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ABSTRACT
Di↵erential privacy has garnered significant attention in re-
cent years due to its potential in o↵ering robust privacy
protection for individual data during analysis. With the
increasing volume of sensitive information being collected
by organizations and analyzed through SQL queries, the de-
velopment of a general-purpose query engine that is capable
of supporting a broad range of queries while maintaining
di↵erential privacy has become the holy grail in privacy-
preserving query release. Towards this goal, this article sur-
veys recent advances in query evaluation under di↵erential
privacy.

1. INTRODUCTION
Suppose a data analyst is interested in the total num-

ber of items sold this year where the customer and sup-
plier are from the same nation. S/he would issue the
following SQL query (assuming the TPC-H schema):

SELECT count(*)
FROM Customer, Orders, Supplier, Lineitem
WHERE Orders.Orderdate > 2023-01-01
AND Lineitem.SK = Supplier.SK
AND Supplier.NK = Customer.NK
AND Customer.CK = Orders.CK
AND Orders.OK = Lineitem.OK;

Such queries are very common in today’s data analyti-
cal tasks and are a central problem in databases, which
have been extensively studied in the literature. Sophis-
ticated query processing algorithms and systems have
been and are continually being developed and optimized
throughout the years.
In recent years, a new direction for query process-

ing concerns with the problem of how to release query
results while respecting the privacy of the individuals
who have contributed their data to the database. For
example, the query above clearly relies on the data from
the customers and suppliers, and it has been shown
that, if the results of a certain number of such queries
are available, then the data of the customers/suppliers
can be reconstructed with enough accuracy [15]. Mean-
while, privacy-protection laws, such as the General data
protection regulation (GDPR) [43], have been enacted
across the world, making it a legal responsibility that
companies and governments must handle personal data
carefully.

Among the many privacy definitions, di↵erential pri-
vacy (DP) [24] has become the de facto standard for
privacy-preserving query release. It requires that the
presence or absence of any individual’s data should not
change the distribution of the query result significantly,
so that the adversary cannot infer (with a certain level
of confidence) whether any individual has contributed
to the database or not. More formally, let I be the space
of all database instances, Q a query, and MQ : I ! Y
a query-answering algorithm, often called a mechanism
in the DP literature. The mechanism MQ is said to
satisfy (", �)-DP if

Pr[MQ(I) 2 Y ]  e
" · Pr[MQ(I

0) 2 Y ] + � (1)

for any subset of outputs Y ✓ Y and any pair of neigh-
boring instances I ⇠ I0 (to be elaborated shortly). Here,
", � are the privacy parameters, also called the privacy
budget. Typically, " is a constant ranging from 0.1 to
10, with smaller values corresponding to stronger pri-
vacy guarantees. On the other hand, � should be much
smaller than 1/N to ensure the privacy of individual
tuples, where N = |I| is the instance size; in particular,
the case where � = 0 is referred to as pure DP, which
is more desirable. Note that a DP mechanism must be
randomized by definition, and some noise has to be in-
jected to the true query result Q(I). Thus, the central
problem in DP is to find the optimal trade-o↵ between
privacy (i.e., ", �) and utility (i.e., how much noise is
injected).

1.1 DP Policies in Relational Databases
The unspecified neighboring relationship I ⇠ I0 in the

definition above depends on the data model and privacy
requirement. For a single table (relation), the standard
definition is that I ⇠ I0 if one contains one more tuple
than the other. However, in a database with multiple
relations possibly with foreign-key (FK) constraints, the
situation is more subtle. Two neighboring relationships
have been proposed and extensively studied, resulting in
two di↵erent DP policies: tuple-DP [33, 41, 37, 42, 28,
19, 20] and user-DP [45, 34, 16, 18]. The nomenclature
of these two policies reflects their respective aims: tuple-
DP safeguards the tuples, while user-DP preserves the
privacy of users, who may possess multiple tuples.
Tuple-DP is a straightforward generalization of the

single-table case: neighboring instances di↵er by the
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addition or deletion of a single tuple in any relation,
while FK constraints are ignored. In contrast, user-
DP employs a more intricate definition of neighboring
instances by taking the FK constraints into considera-
tion. First, one or more relations are designated as the
primary private relations, whose tuples are the “users”
whose information we aim to protect, such as Customer
and/or Supplier. Then, any relation that has an FK
reference, direct or indirect, to a primary private rela-
tion is called a secondary private relation. A tuple in
a secondary relation that has an FK reference (directly
or indirectly) to a user, such as a lineitem in an order
placed by a customer, is considered as data belonging
to the user. Relations having no FK references to the
primary private relations are public. Then I and I0 are
neighbors if one can be obtained from the other by delet-
ing one user from the primary private relation and all
his/her data from the secondary private relations.
Note that when all relations are taken as primary pri-

vate relations and there are no FK constraints, user-DP
degenerates into tuple-DP. Thus, user-DP is more gen-
eral, hence more di�cult to achieve and often makes
the utility worse, but it o↵ers stronger and more flex-
ible privacy policies. Which policy to adopt depends
on what information is considered private and needs
protection. For example, in the TPC-H schema, tuple-
DP only protects the privacy of tuples in the relations,
such as whether a customer has placed a particular or-
der, whether a particular item is in a given order, and
whether a supplier provides a certain item. In con-
trast, user-DP protects all information about each cus-
tomer/supplier. Note that when applied to the database
schema {Edge(src, dst), Node(ID)}, where src and dst
have FK references to ID, user-DP degenerates into
node-DP (by designating Node as the primary private
relation) [31, 10, 14] while tuple-DP becomes edge-DP
[39, 10, 47, 30], both of which have been extensively
studied in private graph analysis.

1.2 Classification of Queries
A wide range of queries have been studied under both

tuple-DP and user-DP. Below we classify them accord-
ing to the operators used: Selection, Projection, Join,
and Aggregation (Count, Sum, and Max/Min). We
assume that the aggregation attribute takes values from
the non-negative integer domain1 in this article, as most
works do in this area. Note that for queries that return
a subset of the tuples from the input, such as plain con-
junctive queries, DP is hard to achieve, so they have
not been considered in the literature.

SA Queries.
An SA query imposes a selection condition on a single

relation, followed by an aggregation. The following is
an example:

SELECT count(*) FROM Lineitem
WHERE Lineitem.Shipdate > 2023-01-01;

1The integer domain can be handled by separately process-
ing the query for the non-negative and negative domains.

While SA queries have been extensively studied under
tuple-DP, they are not considered under user-DP. To see
why, consider the query above in a TPC-H database
where Customer is designated as the primary private
relation. Such a query is said to be incomplete under
user-DP, as it does not include the primary private re-
lation, which contains information of the users whose
privacy we aim to protect. Thus, under user-DP, the
query must first be made complete by iteratively adding
relations whose PKs are referenced, together with the
necessary PK-FK join condition, until the primary pri-
vate relations are included (if possible). For example,
the query above should be augmented to the following
query, which becomes an SJA query:

SELECT count(*)
FROM Customer, Orders, Lineitem
WHERE Lineitem.Shipdate > 2023-01-01
AND Customer.CK = Orders.CK
AND Orders.OK = Lineitem.OK;

SJA Queries.
An SJA query uses selections, joins, followed by an

aggregation. The query above is one such example.
This example has no self-joins. On the other hand,
many useful queries, such as pattern counting queries
in a graph, extensively use self-joins. Another scenario
where self-joins arise implicitly is user-DP with multiple
primary private relations, as this case is first reduced to
a single primary private relation. For example, when
both Customer and Supplier are primary private rela-
tions, a virtual relation User(ID) is built that contains
all the PKs of these two relations while Customer.CK
and Supplier.SK have FK references to User.ID. Then
User is designated as the only primary private relation,
while Customer and Supplier become secondary pri-
vate relations. Now consider a query that involves both
Customer and Supplier. After making the query com-
plete as described above, the query contains a self-join
on User, even if it is self-join-free originally. As will be
seen later, the presence of self-joins makes the problem
significantly more di�cult, thus is often treated sepa-
rately.

SPJA Queries.
Finally, the query may involve a (distinct) projection

on certain attributes before the aggregation; the follow-
ing is an example.

SELECT count(DISTINCT Customer.CK)
FROM Customer, Orders, Lineitem
WHERE Lineitem.Shipdate > 2023-01-01
AND Customer.CK = Orders.CK
AND Orders.OK = Lineitem.OK;

SPJA queries are the most general and the most di�cult
queries, and only Count aggregation has been studied
in the literature. Thus, in this article, we only discuss
Count aggregation when SPJA queries are concerned.
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Query type
State-of-the-art Result

Tuple-DP User-DP

Count
/Sum

SA [24]: O(1)-worst-case optimal
Self-join
-free SJA

[19, 20]:
�
O(1), O(1)

�
-neighborhood optimal

[21]:
�
1, O(1)

�
-down neighborhood optimal

Self-join
SJA

[16]:
�
1, Õ(1)

�
-down neighborhood optimal

[25]:
�
1, Õ(1)

�
-down neighborhood optimal

SPJA
[19, 20]: No optimal guarantee [16] and [25]: No optimal guarantee

[25]*:
�
Õ(1), Õ(1)

�
-downward neighborhood optimal

Max
SA [21]:

�
Õ(1), 2

�
-down neighborhood optimal

SJA [25]:
�
Õ(1), 2

�
-down neighborhood optimal

Table 1: Summary of state-of-the-art results for answering SQL queries under tuple-DP and user-DP. All results
achieve "-DP and have polynomial running time except *.

1.3 Optimality Measures for Utility
As the output of a DP mechanism must be random-

ized, we often use a constant-probability error bound to
measure its utility:

Err(MQ, I) = inf
n
⇠ : Pr

⇥
kMQ(I)�Q(I)k  ⇠

⇤
� 2/3

o
.

Most classical DP mechanisms are based on the no-
tion of sensitivity of the query Q. First, the local sensi-
tivity of Q at instance I is how much Q(I) can change
when I changes to one of its neighbors, i.e.,

LSQ(I) = sup
I0,I⇠I0

kQ(I)�Q(I0)k .

The global sensitivity of Q is

GSQ = sup
I

LSQ(I).

For a 1-dimensional query Q : I ! R, adding a Laplace
noise proportionate to GSQ/" preserves "-DP. This mech-
anism is referred to as the Laplace mechanism, which
yields an error of O(GSQ)2. A simple case that can
be handled by the Laplace mechanism is any SA-Count
query under tuple-DP, for which we have GSQ = 1.

Worst-case optimality.
The classical optimality notion is worst-case optimal-

ity. Let MQ be the class of all (", �)-DP mechanisms
for query Q. The worst-case lower bound is

Lwst = inf
M 0

Q2MQ

sup
I02I

Err(M 0
Q
, I0).

It can be shown that for any constant ", Lwst � GSQ/2
for any Q. So the Laplace mechanism is already worst-
case optimal, not just for SA-Count queries, but for
all Q. However, the Laplace mechanism is hardly a
2The O notation omits the dependency on " and log log fac-
tors, and the Õ notation further omits polylogarithmic fac-
tors.

satisfactory, or even valid, solution to any query other
than SA-Count, as GSQ is often large or unbounded
for many Q. Consider the SJA-Count query given at
the beginning of the article. We can construct an I
in which there is just one supplier and one customer,
while all lineitems are shipped from this supplier to this
customer. Then we delete the customer to obtain I0 (for
user-DP, we also need to delete all the lineitems). Such
a pair of neighboring instances imply that GSQ = 1,
so the Laplace mechanism cannot be applied. One may
artificially impose a limit on GSQ, but this is not a
theoretically elegant solution; in practice, this is not
satisfying, either, since this limit must be set a priori,
so is often conservatively large.

Instance optimality.
The failure of the Laplace mechanism means that

some instance-specific optimality should be employed.
The strongest such notion is instance optimality. More
precisely, let

Lins(I) := inf
M 0

Q2MQ

Err(M 0
Q
, I)

be the smallest error any M
0
Q

2 MQ can achieve on
I. Then an DP mechanism MQ is c-instance optimal
if Err(MQ, I)  c · Lins(I) for every I, where c is called
the optimality ratio. Unfortunately, for every I, one can
design a trivial M 0

Q
(·) ⌘ Q(I) that has 0 error on I (but

fails miserably on other instances), so Lins(·) ⌘ 0, which
rules out instance-optimal DP mechanisms.

Neighborhood optimality.
As instance optimality is unattainable, [8, 20] con-

sider a relaxed version of instance optimality where we
compare MQ against any M

0
Q

that is required to work
well not just on I, but also on its k-neighbors, i.e., in-
stances within distance3 k from I. More precisely, we
3Distance between I and I0 is the number of individuals’
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define the target error on I as

Lnbr(I, k) := inf
M 0

Q2MQ

sup
I0:d(I,I0)k

Err(M 0
Q
, I0).

Then,MQ is (k, c)-neighborhood optimal if Err(MQ, I) 
c · Lnbf(I, k) for every I. Note that neighborhood opti-
mality interpolates between instance optimality (k = 0)
and worst-case optimality (k = 1), with smaller values
of k corresponding to stronger optimality.
Neighborhood optimality has been adopted for an-

alyzing DP mechanisms for certain machine learning
problems [8] and SJA-Count queries under tuple-DP
[20]. However, it degenerates into worst-case optimal-
ity (for any k � 1), hence meaningless, when the query
has a Max or Sum aggregation. Consider an SA-Max
query that returns the highest salary of any customer.
For every I, we can construct a neighboring instance
I0 by adding a customer with an arbitrarily high salary,
implying LSQ(I) = 1. Vadhan [46] shows that Lnbr(I, 1)
� LSQ(I)/2, so Lnbr(I, 1) is also unbounded. A simi-
lar construction works for a SA-Sum query or an SJA-
Count query under user-DP, by just adding a user con-
tributing to arbitrarily many tuples.
The reason why neighborhood optimality fails to work

in these cases is that we require M 0
Q
to work well on any

neighbor I0 of I. For these queries, there always exists
a bad neighbor that contains a heavy contributor. This
is too high a requirement for M

0
Q
, hence too low an

optimality notion for MQ.

Down-neighborhood optimality.
To address the issue, Dong et al. [16] revised Lnbr(·, ·)

to

Ld-nbr(I, k) := min
M 0

Q2MQ

max
I0:d(I,I0)k,I0✓I

Err(M 0
Q
, I0),

namely, we require M
0
Q

to work well only on I0 and its
k-down-neighbors, which can be obtained by removing
at most k users’ data from I. Then (k, c)-down neigh-
borhood optimality is defined analogously. The k = 1
case is of particular interest, as it can be shown that
DSQ(I) � Lnbr(I, 1) � DSQ(I)/2 where DSQ(I) is the
downward local sensitivity of Q at I:

DSQ(I) = max
I0,I⇠I0,I0✓I

��Q(I)�Q(I0)
��.

Thus, we can use DSQ(I) as a proxy to prove down
neighborhood optimality, which is easier and has simple
interpretations for many queries. For example, for a
query Q with Count or Sum aggregation, DSQ(I) is
maximum user contribution in Q(I). For an SA-Max
query, DSQ(I) is the gap between the maximum value
and the second maximum value. Unlike LSQ(I), DSQ(I)
is always bounded and usually small on most instances,
so down-neighborhood optimality is more meaningful.

information they di↵er. Under user-DP, that refers to the
number of di↵erent users while under tuple-DP, that repre-
sents the number of di↵erent tuples.

1.4 Overview of Results
Table 1 provides an overview of the state-of-the-art

solutions for answering various queries under DP. Under
tuple-DP, as mentioned, the Laplace mechanism [24] al-
ready achieves an error of O(1) for SA-Count queries,
which is O(1)-worst-case optimal. For SA-Max queries,
[21] achieves

�
Õ(1)), 2

�
-down neighborhood optimality.

For SJA queries, [19, 20] achieve
�
O(1), O(1)

�
-neighbor

-hood optimal error. For SJA queries with the Max
aggregation, while there is no dedicated work for this
problem, the mechanism [25] designed for user-DP can
be employed. This is possible because any user-DP
mechanism can also handle tuple-DP, as mentioned in
Section 1.1. For SPJA queries, [20] currently delivers
the best performance but still lacks an optimal error
guarantee.
Moving towards user-DP, for SJA queries, when the

queries are self-join-free, [21] achieves
�
1, O(1)

�
-down

neighborhood optimal error. For self-join queries, both
[16] and [25] achieve

�
1, Õ(1)

�
-down neighborhood op-

timal error and the log factors hidden by Õ in these
solutions are not comparable. For SJA queries with the
Max aggregation, [25] achieves the

�
Õ(1), 2

�
-downward

neighborhood optimal error. For SPJA queries, both
[16] and [25] are applicable, yet neither guarantees op-
timal utility. Meanwhile, [25] gives another solution
achieving

�
Õ(1), Õ(1)

�
-downward neighborhood optimal

error while taking super-polynomial time. Through-
out the article, we use data complexity [2] when talking
about running times, i.e., the running time is measured
as a function of the database sizeN , while the query size
(i.e., number of relations and attributes in the query) is
considered a constant. All the aforementioned solutions
have polynomial running times, except for the last one.
Furthermore, all of these solutions achieve pure-DP.

2. DP PROPERTIES
The following properties of DP will be useful:

Lemma 1 (Post Processing [24]). If MQ1 : I !
Y satisfies (", �)-DP and MQ2 : Y ! Z is any random-
ized mechanism, then MQ2(MQ1(I)) satisfies (", �)-DP.

Lemma 2 (Composition Theorem [24]). If MQ

is an adaptive composition4 of di↵erentially private mech-
anisms MQ1 , . . . ,MQk , where each MQk satisfies (", �)-
DP, then M satisfies ("0, �0)-DP, where

1. "
0 = k" and �

0 = k�; [Basic Composition]

2. "
0 = "

q
2k log 1

�00 + k"(e"� 1) and �
0 = k�+ �

00 for

any �
00
> 0. [Advanced Composition]

Lemma 3 (Group Privacy [24]). If MQ is an ("0,
�0)-DP mechanism, then for any two instances I, I0 with
d(I, I0) = �, MQ satisfies (�"0,�e�"0�0)-DP.
4Adaptive composition refers to a sequence of mechanisms,
where the choice of each mechanism can depend on the out-
comes of the previous mechanisms.
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Lemma 4 (Parallel Composition [36]). If MQ1 ,
MQ2 satisfy "1-DP and "2-DP, and X1,X2 ✓ X are two
disjoint input domains, then

�
MQ1(I\X1),MQ2(I\X2)

�

satisfies max("1, "2)-DP.

3. QUERY EVALUATION UNDER TUPLE-
DP

3.1 SA Queries
As mentioned, SA-Count queries can be readily han-

dled by the Laplace mechanism. SA-Sum queries can
be handled as self-join-free SJA-Count queries under
user-DP, which will be discussed in Section 4.1. This
section thus only discusses SA-Max queries. In this
problem, I can be regarded as a multiset of integers
{x1, x2, . . . , xN}, we reorder I such that x1  · · ·  xN ,
and our goal is to design a DP mechanism MQ such
that

xN�⇢  Q(I)  xN .

Such a guarantee is said to have a rank error of ⇢. Note
that this is equivalent to (⇢, 2)-down neighborhood op-
timality.
For this problem, Asi and Duchi introduced the in-

verse sensitivity mechanism, which instantiates the ex-
ponential mechanism [24], a fundamental "-DP frame-
work. The inverse sensitivity mechanism operates based
on an assumption of data boundedness within the range
[0, U ] and achieves "-DP while maintaining a rank error
of O(log(U)).
Later, Huang et al. [26] proposed an alternative mech-

anism by transforming the maximum problem into a
counting problem. This algorithm also requires a simi-
lar assumption of data boundedness as the inverse sen-
sitivity mechanism. The high-level idea is to find the
largest r such that [r, U ] contains more than c elements,
where c is a predetermined parameter. By employ-
ing a binary search, the desired r can be located us-
ing log(U) counting queries. The composition theory
is then utilized to allocate the privacy budget for each
counting query. Their mechanism is under the concen-
trated di↵erential privacy (CDP) [11], which is a DP
notation between "-DP and (", �)-DP. By carefully se-
lecting the parameter c, they achieve a rank error of
O
�p

log(U) log log(U)
�
. Moreover, there exists a cor-

responding "-DP version of this mechanism by replac-
ing the Gaussian mechanism with the Laplace mecha-
nism. However, this version yields a higher rank error of
O
�
log(U) log log(U)

�
than the inverse sensitivity mech-

anism.
Dong and Yi [21] also reduced the problem to a count-

ing problem. However, they took a di↵erent route:
Instead of seeking an interval [r, U ], they identify the
smallest value of r such that the interval [0, r] encom-
passes the majority of elements. More precisely, they
iteratively set r = 1, 2, . . . and inquire whether [0, r]
contains more than N � c data, where c is another
predefined parameter. When applying the composition
theory, this method has a large error for each counting
query, further leading to a large rank error. Instead,

they use the sparse vector technique [23]. The algorithm
first uses constant noise to obscure the threshold N � c.
During each iteration, the constant noise is added to
mask the counter result for [0, r], and this noisy counter
is then compared with the noisy threshold. Finally, the
algorithm returns the first r for which its noisy counter
surpasses the noisy threshold. The entire process can be
shown to preserve "-DP. In comparison to binary search,
this approach doesn’t require the division of privacy
budget but generates more noisy outcomes. Addition-
ally, the boundedness assumption becomes unnecessary.
Through careful selection of c = Õ(1), the algorithm
achieves an instance-specific rank error of O(log(xMax)),
where xMax is the maximum value in I.

3.2 SJA Queries
Let us begin by discussing JA queries. Joins make

the problem more challenging, as a single tuple can now
influence numerous join results, and the global sensitiv-
ity becomes 1. A relatively easy approach is to add
constraints so as to reduce global sensitivity. McSh-
erry [36] solves the problem by restricting to one-to-one
joins. Proserpio et al. [42] propose wPINQ to extend the
work of McSherry to support general equijoins: by as-
signing weights to tuples and scaling down the weights,
their algorithm ensures each tuple can at most a↵ect
one on final counting result. However, this only works
well when one tuple a↵ects a fixed number of results.
Palamidessi and Stronati [41] add constraints on the at-
tribute range. Arapinis et al. [7] and Narayan et al. [37]
consider functional dependencies and cardinality con-
straints.
Another way to deal with the issue of a high global

sensitivity is tempting to use the sensitivity of the query
on the particular given instance like local sensitivity
LSQ(I). However, as pointed out by Nissim et al. [39],
using the local sensitivity to calibrate noise is not DP.
This is because the local sensitivity can be very di↵erent
on two neighboring databases, so the noise level may re-
veal information about an individual tuple. Essentially,
the problem is that local sensitivity, when considered as
a query, has high global sensitivity.
To get around the problem, the idea is to use a smooth

(i.e., having low global sensitivity) upper bound of the
local sensitivity, named smooth sensitivity (SSQ) [39].
Similar to local sensitivity, smooth sensitivity is also
instance-dependent and usually can be much smaller
than global sensitivity. But di↵erent from local sensi-
tivity, it eliminates abrupt changes between neighboring
instances, hence the name “smooth sensitivity”. More
precisely, for any I ⇠ I0, we have SS�

Q
(I)  SS�

Q
(I) · e� .

By selecting � to be ⇥(") and incorporating noise sam-
pled from a general Cauchy distribution5, scaled by
SS�

Q
(I), we get an "-DP mechanism. Furthermore, it

can be demonstrated that smooth sensitivity achieves
(O(1), O(1))-neighborhood optimal error for answering
multi-way join counting queries under tuple-DP [20].
However, computing the smooth sensitivity by defini-

5The general Cauchy distribution has pdf h(z) / 1
1+|z|� .
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tion in general takes exponential time. Dong and Yi
devised a method to reduce its computational cost for
multi-way join counting queries to N

O(logN), which is
still super-polynomial.
Due to the absence of an e�cient algorithm for calcu-

lating the smooth sensitivity for multi-way join counting
queries under tuple-DP, Johnson et al. [28] introduced
elastic sensitivity. Elastic sensitivity is an approxima-
tion of smooth sensitivity while preserving its “smooth-
ness property”. In contrast to smooth sensitivity, elastic
sensitivity can be computed in linear time. However, it
lacks any utility guarantee. Theoretically, the gap be-
tween elastic sensitivity and smooth sensitivity can be
as large as O

�
N

n�1
�
.

To tackle this challenge, Dong and Yi proposed resid-
ual sensitivity [19, 20], which is another valid approxi-
mation of smooth sensitivity. For utility, residual sensi-
tivity is a constant-factor upper bound on smooth sen-
sitivity, which can be used to add noise, resulting in an
(O(1), O(1))-neighborhood optimal error. In terms of
e�ciency, residual sensitivity can be computed through
a constant number of AJAR/FAQ queries [27, 4] with
Õ(1) additional computations. Each AJAR/FAQ query
can be processed within O(Nw) time [40, 9], where w

is its AJAR/FAQ width, a constant depending on the
query only.
Then, let us consider the selection operations. The

traditional approach to dealing with selection opera-
tion [34, 28, 19] is to evaluate the query with selection
but compute the sensitivity without considering the se-
lection conditions. This yields a valid DP mechanism
but loses optimality. To see this, just consider an ex-
treme case where a selection condition always returns
False. Then the query becomes a trivial query and the
optimal (under any notion of optimality) mechanism is
M(·) ⌘ 0, i.e., Err(M, I) = 0 for all I, but the sensitiv-
ity of the query without the selection condition must be
nonzero. Meanwhile, Dong and Yi demonstrated how
to extend residual sensitivity to incorporate selection
operations while maintaining its neighborhood optimal-
ity [20]. Additionally, when all selection conditions are
inequalities and comparisons, the algorithms can still
be run in polynomial time.

3.3 SPJA Queries
The conventional approach for answering SPJA queries

under tuple-DP simply disregards the projection. Dong
and Yi extended residual sensitivity to more e↵ectively
handle projection so as to reduce the noise [20]. This
extended algorithm can also be executed using a con-
stant number of AJAR/FAQ queries. However, it does
not have neighborhood optimality.

4. QUERY EVALUATION UNDER USER-DP
Let us now move towards the user-DP. As mentioned,

user-DP exclusively focuses on join queries, and self-
joins can bring unique challenges. In this section, we
first review the works for self-join-free queries. Subse-
quently, we delve into the techniques employed to han-
dle self-joins. Next, we talk about how to answer SJA-

Max queries and then SPJA queries.

4.1 Self-join-free SJA Queries
As mentioned, the challenge that arises with user-

DP compared to tuple-DP is that each individual can
own arbitrarily many tuples. Consider the self-join-free
SJA query introduced in Section 1.2, where we count
items while protecting the privacy of customers. In this
context, a customer could theoretically possess an un-
bounded number of items and adding such a customer
to the database can cause an unbounded change in the
query result. A simple fix is to assume a finite GSQ,
which can be justified in practice because we may never
have a customer with, say, more than a million items.
However, assuming such a GSQ limits the allowable
database instances, one tends to be conservative and
sets a large GSQ. This allows the Laplace mechanism
to work, but adding noise of this scale clearly eliminates
any utility of the released query answer. Furthermore, it
is clear that this issue persists across all instances, lead-
ing to LSQ(I) ⌘ GSQ = 1. This means the sensitivity-
based techniques used for answering SJA queries under
tuple-DP will lose utility since those sensitivity mea-
sures are all upper bounds of local sensitivity.
The issue above was first identified by Kotsogiannis

et al. [34], who also formalized the user-DP. Their solu-
tion is the truncation mechanism, which simply deletes
all customers with more than ⌧ items before applying
the Laplace mechanism, for some threshold ⌧ . After
truncation, the query has sensitivity ⌧ , so adding noise
of scale ⌧ is su�cient. Such an idea has also been used
in a later work [45]. A well-known issue for the trun-
cation mechanism is the bias-variance trade-o↵: In one
extreme ⌧ = GSQ, it degenerates into the naive Laplace
mechanism with a large noise (i.e., large variance); in
the other extreme ⌧ = 0, the truncation introduces a
bias as large as the query answer. Both [34] and [45]
use a heuristic approach to find such a ⌧ , without o↵er-
ing any optimal guarantee.
As mentioned, self-join-free SJA queries under user-

DP are equivalent to the sum estimation problem, and
the issue of how to choose a near-optimal ⌧ has been ex-
tensively studied in the statistics and machine learning
community [1, 5, 6, 26, 21]. In this context, I is treated
as an ordered multiset of integers x1, x2, . . . , xN , where
each xi corresponds to an individual user’s contribution
to Q(I), and Q(I) =

P
i
xi. The truncation mechanism

is to delete those xi > ⌧ .6 Furthermore, it is clear that
xN is the maximum user contribution, i.e., DSQ(I). An
observation is that by setting ⌧ = xN , we can elimi-
nate bias and introduce noise at a scale of O(DSQ(I)),
thereby achieving (1, O(1))-down neighborhood optimal
error. Then, the problem is reduced to estimate xN .
The discussion of works on estimating xN under DP
can be found in Section 3.1, where the state-of-the-art
algorithm yields a rank error of O(log(xN )). Using such

6Some works use clipping instead of truncation, i.e., clipping
xi to ⌧ if xi > ⌧ . Since will not a↵ect the result asymptot-
ically, we will use the truncation mechanism in our discus-
sion.
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a noisy estimated xN as the truncation threshold leads

to an error of O
⇣
DSQ(I) · log

�
DSQ(I)

�⌘
.

Can we further enhance this result? Recall that the
O(log(xN )) rank error has already been proven to be op-
timal, so it seems that this outcome can’t be improved
if we employ xN as the truncation threshold. However,
for the maximum problem, our focus is solely on achiev-
ing rank error, with the aim of avoiding relative error.
Astute readers would recognize that when xN serves
as the truncation threshold, we essentially need only a
constant approximation of xN . In other words, we can
tolerate some relative error in locating such xN .
Dong and Yi [21] leveraged this finding to devise a

mechanism for identifying a ⌧ such that xN�k  ⌧ 
2xN . By permitting relaxation on the upper boundary,
they manage to reduce the rank error from O(log(xN ))
to O(log log(xN )). Implementing such a ⌧ results in an

error of O
⇣
DSQ(I) · log log

�
DSQ(I)

�⌘
in the sum esti-

mation, which is
⇣
1, O

�
log log(DSQ(I))

�⌘
-down neigh-

borhood optimal. Furthermore, [21] points out the op-
timality ratio O

�
log log(DSQ(I))

�
cannot be improved.

4.2 SJA Queries with Self-joins
When addressing SJA queries under user-DP, the pres-

ence of self-joins brings another challenge. Specifically,
all the aforementioned techniques for selecting a trun-
cation threshold ⌧ heavily depend on the assumption of
individual independence, i.e., the addition or removal
of one individual doesn’t impact the data of another
individual. However, this assumption no longer holds
when the query involves self-joins. In fact, the trunca-
tion mechanism itself falls as illustrated in the following
example.
Using the query provided at the beginning of the ar-

ticle as an example, let us assume that both Customer
and Supplier are primary private relations. This is like
an edge counting query in a bipartite graph, where the
nodes on the left side represent suppliers, the nodes on
the right side represent customers, and the edges rep-
resent items. With a given truncation threshold ⌧ , we
intend to eliminate all nodes with degrees higher than
⌧ . To illustrate a failure of the truncation mechanism,
let us construct an instance I as follows: each customer
only purchases a single item, while each supplier pro-
vides ⌧ items. In other words, each left-side node has a
degree of ⌧ , while each right-side node has a degree of 1.
In total, there are N items. Now, consider a neighbor-
ing instance I0, which we create by inserting a right-side
node that is connected to every existing left-side node.
In I0, every left-side node has a degree of ⌧ + 1. When
we do truncation by ⌧ , the truncated result for I is N ,
whereas for I0, it is 0 due to the truncation of all left-
side nodes. Adding noise at a scale of ⌧ cannot obscure
their di↵erence, consequently violating the DP.
The truncation mechanism fails because, after trun-

cation, the query’s sensitivity is no longer bounded by
⌧ . More fundamentally, this is due to the correlation
among the individuals introduced by self-joins. In the

example above, we see that the addition of one node
may cause the degrees of many others to increase. For
the problem of graph pattern counting under node-DP,
which can be formulated as a self-join SJA query under
user-DP as previously mentioned, Kasiviswanathan et
al. [31] proposed a linear program (LP)-based trunca-
tion mechanism to fix the issue. Dong et al. [16] then
extended this solution to support general SJA queries.
Now, the remaining task is how to determine the ap-

propriate ⌧ when dealing with self-joins. On one hand,
[31] does not study the selection of ⌧ for graph pattern
counting queries, rendering their mechanism devoid of
any utility guarantee. On the other hand, adopting a
similar approach to selecting ⌧ as self-join-free queries
does not work. This is also because a single individual
can influence the contributions of numerous others. In
the above example, all suppliers contribute ⌧ in I, while
in I0 each supplier contributes ⌧ +1. Running a DP al-
gorithm to estimate the maximum contribution is likely
to yield ⌧ and ⌧ + 1 for I and I0 respectively, making
them distinguishable.
To address this challenge, Dong et al. proposed Race-

to-the-Top (R2T) [16] for adaptively choosing ⌧ in com-
bination with any valid DP truncation mechanism that
satisfies specific properties: (1) Q(I, ⌧)  Q(I); (2) the
sensitivity ofQ(I, ⌧) is bounded by ⌧ ; (3)Q(I, ⌧) = Q(I)
for ⌧ � DSQ(I). Intuitively, such a Q(I, ⌧) gives a sta-
ble (property (1)) underestimate (property (2)) of Q(I),
while reaches Q(I) for ⌧ su�ciently large (property (3)).
Notably, Q(I, ⌧) itself is not DP. Instead of directly de-
termining ⌧ , R2T directly provides a privatized query
answer. The central idea is to try out Q(I, ⌧) with
⌧ = 2, 4, 8, . . . ,GSQ, and somehow pick the “winner”
of the race (the maximum) to estimate Q(I). To en-
sure DP in this process, noise of Lap(⌧/"0) is added
to each Q(I, ⌧), requiring the privacy budget to be di-
vided as "

0 = "/ log(GSQ) since multiple Q(I, ⌧) are
attempted. Yet, this noise-masked Q(I, ⌧) can turn out
to be extremely uncertain and potentially much greater
than Q(I), particularly with a larger value of ⌧ . To
get out of this problem, we shift Q(I, ⌧) down by an
amount that roughly equals the scale of the noise, i.e.,
Õ(⌧). This step ensures that the noise-masked Q(I, ⌧)
is generally underestimated compared to the true re-
sult Q(I) thus we can pick the “winner” of the race.
With this idea alongside the LP-based truncation mech-
anism, R2T achieves an error ofO

�
DSQ(I)·log(GSQ(I))·

log log(GSQ(I))
�
, which is indeed

⇣
1, O

�
log(GSQ(I)) ·

log log(GSQ(I))
�⌘

-down neighborhood optimal. Addi-

tionally, for e�ciency, the computation bottleneck of
R2T is the log(GSQ) LPs, each contains |J(I)| variables
and |J(I)| + N constraints, with J(I) denotes join re-
sults, which is equivalent to |Q(I)| for counting queries.
Dong et al. also provide techniques to speed up this
process and build a system employing PostgreSQL and
the CPLEX LP solver.
Following R2T, Fang et al. [25] introduced another

LP-based mechanism (to be discussed in detail in the
upcoming section). This mechanism is also applicable
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to answering SJA queries. Rather than an assump-
tion of a fixed GSQ, their algorithm necessitates a pre-
defined output range [1, R] and achieves an error of
O(DSQ(I) · log(R)). Notably, GSQ must inherently be
smaller than R, but the error of R2T possesses an addi-
tional loglog factor leading to these two upper bounds
do not dominate each other. Additionally, their algo-
rithm requires solving ⇥(log(R)) LPs, each of which has
a more complex structure than those used in R2T. The
experiments show that both mechanisms yield compa-
rable error levels, with R2T having significantly lower
running times.

4.3 SJA Queries with Max Aggregation
Now, let us discuss SJA queries with Max aggrega-

tion. The objective of these queries is to identify the
highest value among the aggregated attributes over the
join results. This variation of the query introduces new
challenges to achieving optimal utility and current tech-
niques cannot e↵ectively address them. These di�cul-
ties even exist in self-join-free queries. In this problem,
one intuitive approach is to apply the truncation mecha-
nism to establish an upper bound on the number of join
results associated with each individual. Consequently,
with the group privacy property of DP, we can trans-
form this problem into a SA query with Max aggrega-
tion under tuple-DP. During the truncation phase, the
optimal choice for ⌧ is to use (I), which is the max-
imum number of join results corresponding to a single
user in I. By allocating the privacy budget accordingly,
the ultimate result has a rank error of Õ((I)).
However, despite that (I) is the maximum number

of join results corresponding to one user, a rank error of
Õ((I)) doesn’t necessarily imply (Õ(1), c)-down neigh-
borhood optimality for arbitrary c. To see this, consider
the query R1(A) 1 R2(A,B) that outputs the maxi-
mum value on attribute B, with relation R1 designated
as the primary private relation. The instance I contains
two distinct user types. For the first N/2 users, each
corresponds to a tuple (ai) in R1, and one tuple (ai, N)
in R2. Meanwhile, for the remaining N/2 users, each
corresponds to one tuple (ai) in R1 as well but N/2 tu-
ples in R2: (ai, 0), (ai, 1), . . . , (ai, N � 1). It is trivial to
see that Q(I) = N , and after removing any arbitrary k

users where k < N/2, the query result will still remain
unchanged at N . This implies that Ld-nbr(I, k) = 0 for
k <

N

2 , as we can construct a mechanism M
0 where

M
0(·) ⌘ N . Nonetheless, it is clear that (I) = N .

Since there are only N join results with a value of N ,
a rank error of Õ((I)) means returning a value lower
than N , which fails to achieve (d, c)-down neighborhood
optimal error for any d <

N

2 and any c > 0. Another
approach is to transform the maximum problem into a
counting problem, similar to what was discussed in Sec-
tion 3.1. However, the Õ(DSQ(I)) additive error of the
counting problem would also lead to a Õ((I)) rank er-
ror. Acute readers would realize that the problem arises
due to two main factors. First, the data distribution is
skewed, implying that not all users in I correspond to

(I) join results. Second, we cannot guarantee that
those high-value join results originate from the same
individuals.
To address this issue, Fang et al. [25] have devised

a general DP mechanism applicable to any monotonic
query under the user-DP model called ShiftedInverse.
Their algorithm requires a predefined output range [1, R]

and achieves a
⇣
O
�
log(R)

�
, O
�
log(R)

�⌘
-down neigh-

borhood optimal error. The high-level idea is, for each
value r 2 [1, R], they determine len(I, r), which is how
many individuals should be excluded to achieve a query
result less than r. Subsequently, they sample each r as
an output with a probability proportional to len(I, r).
This process can be shown to satisfy the "-DP under
the user-DP while the challenge of guaranteeing down-
neighborhood optimal error is to ensure that the out-
put is underestimated. This can be achieved by “shift-
ing” the target downward. More precisely, they use
clen(I, r) = |len(I, r) � ⇥(log(R))| in place of len(I, r)
during sampling. As a result, they will sample an r such
that len(I, r) = O(log(R)) with high probability, imply-
ing a (O(log(R)), O(log(R)))-down neighborhood opti-
mal error. Note that this underlined statement holds for
arbitrary monotonic queries, while for specific queries,
more favorable outcomes might be attainable. For in-
stance, for maximum queries, this approach can lead to
a (O(log(R)), 2)-down neighborhood optimal error.
For self-join-free SJA queries with Max aggregation,

all len(I, r) values for r 2 [1, R] can be computed in
linear time. However, for other functions like self-join
SJA queries with Max and Sum aggregation, comput-
ing len(I, r) requires a time complexity of O(N len(I,r)).
Even though, Fang et al. emphasize it is unnecessary to
compute all len(I, r) values. Nonetheless, implementing
ShiftedInverse still requires a running time of NO(log(R))

in general, which is super-polynomial unless R is very
small. To address this challenge, they propose an ap-
proximation of len(I, r) specifically for certain functions.
This modified mechanism, equipped with the approx-
imate len(I, r), is termed approximate ShiftedInverse.
While approximate ShiftedInverse maintains "-DP, the
utility guarantee might not be upheld. When address-
ing self-join SJA queries with Max aggregation, each
approximate len(I, r) is formulated as an LP, and the
approximate ShiftedInverse mechanism achieves a
(O(log(R)), 2)-down neighborhood optimal error. By
the way, an approximation for SJA queries with Sum
aggregation is also proposed to achieve the result men-
tioned in the last section.

4.4 SPJA Queries
For SPJA queries, first, since ShiftedInverse can han-

dle arbitrary monotonic queries under user-DP, we can
use it to answer SPJA queries and achieve O

�
log(R),

log(R)
�
-down neighborhood error. However, in this case,

ShiftedInverse cannot be computed in polynomial time.
Additionally, Fang et al [25] also proposed an approxi-
mate ShiftedInverse mechanism for this problem, which
can be computed using a logarithmic number of LPs.
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However, this mechanism does not hold an optimal guar-
antee in utility. In parallel, Dong et al [16] proposed an
LP-based truncation mechanism specifically designed
for SPJA queries. This mechanism can also be inte-
grated with R2T. However, their algorithm also lacks
an optimal utility guarantee as well. Moreover, they
presented a negative result indicating that achieving an
error dependent on DSQ(I) for answering SPJA queries
under user-DP is unattainable. This essentially means
that achieving a (1, c)-down neighborhood optimal error
for any value of c is not achievable.

5. ANSWERING QUERIES UNDER DP IN
MORE COMPLEX SETTING

All the aforementioned discussions consider the straight-
forward scenario of answering a single SQL query. Sub-
sequently, more complex settings have been studied in
the literature.

5.1 Multi-query Answering
In practice, queries often arrive in batches, thus it

is natural to consider the multi-query problem in rela-
tional databases, which includes group-by queries as an
important special case (i.e., each group corresponds to
one query). For instance, if a data analyst is interested
in the total number of items shipped for each date of
the first month this year, s/he would issue the following
query,

SELECT Lineitem.Shipdate, count(*)
FROM Customer, Orders, Lineitem
WHERE Lineitem.Shipdate > 2023-01-01
AND Lineitem.Shipdate < 2023-04-30
AND Customer.CK = Orders.CK
AND Orders.OK = Lineitem.OK

GROUP BY Lineitem.Shipdate;

This query is equivalent to answering d = 100 SJA
queries, with each query corresponding to a specific
date. Let Q = (Q1, . . . , Qd) represent the set of d

queries that we aim to answer privately. We use the
standard metric of root-mean-square error (RMSE), i.e.,
the `2 error to measure the utility.
The general approach to this multi-query problem is

to use the privacy composition theory, i.e., we divide the
privacy budget to the d queries and answer each query
with the single-query mechanism. Using advanced com-
position, the utility su↵ers an Õ(

p
d)-factor degradation

which is the best we can if to answer SA queries with
Count aggregation under tuple-DP. For more complex
queries like SJA queries under user-DP, this method
leads to an error of Õ

�p
d · DSQk(I)

�
for Qk hence an

RMSE of

Õ

 
p
d ·

vuut
dX

k=1

DSQk(I)
2

!
 Õ

⇣
d ·DSQ(I)

⌘
.

However, this error is not optimal. An observation is
that answering d self-join-free SJA queries under user-
DP is equivalent to the sum estimation problem in d

dimensions, where each user’s contribution to these d

queries can be seen as a vector, and the task is to com-
pute their summation. This equivalence has an imme-
diate consequence: the lower bound established for the
sum estimation problem also leads to a lower bound for

the multi-query problem, which is ⌦̃
⇣p

d ·DSQ(I)
⌘
[26,

29]. For self-join-free queries, [26] extends their algo-
rithm designed for single self-join-free SJA query under
user-DP to the multiple-query scenario. In their ap-
proach, they first estimate the maximum user contri-
bution and employ that as the threshold for truncating
heavy contributors. Subsequently, they use the Gaus-
sian mechanism to add noise. Ultimately, they achieve
an error of Õ(

p
d ·DSQ(I)). However, their mechanism

requires a predefined GSQ. On the other hand, Dong et
al. [18] extended the 1-dimensional mechanism from [21]
to d dimensions. This extension enables them to also
achieve the optimal error of Õ(

p
d·DSQ(I)) without the

need for a predefined GSQ.
For self-joins, akin to the single query case, the trun-

cation mechanism encounters problems. Additionally,
the LP-based mechanisms [16, 25] fundamentally do not
work for multiple queries, as LP optimization is limited
to one-dimensional queries. Dong et al. [18] also high-
light that the straightforward extension of these LP-
based approaches also does not work. Thereafter, they
proposed an alternative approach to the multi-query
problem. The initial version of their algorithm has an
exponential running time, but they subsequently reduce
it to polynomial time using quadratically constrained
quadratic programming (QCQP), which can be com-
puted in polynomial time. This novel approach enables
them to achieve an error of Õ(

p
d · DSQ(I)), matching

the lower bound up to polylogarithmic factors.
Furthermore, Cai et al. [12] addressed the multi-query

problem using an alternative approach. They generated
a synthetic relational database under DP and used that
to answer the subsequent queries. This methodology
provides the advantage of accommodating a wide ar-
ray of query types while maintaining error independence
from the query dimensions. However, their proposed al-
gorithm lacks any utility guarantee and only performs
well when the domain of attributes is small.

5.2 Continual Observation
Data is seldom static. When private data evolves

over time, there is a need to continually release sani-
tized query results about the data while preserving the
privacy of the users who contribute to the data. This
is precisely the problem of continual observation under
di↵erential privacy, introduced in the pioneering work
of Dwork et al. [22]. Here, time is divided into dis-
crete steps, and data is modeled as a (possibly infinite)
stream of tuples arriving over time, one per time step
and we release the query result after each time step. In
the dynamic setting, Dwork et al. [22] proposed two
natural DP definitions: In event-DP, two streams are
neighbors if one can be obtained from the other by
removing one item. In user-DP, each tuple is associ-
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Query type
Current Result

Event-DP User-DP

Count/Sum

SA X [22], [13]
Self-join-free SJA X [17]
Self-join SJA

Open question
SPJA

Max
SA X [22], [13]
SJA Open question ⇥ [17]

Table 2: Whether the same asymptotic error as that in the static setting can be achieved with a continual observation
setting.

ated with a user, and two streams are neighbors if one
can be obtained from the other by removing all or any
subset of items associated with one user. Clearly, the
event-DP/user-DP in the dynamic setting aligns with
the tuple-DP/user-DP in the static setting. Further-
more, under event-DP/user-DP, the problem at each
given moment can be viewed as a static problem under
tuple-DP/user-DP. Our target is to achieve the same
error as the static setting each time. Up to now, this
objective has been successfully realized for certain spe-
cific SQL queries.
The major result in [22] on event-DP is a black-box

reduction to the static problem with only a poly log(T )-
factor increase in the error for any union-preserving
query Q, where T is an upper bound on the stream
length. Chan et al. [13] extend this result to infi-
nite streams, with the poly log(T ) factor replaced by
poly log(t), where t is the current length of the stream.
A union-preserving query Q is one such that Q(I[I0) =
Q(I) +Q(I0) for any I, I0. Most natural functions (e.g.,
count, sum, max) are union-preserving. The high-level
idea is to build a binary decomposition over all the T

time steps log T levels of intervals and the DP mecha-
nism for the static problem is invoked on each interval
to return a noisy query result. Then the query result at
any time can be obtained by at most log T such noisy
results, one from each level. To set the privacy bud-
gets of these intervals, it su�ces to allocate "/ log T to
each interval by basic composition (across levels) and
parallel composition (within a level).
By applying state-of-the-art algorithms for static count,

sum, and max queries within this framework, for any
time t, we achieve an error of O(log1.5 t) error for count
queries, an error of O(xt

max · log log(xt
max) · log

2
t) for

sum queries, and a rank error of O(log(xt
max) · log

2
t)

for max queries, where x
t
max is the maximum value of

the instance at time t. These errors correspond to Õ(1)-
worst-case optimal error,

�
1, Õ(1)

�
-down neighborhood

optimal error, and
�
Õ(1), 2

�
-down neighborhood error

for SA queries with Count, Sum, and Max aggre-
gation, respectively. It is worth mentioning that, in
the dynamic setting, Sum queries under event-DP dif-
fer from those under user-DP, thus needing separate
consideration for event-DP.
When moving towards user-DP, one natural idea is to

truncate the user contributions. More precisely, given
some truncation threshold ⌧ , we only retain the first ⌧

items from each user. Then, we can use group privacy
to divide the privacy budget and call the mechanism
for event-DP. However, this approach encounters two
key issues: Estimating a good ⌧ requires a strong prior
knowledge, which is impossible for infinite time domain
cases; This leads to a non-time-specific error, i.e., errors
across all time steps share the same dependency on ⌧ .
To address this issue, Dong at el. [17] used a dynamic
⌧ to constrain user contributions. More precisely, they
monitor the count of users with contributions surpassing
⌧ and subsequently double ⌧ when a su�cient number
of users meet this criterion. Following each doubling
iteration, the entire data stream is truncated using the
updated ⌧ and the DP mechanism over the truncated
stream is also re-initialized. As a result, for sum queries,
they match the error as the static setting up to polylog-
arithmic factors. For max queries, unfortunately, they
show a negative result that no "-DP mechanisms can
achieve (O(

p
T ), c(T ))-down neighborhood optimality

at each time, where T is the length of the stream and
c(T ) is an arbitrary function of T . It is clear that under
user-DP, self-join-free SJA queries with Sum and Max
can be treated as a sum and max query since each join
result only belongs to one user. We have corresponding
positive and negative results for these two queries. For
self-join queries, so far no known algorithm can handle
them.

6. CONCLUSION
In this article, we have surveyed some recent results

on query evaluation under di↵erential privacy. There
are two predominant DP policies in the relational model,
namely tuple-DP and user-DP, and two instance-specific
optimality notions, neighborhood optimality and down-
neighborhood optimality. The choice of an appropriate
optimality notion depends on the nature of the query
under consideration and the DP policy adopted.
We conclude this article by mentioning two interest-

ing directions for further investigation.

More Complex Scenarios.
As mentioned, the problems in the single-query set-

ting have been reasonably well solved. However, there
are many open questions in more complex scenarios, es-
pecially for multiple queries and under continuous ob-
servation. For multi-query answering, one open ques-
tion is how to e↵ectively handle queries involving max-
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imum aggregation and projection operations. For con-
tinual observation, current studies are limited to queries
involving single relations or their equivalent constructs,
and how to handle join operations still remains an un-
charted domain waiting for more exploration.

Integrating DP with Artificial Intelligence in a Rela-
tional Model.
Training machine learning models within the frame-

work of a relational database has attracted lots of atten-
tion from the database community [44, 35, 3, 38, 32].
In this context, the training procedure operates over
outcomes from join queries, with substantial e↵orts de-
voted to enhancing operational e�ciency and curtailing
storage overhead by avoiding explicit materialization of
join results. Concurrently, how to integrate DP with
the training of machine learning models over a flatted
table has also been extensively studied. However, it re-
mains an open question how to integrate DP into the
training of machine learning models within a relational
framework.
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Aggregations and joins over annotated relations.
In Proceedings of the 35th ACM
SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, pages 91–106,
2016.

[28] N. Johnson, J. P. Near, and D. Song. Towards
practical di↵erential privacy for sql queries.
Proceedings of the VLDB Endowment,
11(5):526–539, 2018.

[29] G. Kamath, J. Li, V. Singhal, and J. Ullman.
Privately learning high-dimensional distributions.
In Proceedings of the 32nd Annual Conference on
Learning Theory, COLT ’19, pages 1853–1902,
2019.

[30] V. Karwa, S. Raskhodnikova, A. Smith, and
G. Yaroslavtsev. Private analysis of graph
structure. Proceedings of the VLDB Endowment,
4(11):1146–1157, 2011.

[31] S. P. Kasiviswanathan, K. Nissim,
S. Raskhodnikova, and A. Smith. Analyzing
graphs with node di↵erential privacy. In Theory of
Cryptography Conference, pages 457–476.
Springer, 2013.

[32] M. A. Khamis, H. Q. Ngo, X. Nguyen,
D. Olteanu, and M. Schleich. Learning models
over relational data using sparse tensors and
functional dependencies. ACM Transactions on
Database Systems (TODS), 45(2):1–66, 2020.

[33] D. Kifer and A. Machanavajjhala. No free lunch
in data privacy. In Proceedings of the 2011 ACM
SIGMOD International Conference on
Management of data, pages 193–204, 2011.

[34] I. Kotsogiannis, Y. Tao, X. He, M. Fanaeepour,
A. Machanavajjhala, M. Hay, and G. Miklau.
Privatesql: a di↵erentially private sql query
engine. Proceedings of the VLDB Endowment,

12(11):1371–1384, 2019.
[35] A. Kumar, M. Boehm, and J. Yang. Data

management in machine learning: Challenges,
techniques, and systems. In Proceedings of the
2017 ACM International Conference on
Management of Data, pages 1717–1722, 2017.

[36] F. D. McSherry. Privacy integrated queries: an
extensible platform for privacy-preserving data
analysis. In Proceedings of the 2009 ACM
SIGMOD International Conference on
Management of data, pages 19–30, 2009.

[37] A. Narayan and A. Haeberlen. Djoin:
Di↵erentially private join queries over distributed
databases. In USENIX Symposium on Operating
Systems Design and Implementation, pages
149–162, 2012.

[38] M. Nikolic, H. Zhang, A. Kara, and D. Olteanu.
F-ivm: learning over fast-evolving relational data.
In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of
Data, pages 2773–2776, 2020.

[39] K. Nissim, S. Raskhodnikova, and A. Smith.
Smooth sensitivity and sampling in private data
analysis. In Proceedings of the thirty-ninth annual
ACM symposium on Theory of computing, pages
75–84, 2007.

[40] D. Olteanu and J. Závodnỳ. Size bounds for
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