as an argument to the sample complexity function f . Most
concept classes studied in the computational learning theory
literature have an example space that consists of examples
of bounded size. The example size can then be treated as a
constant and thus m can be omitted as an argument to the
function f . In contrast, fitting algorithms for CQs can receive
arbitrarily large database instances as inputs. The present
definition of the PAC property, following [35], allows the num-
ber of examples provided to the fitting algorithm to depend
on the example size. That is, if the input contains large exam-
ples, the fitting algorithm is accordingly given access to more
labeled examples. This is not needed for the positive results
mentioned below, but it makes the negative results stronger.
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8. COMPLETENESS FOR DESIGN
One application of fitting algorithms is in the context

of example-based specification (“query by example”):
rather than writing a formal specification, the user
provides data examples, and the system infers a query
through the use of a fitting algorithm. The premise
of this approach, which traces back to [41], is that
the user has a good grasp of the desired behavior of
the query that they are trying to construct, but not
necessarily of the query language. In such a setting, it
is desirable that the user is indeed able to obtain their
intended query as long as they provide a su�ciently
comprehensive (finite) set of examples. Whether this
is the case, in general, depends on the fitting algorithm,
and this is formalized by the following property:

Completeness for Design A fitting algorithm is complete
for design if for every CQ q, there exists a collection
of labeled examples E such that, on input E, the
fitting algorithm produces a CQ equivalent to q.

If a fitting algorithm is not complete for design, there
are CQs q for which the algorithm will simply never get
it right, no matter how many examples are provided.
It is not di�cult to see that every fitting algorithm

that produces a most-specific fitting CQ, is complete
for design. Indeed, it su�ces to pick any collection of
examples (labeled according to the query q) that includes
the canonical example of q. In particular, this shows
that Algorithm P is complete for design.

Similarly, it can be shown that every fitting algorithm
with the strong Occam property is complete for design.
Indeed, let q be any CQ, and E be any collection of
examples, labeled according to q, that includes, for ev-
ery CQ q0 of size at most p(|q|) not equivalent to q a
labeled examples that q fits but q0 does not. The fitting
algorithm, on input E, is guaranteed to produce a fitting
CQ of size at most p(|q|), which therefore, by construc-
tion, must be equivalent to q. Since Algorithm M and
Algorithm B have the Occam property with ↵ = 0, it
follows that both are complete for design.
Completeness for design is also related to the notion

of unique characterizability [13]. More precisely, if a
class of queries admits unique characterizations (which
means that every query is uniquely characterized by a
finite set of data examples), then every fitting algorithm
for this class is complete for design. There is no im-
plication in the opposite direction. In fact, CQs are
not uniquely characterizable (cf. [13]), even though our
fitting algorithms are complete for design.

9. REFINEMENT-BASED APPROACHES
A di↵erent approach to the fitting problem has been

taken in the field of inductive logic programming (ILP)
which studies the following abstract problem [35]:

Given a background theory B and positive and
negative examples, find a theory ⌃ such that B [
⌃ entails all positive examples and none of the
negative examples.

Traditionally, this problem is studied for the language
of first-order clauses. Thus, the background theory B
is a finite set of clauses, the examples are clauses, and
the sought theory can also be a set of clauses. Note
that this a very rich problem setting since first-order
clauses include, e.g., all Datalog programs. The CQ
fitting problem can be viewed as a special case when all
examples in the input (E+, E�) share the same database
I: the background theory is B = I, there is a positive
example R(a) for each (I,a) 2 E+, a negative example
R(a) for each (I,a) 2 E�, where R is a fixed relation
symbol that does not appear in I, and ⌃ is restricted to
be a single non-recursive Horn clause with head R(x).
Most ILP algorithms conform to a common

scheme [35]: start with some initial theory ⌃, and, while
B [ ⌃ is not as required, iteratively adapt ⌃ as follows:

• if B [ ⌃ is too strong (entails a negative example),
generalize ⌃, and

• if B [ ⌃ is too weak (does not entail a positive
example), specialize ⌃.

Initially, generalization was done by dropping a clause
from ⌃ while specialization was done by adding a clause.
However, it was observed that the induced changes to ⌃
are too coarse. To address this, Ehud Shapiro introduced
in a seminal paper refinement operators, which specialize,
respectively generalize a given clause [37]. Applied to the
task of finding a fitting CQ (or single Horn clause), this
amounts to navigating the containment lattice of CQs,
whose investigation goes back at least to the 1970s [36].

Formally, an upward (resp., downward) refinement op-
erator is a function ⇢ : CQ ! 2CQ such that q ✓ q0 (resp.,
q0 ✓ q) for every q 2 CQ and q0 2 ⇢(q). Thus, an upward
refinement operator returns a set of more general queries,
while a downward refinement operator returns a set of
more specific queries. Intuitively, a refinement operator
induces a graph whose vertices are CQs (equivalent CQs
form a single vertex) and in which there is an edge from
q to q0 i↵ q0 2 ⇢(q). ILP style fitting algorithms will then
search this graph using some strategy. Algorithm 9.1
depicts a template for such an algorithm based on an
upward refinement operator ⇢ and a prioritization strat-
egy S that determines which query to consider next in
search. It starts with the most specific query possible
and maintains a priority queue of queries to be visited.
In each round it selects the query with the highest pri-
ority and, if it does not fit, adds its refinements to the
queue, prioritized by S. Natural prioritization strategies
include breadth-first search (query gets lower priority
than all previously seen queries) and accuracy-based
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Algorithm 9.1: Algorithm R, parameterized by
refinement operator ⇢ and prioritization strategy S

Input : collection (E+, E�) of labeled examples
Output : fitting CQ or “None exists”

1 q0 := canonical CQ of ek> for k the arity of (E+, E�);
2 PriorityQueue pq := {q0};
3 while not pq.isEmpty() do
4 q := pq.pop();
5 if q fits (E+, E�) then return q;
6 Insert every p 2 ⇢(q) into pq prioritized with S

7 return “None exists”

strategies (the priority is the accuracy of the considered
query over (E+, E�)). There is a natural counterpart of
Algorithm 9.1 based on downward refinement operators.

It has been observed that, to make Algorithm 9.1 a
complete and terminating algorithm for the CQ fitting
problem, the refinement operator ⇢ has to be ideal,
which we define next. An upward refinement operator
⇢ is called proper if q0 6✓ q for every q0 2 ⇢(q) and all
q 2 CQ, finite if ⇢(q) is finite for every q 2 CQ, and
complete if for every q1, q2 2 CQ with q1 ✓ q2, there
is a sequence p1, . . . , pn of CQs with p1 = q1, pn = qn,
and pi+1 2 ⇢(pi) for all i with 1  i < n. It is ideal
if it is proper, finite, and complete. Ideal downward
refinement operators are defined similarly.

There is an intimate connection between ideal refine-
ment operators and frontiers as defined in Section 6. We
call them upward frontiers here and use the dual notion
of downward frontiers, defined as expected. Frontiers
are also called covers in the ILP literature. It has been
shown that the existence of finite frontiers is a necessary
condition for the existence of ideal refinement operators,
and that finite frontiers do not always exist, both in the
upward and the downward case [19, 35]. This holds in
particular for CQs, and even more so for the broader
classes of theories ⌃ that ILP systems aim to support.
Thus, in practice one has to compromise, either by drop-
ping one of the three properties (finiteness, completeness,
properness), or by restricting the query class. Most ILP
systems use an incomplete refinement operator together
with heuristics [35, 21]. As our focus is on complete algo-
rithms, we discuss below restrictions of the query class.
A class of queries which enjoys finite frontiers is the

class of tree CQs. Indeed, every tree CQ has a polynomi-
ally sized upward frontier [6] and an exponentially sized
downward frontier [32, 31]. Moreover, for every q, q0 with
q ✓ q0, there is only a finite number of queries p with
q ✓ p ✓ q0 [31]. Thus, the function returning the frontier
of a query is an ideal refinement operator, both in the
upward and downward case. Other classes of CQs that
have finite frontiers were studied in [13, 26]. It is not
known whether they admit ideal refinement operators.

How Algorithm R Fares. A general classification in
terms of our desired properties is di�cult, since the
behavior depends on the refinement operator and pri-
oritization strategy used. We discuss only preliminary
observations for tree CQs. On the positive side, if the
downward frontier is used as a refinement operator, com-
bined with breadth-first search, the downward version of
Algorithm 9.1 will always return a weakly most-general
fitting (when it exists) [16]. Of course, this also means,
by Theorem 7.1, that it does not have the PAC property.
This can be fixed by extending the refinement operator
in a suitable way to achieve that the resulting algorithm
has the Occam property [16]. On the negative side, the
length of refinement paths along upward frontiers is not
bounded by an elementary function [31], which compro-
mises e�ciency for the upward version of Algorithm 9.1.

An ideal downward refinement operator for tree CQs
developed in [32] has been implemented in the ELTL
incarnation of the DL Learner suite [11]. Since the prior-
itization strategy used there is quite involved, it is hard
to analyze whether ELTL satisfies our desired properties.
Experiments from [16] show that ELTL generalizes well
to unseen examples, which might be explained by the
fact that its prioritization strategy takes the query size
into account and gears search towards smaller CQs.

10. SUMMARY AND OUTLOOK
We identified a list of desirable properties of fitting al-

gorithms and their structural interactions (cf. Figure 1),
and used them to compare three fitting algorithms for
CQs (cf. Table 2). As mentioned in Section 4, Algo-
rithm B was successfully implemented and shown to per-
form competitively for the special case of tree CQs [16].

Our general motivation comes from the development of
interactive, example-aided methodologies for the synthe-
sis, refinement, and debugging of database queries. The
fitting problem is only one facet of this broader topic.
Other facets that require further study include example
generation and example-based query refinement.
Extending the scope of our analysis to other query

languages remains future work. A detailed analysis of
extremal fitting problems for UCQs can be found in [14].

We only considered exact fittings. When these are not
guaranteed to exist, the fitting problem is perhaps more
naturally viewed as a multi-objective optimization prob-
lem (with degree-of-fitting as one of the objectives). This
is future work but see [8, 28, 18] for some related work.
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