
Concurrency control for database theorists

Bas Ketsman
Vrije Universiteit Brussel,

Belgium

Christoph Koch
École Polytechnique Fédérale

de Lausanne, Switzerland

Frank Neven
UHasselt, Data Science

Institute, ACSL, Diepenbeek,
Belgium

Brecht Vandevoort
UHasselt, Data Science

Institute, ACSL, Diepenbeek,
Belgium

ABSTRACT
The aim of this paper is to serve as a lightweight in-
troduction to concurrency control for database theorists
through a uniform presentation of the work on robust-
ness against Multiversion Read Committed and Snap-
shot Isolation.

1 Introduction
In this paper, we take a simplistic approach and view
a transaction as a sequence of reads and writes to
database objects. For instance, T1 = R1[t] W1[v] C1 is
a transaction that first reads an object t, writes to an
object v and then commits. Transactions are consid-
ered to be atomic: they are executed completely or
not at all, and once committed they can not be rolled
back. A transaction workload then consists of a set
of transactions. At its core, database concurrency
control is a balancing act between two conflicting
desires: the wish to increase transaction throughput
via concurrent access, that is, interleaving of the
execution of transactions, and the desire for data
consistency for which concurrent access sometimes
needs to be restricted.

The holy standard in concurrency control for guar-
anteeing data consistency is serializability. A con-
current execution of a transaction workload is se-
rializable when it is equivalent to a serial, that is,
non-interleaved execution, of the transactions. Se-
rializability guarantees that no data anomalies can
occur. There are several concurrency control pro-
tocols that guarantee serializability: for instance,
Strict Two-Phase Locking (S2PL) and Serializable
Snapshot Isolation (SSI). As these protocols restrict
concurrent access and typically have a negative effect
on transaction throughput, databases offer a way
to trade in data consistency for an increased level
of concurrency through the mechanism of isolation
levels that are less strict than serializability. Exam-
ples of such weaker isolation levels are, for instance,

Multiversion Read Committed (RC) and Snapshot
Isolation (SI). These isolation levels are less restric-
tive but can induce data anomalies and therefore, in
general, do not guarantee serializability.

However, there are situations when a group of
transactions can be executed at an isolation level
lower than serializability without causing any errors.
In this way, we get the higher isolation guarantees
of serializability for free in exchange for a lower iso-
lation level, which is typically implementable with a
less expensive concurrency control mechanism. This
formal property is called robustness [12, 10]: a set
of transactions T is called robust against a given
isolation level if every possible interleaving of the
transactions in T that is allowed under the specified
isolation level is serializable. There is a famous ex-
ample that is part of database folklore: the TPC-C
benchmark [16] is robust against Snapshot Isolation
(SI), so there is no need to run a stronger, and more
expensive, concurrency control algorithm than SI if
the workload is just TPC-C. This has played a role in
the incorrect choice of SI as the general concurrency
control algorithm for isolation level Serializable in
Oracle and PostgreSQL (before version 9.1, cf. [13]).

In this paper, we present a gentle introduction to
the theory of robustness. In particular, we consider
the isolation levels that are offered by systems like
Postgres and Oracle: RC, SI and SSI. A main
technical tool in the study of robustness is that
of a split schedule. It is the canonical form of a
counterexample schedule witnessing non-robustness
and lies at the basis of polynomial time algorithms
for the robustness problem.

A more complete survey and more high level ac-
count on robustness can be found in [19]. A much
more detailed exposition can be found in Vande-
voort’s Phd Thesis [17]. For deeper exploration of
the theoretical aspects of concurrency control, we
refer to the excellent but rather outdated book by Pa-



padimitriou [15]. General references for concurrency
control are, e.g., [22, 5, 6], or any recent textbook
on database systems.

This paper is further organized as follows. We
introduce the necessary terminology on transactions
and schedules in Section 2 and discuss serializability
in Section 3.2. We define the isolation levels RC,
SI, and SSI in Section 4. In Section 5, we consider
the robustness problem. We discuss transaction
programs and templates in Section 6, and conclude
in Section 7.

2 Definitions
2.1 Transactions
We fix an infinite set of objects Obj. For an object
t ∈ Obj, we denote by R[t] a read operation on
t and by W[t] a write operation on t. We also
assume a special commit operation denoted by C. A
transaction T over Obj is a sequence of read and
write operations on objects in Obj followed by a
commit. In the sequel, we leave the set of objects
Obj implicit when it is clear from the context and
just say transaction rather than transaction over
Obj.

Formally, we model a transaction as a linear order
(T,≤T), where T is the set of (read, write and com-
mit) operations occurring in the transaction and ≤T

encodes the ordering of the operations. As usual, we
use <T to denote the strict ordering. For a transac-
tion T, we use first(T) to refer to the first operation
in T.

When considering a set T of transactions, we as-
sume that every transaction in the set has a unique
id i and write Ti to make this id explicit. Similarly,
to distinguish the operations of different transac-
tions, we add this id as a subscript to the operation.
That is, we write Wi[t] and Ri[t] to denote a W[t] and
R[t] occurring in transaction Ti; similarly Ci denotes
the commit operation in transaction Ti. This con-
vention is consistent with the literature (see, e.g. [3,
12]). To avoid ambiguity of notation, we assume that
a transaction performs at most one write and one
read operation per object. The latter is a common
assumption (see, e.g. [12]). All our results carry over
to the more general setting in which multiple writes
and reads per object are allowed.

2.2 Schedules
A (multiversion) schedule s over a set T of transac-
tions is a tuple (Os,≤s,≪s, vs) where

• Os is the set containing all operations of trans-
actions in T as well as a special operation op0

conceptually writing the initial versions of all
existing objects,

• ≤s encodes a linear ordering of Os (with a ≤s b
and b ≤s a meaning a = b),

• ≪s is a version order providing for each object
t a total order over all write operations on t

occurring in s, and,

• vs is a version function mapping each read
operation a in s to either op0 or to a write
operation in s.

We require that op0 ≤s a for every operation a ∈ Os,
op0 ≪s a for every write operation a ∈ Os, and that
a <T b implies a <s b for every T ∈ T and every
a, b ∈ T. We furthermore require that for every
read operation a, vs(a) <s a and, if vs(a) ̸= op0,
then the operation vs(a) is on the same object as a.
Intuitively, op0 indicates the start of the schedule,
the order of operations in s is consistent with the
order of operations in every transaction T ∈ T , and
the version function maps each read operation a to
the operation that wrote the version observed by a.
If vs(a) is op0, then a observes the initial version
of this object. The version order ≪s represents
the order in which different versions of an object
are installed in the database. For a pair of write
operations on the same object, this version order
does not necessarily coincide with ≤s. For example,
under RC and SI the version order is based on the
commit order instead.

We say that a schedule s is a single version sched-
ule if ≪s agrees with ≤s and every read operation
always reads the last written version of the object.
Formally, for each pair of write operations a and b
on the same object, a ≪s b iff a <s b, and for every
read operation a there is no write operation c on
the same object as a with vs(a) <s c <s a. A single
version schedule over a set of transactions T is single
version serial if its transactions are not interleaved
with operations from other transactions. That is,
for every a, b, c ∈ Os with a <s b <s c and a, c ∈ T
implies b ∈ T for every T ∈ T .

The absence of aborts in our definition of schedule
is consistent with the common assumption [12, 4]
that an underlying recovery mechanism will rollback
aborted transactions. We only consider isolation
levels that only read committed versions. Therefore
there will never be cascading aborts.

Example 2.1. As a running example, consider



the set of transactions T = {T1, T2, T3} with

T1 = R1[t] W1[v] C1;

T2 = R2[v] W2[q] C2; and,

T3 = R3[q] W3[t] W3[q] C3

Let s1 be the schedule over T where the ordering
≤s1 of operations is

op0 R3[q] W3[t] R1[t] W1[v] C1 R2[v] W2[q] C2 W3[q] C3.

The version order ≪s1 equals

• op0 ≪s1 W3[t] for object t,

• op0 ≪s1 W1[v] for object v, and,

• op0 ≪s1 W2[q] ≪s1 W3[q] for object q.

Furthermore, the version function vs1 is

{R3[q] → op0, R1[t] → W3[t], R2[v] → W1[v]}.

Here, the version order W2[q] ≪s1 W3[q] should be
interpreted as transaction T2 installing a version of
q that should precede the version installed by trans-
action T3. Furthermore, vs1(R1[t]) = W3[t] implies
that T3 observes the initial version of t, whereas T1

observes the version written by T3. Notice that s1 is
a single version schedule, as ≪s1 coincides with ≤s1

and according to the version function vs1 each read
operation observes the most recently written version.

Next, let s2 be the schedule where the ordering
≤s2 is equal to ≤s1 , but where the version order ≪s2

equals op0 ≪s2 W3[t] for object t, op0 ≪s2 W1[v] for
object v and op0 ≪s2 W3[q] ≪s2 W2[q] for object q,
and the version function vs2 is

{R3[q] → op0, R1[t] → op0, R2[v] → W1[v]}.

Contrasting s1, this schedule s2 is not a single ver-
sion schedule. Note in particular that W3[q] ≪s2

W2[q], whereas W2[q] ≤s2 W3[q]. That is, the version
of q installed by T3 should precede the version of
T2, even though this version of T3 is installed later
according to ≤s2 . We remark that the latter can
for example happen under a timestamp based con-
currency protocol if the Thomas Write Rule [11] is
applied. Furthermore, the read operation R1[t] does
not read the most recent version, as it observes the
initial version of t rather than the more recent ver-
sion written by W3[t]. Schematic representations of
schedules s1 and s2 are given in Figure 1. 2

For ease of readability, we will henceforth only use
schematic representations of schedules.

op0

R1[t] W1[v] C1

R2[v] W2[q] C2

R3[q] W3[t] W3[q] C3
s1

op0

R1[t] W1[v] C1

R2[v] W2[q] C2

R3[q] W3[t] W3[q] C3
s2

Figure 1: Schedules s1 and s2 from Example 2.1
with solid (resp., dashed) arrows representing their
version function (resp., version order).

3 Serializability
As explained in the introduction, a schedule is serial-
izable when it is equivalent to a serial schedule. We
therefore need to address precisely what equivalence
in this context means. Furthermore, the equivalent
serial schedule must additionally be single version,
as multiversion serial schedules can still exhibit con-
currency anomalies.

Example 3.1. Towards a multiversion serial sched-
ule exhibiting a concurrency issue, consider the set
of transactions T = {Ta, Tb} with

Ta = Wa[t] Wa[v] Ca; and,

Tb = Rb[t] Wb[v] Cb

Let s be the schedule over T where the ordering ≤s

of operations is

op0 Wa[t] Wa[v] Ca Rb[t] Rb[v] Cb.

The version order ≪s equals

• op0 ≪s Wa[t] for object t, and,

• op0 ≪s Wa[v] for object v.

Furthermore, the version function vs is

{Rb[t] → op0, Rb[v] → Wa[v], }.

Although the schedule s executes Ta before Tb in a
serial fashion according to ≤s, the version function
vs implies that Tb observes the original value of
t and the updated value of v. In other words, s



exhibits a concurrency anomaly where Tb observes
only a partial update of Ta.

Most of the literature considers conflict serializ-
ability even though it is not the most general notion.
We define view, final-state, and conflict serializabil-
ity.

3.1 View and final-state serializability
We start with view equivalence which requires that
each read operation reads the result of the same
write operation (as defined by the respective version
function) in both schedules.
In essence this means that every operation must

‘view’ the same values in equivalent schedules. We
introduce the graph D, to make this explicit.1 For a
schedule s, D(s) has as nodes Os \ {op0} and there
is an edge o →D o′ iff

• o = Ri[t] <s Wi[v] = o′, that is, o′ writes a
value that can depend on an earlier read o in
the same transaction; or,

• o′ reads the value written by o, that is, o = Wi[t]
and o′ = Rj [t] with i ̸= j, and o = vs(o

′).

Intuitively, the edge o →D o′ indicates that o must
occur before o′ when read dependencies need to be
preserved.
The latter leads to the following notion of equiv-

alence. Two schedules s and s′ are view equivalent
if they are over the same set T of transactions and
D(s) = D(s′).

We now turn to final-state equivalence which only
enforces dependencies for operations that contribute
to the final value of at least one object. In other
words, dependencies for a write operation to an
object that is overwritten without being read, can
be discarded. In this context, define LW(s) ⊆ Os

as those write operations Wi[t] that are the last in
s to write t. That is, Wi[t] ∈ LW(s) iff Wi[t] ∈ Os

and there is no Wj [t] ∈ Os with Wi[t] <s Wj [t]. Now
define D1 as the graph obtained from D by removing
every connected component (in D) not containing a
write operation from LW(s)

Two schedules s and s′ are final-state equivalent
if they are over the same set T of transactions and
D1(s) = D1(s

′).

Definition 3.1. A schedule s is final-state seri-
alizable (resp., view serializable) if it is final-state
equivalent (resp., view equivalent) to a single version
serial schedule.

Theorem 3.1. [15] Deciding whether a schedule
s is final-state or view serializable is conp-complete.
1The notation D and D1 comes from [15].

Notice that schedules that are view serializable
are also final-state serializable, but not vice versa,
as the next example shows.

Example 3.2. We consider the set of transac-
tions T = {T4, T5, T6} with

T4 = R4[t] W4[t] C4;

T5 = R5[t] W5[t] C5; and,

T6 = W6[t] C6,

and the single-version schedule s3 over T .

op0

R4[t] W4[t] C4

R5[t] W5[t] C5

W6[t] C6
s3

Schedule s3 is final-state serializable because graph
D1(s3) = (Os3 , ∅) = D1(s4) with s4 being the follow-
ing single-version serial schedule over T .

op0

R4[t] W4[t] C4

R5[t] W5[t] C5

W6[t] C6
s4

We note that s3 is not view-serializable because in
every single-version serial schedule s over T , D(s)
must have at least one of the following edges: W5[t] →
R4[t], W4[t] → R5[t], W6[q] → R4[q] or W6[t] → R5[t].
D(s3) has no such edge. 2

3.2 Conflict Serializability
Let aj and bi be two operations on the same object
t from different transactions Tj and Ti in a set of
transactions T . We then say that bi is conflicting
with aj if:

• (ww-conflict) bi = Wi[t] and aj = Wj [t]; or,

• (wr-conflict) bi = Wi[t] and aj = Rj [t]; or,

• (rw-conflict) bi = Ri[t] and aj = Wj [t].

In this case, we also say that bi and aj are conflicting
operations. Furthermore, commit operations and
the special operation op0 never conflict with any
other operation. When bi and aj are conflicting
operations in T , we say that aj depends on bi in a
schedule s over T , denoted bi →s aj if:2

2Throughout the paper, we adopt the following conven-
tion: a b operation can be understood as a ‘before’ while
an a can be interpreted as an ‘after’.



• (ww-dependency) bi is ww-conflicting with aj
and bi ≪s aj ; or,

• (wr-dependency) bi is wr-conflicting with aj
and bi = vs(aj) or bi ≪s vs(aj); or,

• (rw-antidependency) bi is rw-conflicting with
aj and vs(bi) ≪s aj .

Intuitively, a ww-dependency from bi to aj implies
that aj writes a version of an object that is installed
after the version written by bi. A wr-dependency
from bi to aj implies that bi either writes the ver-
sion observed by aj , or it writes a version that is
installed before the version observed by aj . A rw-
antidependency from bi to aj implies that bi observes
a version installed before the version written by aj .

Example 3.3. Consider schedule s2 as defined
in Example 2.1. In this schedule, the dependency
W3[q] →s2 W2[q] is a ww-dependency since W3[q] ≪s2

W2[q]. Schedule s2 furthermore has a wr-dependency
from W1[v] to R2[v], as vs2(R2[v]) = W1[v]. The de-
pendency R1[t] →s2 W3[t] is a rw-antidependency,
witnessed by vs2(R1[t]) = op0 ≪s2 W3[t]. 2

Two schedules s and s′ are conflict equivalent if
they are over the same set T of transactions and
for every pair of conflicting operations aj and bi,
bi →s aj iff bi →s′ aj .

Definition 3.2. A schedule s is conflict serializ-
able if it is conflict equivalent to a single version
serial schedule.

A serialization graph SeG(s) for schedule s over
a set of transactions T is the graph whose nodes are
the transactions in T and where there is an edge
from Ti to Tj if Tj has an operation aj that depends
on an operation bi in Ti, thus with bi →s aj . Since
we are usually not only interested in the existence
of dependencies between operations, but also in the
operations themselves, we assume the existence of
a labeling function λ mapping each edge to a set of
pairs of operations. Formally, (bi, aj) ∈ λ(Ti, Tj) iff
there is an operation aj ∈ Tj that depends on an
operation bi ∈ Ti. For ease of notation, we choose to
represent SeG(s) as a set of quadruples (Ti, bi, aj , Tj)
denoting all possible pairs of these transactions Ti

and Tj with all possible choices of operations with
bi →s aj . Henceforth, we refer to these quadruples
simply as edges. Notice that edges cannot contain
commit operations.
A cycle Γ in SeG(s) is a non-empty sequence of

edges

(T1, b1, a2, T2), (T2, b2, a3, T3), . . . , (Tn, bn, a1, T1)

in SeG(s), in which every transaction is mentioned
exactly twice. Note that cycles are by definition
simple. Here, transaction T1 starts and concludes
the cycle. For a transaction Ti in Γ, we denote by
Γ[Ti] the cycle obtained from Γ by letting Ti start
and conclude the cycle while otherwise respecting
the order of transactions in Γ. That is, Γ[Ti] is the
sequence

(Ti, bi, ai+1, Ti+1) · · · (Tn, bn, a1, T1)(T1, b1, a2, T2)

· · · (Ti−1, bi−1, ai, Ti).

Theorem 3.2 (implied by [1]). A schedule s
is conflict serializable iff SeG(s) is acyclic.

The previous Theorem essentially extends the well
known characterization of conflict serializability for
single version schedules based on acyclicity of con-
flict graphs (see, e.g., [15]) towards multiversion
schedules. In brief, the conflict graph CG(s) for a
single version schedule s over a set of transactions
T is the graph whose nodes are the transactions in
T and where there is an edge from Ti to Tj if Tj has
an operation aj that is conflicting with an operation
bi in Ti and ai <s bj . Note in particular that CG(s)
is defined solely in terms of conflicting operations
and <s, whereas SeG(s) takes into account ≪s and
vs as well. It can be proven that, if s is a single
version schedule, CG(s) and SeG(s) are identical.

Corollary 3.1. Deciding whether a schedule s
is conflict serializable is in ptime.

Example 3.4. The serialization graphs for sched-
ules s1 and s2 in Example 2.1 are given in Figure 2.
Since SeG(s1) contains cycles, we conclude that s1
is not conflict serializable. The serialization graph
SeG(s2) on the other hand is acyclic, thereby im-
plying that s2 is conflict serializable. Indeed, s2 is
conflict equivalent to the single version serial sched-
ule T1 · T3 · T2. 2

Notice that conflict serializability implies view
serializability but not vice versa.

Example 3.5. We consider the set of transac-
tions T = {T4, T6, T7} with

T4 = R4[t] W4[t] C4;

T6 = W6[t] C6; and,

T7 = W7[t] C7.

We consider the following single-version schedule s5
over T .



T1 :R1[t]W1[v]C1 T2 :R2[v]W2[q]C2

T3 :R3[q]W3[t]W3[q]C3

(a) SeG(s1)

T1 :R1[t]W1[v]C1 T2 :R2[v]W2[q]C2

T3 :R3[q]W3[t]W3[q]C3

(b) SeG(s2)

Figure 2: Serialization graphs for schedules s1 and
s2 as defined in Example 2.1.

op0

R4[t] W4[t] C4

W6[t] C6

W7[t] C7
s5

Schedule s5 is clearly not conflict-serializable since
{T4 → T7, T7 → T4} ⊆ SeG(s5). But s5 is view-
equivalent with the single-version serial schedule s6.

op0

R4[t] W4[t] C4

W6[t] C6

W7[t] C7
s6

Indeed, D(s5) = D(s6) = {R4[t] →D W4[t]}. 2

The relationship between the three notions for
serializability is graphically depicted in Figure 3.

4 Isolation Levels
Most generally, an isolation level corresponds to a
set of allowed schedules. In this section, we define
the isolation levels RC, SI, and SSI.
Let s be a schedule for a set T of transactions.

Two transactions Ti, Tj ∈ T are said to be concur-
rent in s when their execution overlaps. That is, if
first(Ti) <s Cj and first(Tj) <s Ci. We say that a
write operation Wj [t] in a transaction Tj ∈ T respects

final-state serializability

view serializability

conflict serializability

Figure 3: Different notions of serializability.

the commit order of s if the version of t written by Tj

is installed after all versions of t installed by transac-
tions committing before Tj commits, but before all
versions of t installed by transactions committing
after Tj commits. More formally, if for every write
operation Wi[t] in a transaction Ti ∈ T different from
Tj we have Wj [t] ≪s Wi[t] iff Cj <s Ci. For examples,
consider schedules s1 and s2 from Example 2.1. In s1
all transactions respect the commit order, while in
schedule s2 we have W3[q] ≪s2 W2[q] and C2 <s2 C3.
We next define when a read operation a ∈ T

reads the last committed version relative to a specific
operation. For RC this operation is a itself while
for SI this operation is first(T). A read operation
Rj [t] in a transaction Tj ∈ T is read-last-committed
in s relative to an operation aj ∈ Tj (not necessarily
different from Rj [t]) if the following holds:

• vs(Rj [t]) = op0 or Ci <s aj with vs(Rj [t]) ∈ Ti;
and

• there is no write operation Wk[t] ∈ Tk with
Ck <s aj and vs(Rj [t]) ≪s Wk[t].

So, Rj [t] observes the most recently installed version
of t (according to ≪s) that is committed before
aj in s. The latter can be observed in schedule s2
(w.r.t both the read itself as well as the start of the
transaction), while in schedule s1 there is a read
R1[t] with vs(R1[t]) = W2[t] and R1[t] <s1 C2.
A transaction Tj ∈ T exhibits a concurrent write

in s if there are two write operations bi and aj in
s on the same object with bi ∈ Ti, aj ∈ Tj and
Ti ̸= Tj such that bi <s aj and first(Tj) <s Ci. That
is, transaction Tj writes to an object that has been
modified earlier by a concurrent transaction Ti.

A transaction Tj ∈ T exhibits a dirty write in s if
there are two write operations bi and aj in s with
bi ∈ Ti, aj ∈ Tj and Ti ̸= Tj such that bi <s aj <s Ci.
That is, transaction Tj writes to an object that has
been modified earlier by Ti, but Ti has not yet issued
a commit. Notice that by definition a transaction
exhibiting a dirty write always exhibits a concurrent
write. In schedule s1 (and s2) the transaction T3



witnesses a concurrent write since W2[q] ≤s1 W3[q]
and first(T3) <s1 C2. But T3 does not exhibit a dirty
write since C2 <s1 W3[q].

Definition 4.1. Let s be a schedule over a set
of transactions T . A transaction Ti ∈ T is allowed
under isolation level read committed (RC) in s if:

• each write operation in Ti respects the commit
order of s;

• each read operation bi ∈ Ti is read-last-committed
in s relative to bi; and

• Ti does not exhibit dirty writes in s.

A transaction Ti ∈ T is allowed under isolation level
snapshot isolation (SI) in s if:

• each write operation in Ti respects the commit
order of s;

• each read operation in Ti is read-last-committed
in s relative to first(Ti); and

• Ti does not exhibit concurrent writes in s.

Definition 4.2. We then say that the schedule
s is allowed under RC (respectively, SI) if every
transaction is allowed under RC (respectively, SI) in
s.

The latter definitions correspond to the ones in the
literature (see, e.g., [12, 18]).
While RC and SI are defined on the granularity

of a single transaction, SSI enforces a global con-
dition on the schedule as a whole. For this, recall
the concept of dangerous structures from [7]: three
transactions T1, T2, T3 ∈ T (where T1 and T3 are
not necessarily different) form a dangerous structure
T1 → T2 → T3 in s if:

• there is a rw-antidependency from T1 to T2 and
from T2 to T3 in s;

• T1 and T2 are concurrent in s ;

• T2 and T3 are concurrent in s ; and,

• C3 <s C1 and C3 <s C2.

Definition 4.3. We say that the schedule s is
allowed under SSI if every transaction is allowed
under SI in s, and there is no dangerous structure
in s.

The latter definitions correspond to the ones in the
literature (see, e.g., [12, 18]).

Example 4.1. Consider the set of transactions
T = {T1, T2, T3} from Example 2.1. For a schedule
in which the transactions of T are allowed under SI,
consider s6 over T .

op0

R1[t] W1[v] C1

R2[v] W2[q] C2

R3[q] W3[t] W3[q] C3
s6

It can be verified that all three transactions of T are
indeed allowed under SI in s6, but not under SSI,
since T2 → T1 → T3 is a dangerous structure.

We remark that the transactions in s6 are also
allowed under RC. For a schedule over T in which
all transactions are allowed under RC but not under
SI, consider consider schedule s7.

op0

R1[t] W1[v] C1

R2[v] W2[q] C2

R3[q] W3[t] W3[q] C3
s7

It can be verified that all transactions of T are al-
lowed under RC in s7 but not under SI, because of
the concurrent writes W2[q] and W3[q]. 2

5 Robustness
We define the robustness property [4] (also called ac-
ceptability in [12, 13]), which guarantees serializabil-
ity for all schedules over a given set of transactions
under a specific isolation level.

Definition 5.1 (Robustness). Let I be an iso-
lation level. A set of transactions T is robust against
I if every schedule for T that is allowed under I is
conflict serializable.

In the next subsections, we relate robustness against
different isolation levels to the non-existence of vari-
ants of a specific type of schedule, which we call a
multi-version split schedule. These characterizations
form the basis for algorithms to test robustness. In
its most general form, a multi-version split schedule
is defined as follows.



Definition 5.2 (Mv split schedule). Let T
be a set of transactions and C = (T1, b1, a2, T2),
(T2, b2, a3, T3), . . . , (Tm, bm, a1, T1) a sequence of con-
flicting quadruples for T such that each transaction
in T occurs in at most two different quadruples. A
multiversion split schedule for T based on C is a
multiversion schedule that has the following form:

prefixb1(T1) ·T2 · . . . ·Tm ·postfixb1(T1) ·Tm+1 · . . . ·Tn,

where

1. there is no operation in T1 conflicting with an
operation in any of the transactions T3, . . . , Tm−1;

2. there is no write operation in prefixb1(T1) ww-
conflicting with a write operation in T2 or Tm;

3. b1 is rw-conflicting with a2;

Furthermore, Tm+1, . . . , Tn are the remaining trans-
actions in T (those not mentioned in C) in an arbi-
trary order.

5.1 Snapshot Isolation
We say that a multiversion split schedule s for some
set T of transactions satisfies the SI requirements
if there is no write operation in postfixb1(T1) ww-
conflicting with a write operation in T2 or Tm; and
bm is rw-conflicting with a1.

Proposition 5.1. For a set of transactions T ,
the following are equivalent:

1. T is not robust against SI;

2. there is a multiversion split schedule s for T
based on some C that satisfies the SI require-
ments.

Proof Sketch. (2→ 1) This direction is straight-
forward, as it can be verified that such a schedule is
allowed under SI and is not conflict-serializable.
(1 → 2) Since T is not robust against SI, a sched-

ule s for T exists that is allowed under SI but
not conflict-serializable. Let Γ = (T1, b1, a2, T2),
(T2, b2, a3, T3), . . . , (Tn, bn, a1, T1) be a cycle in SeG(s).
W.l.o.g., we assume Γ is minimal and T2 is the first
transaction (among those occurring in Γ) to commit
in s. That is, C2 <s Ci for every other transaction
Ti in Γ.
Next, let C = (T1, b1, a2, T2), (T2, b2, a3, T3), . . . ,

(Tn, bn, a1, T1) be the sequence of conflicting quadru-
ples derived from Γ. In the remainder of the proof,
we argue that the multiversion split schedule s′ for
T based on C is indeed valid and satisfies the SI
requirements. Condition 1 of Definition 5.2 is imme-
diate by our assumption that Γ is a minimal cycle in

SeG(s). Since C2 <s C1, the edge (T1, b1, a2, T2) in Γ
must be based on a rw-antidependency in s, thereby
proving Condition 3 of Definition 5.2. Indeed, by def-
inition of SI, if b1 →s a2 would be a ww-dependency
or a wr-dependency, then C1 <s first(T2). This rw-
antidependency b1 →s a2 furthermore implies that
T1 and T2 are concurrent in s, as otherwise these
two operations would imply a wr-dependency in the
opposite direction instead.
We next argue that there is no write operation in

T1 ww-conflicting with a write operation in T2 or Tm.
Since T1 and T2 are concurrent, and since SI does
not allow concurrent writes, the result is immediate
for T2. If T2 = Tm, the result is immediate for
Tm as well. Otherwise, such a pair of conflicting
write operations between T1 and Tm would imply
a ww-dependency from Tm to T1 (as the opposite
direction would contradict our assumption that Γ
is minimal). But then the definition of SI implies
that Cm <s first(T1) <s C2, thereby contradicting
our assumption that T2 commits first.
To conclude the proof, we argue that bm is rw-

conflicting with a1. Since bm →s a1 is a dependency
in s, bm wr- or ww-conflicting with a1 would imply
by definition of SI that Cm <s first(T1) <s C2, again
leading to the desired contradiction.

Algorithm 1 provides a direct decision procedure
for robustness against SI based on the previous char-
acterization. There, for a transaction T1 and a set
of transactions T , we refer by si-graph(T1, T ) to the
graph containing as nodes all transactions in T that
do not have an operation conflicting with an opera-
tion in T1, and with an edge between transactions
Ti and Tj if Ti has an operation conflicting with an
operation in Tj .
The following theorem then readily follows:

Theorem 5.1. [12] Deciding whether a set of
transactions is robust against SI is in ptime.

An immediate corollary of the main result by
Fekete [12] is that for a set of transactions T robust-
ness against SI can be characterized by the absence
of a specific structure, called pivots, in the interfer-
ence graph IG(T ). In this graph, each transaction in
T is represented by a node and edges summarize the
possible dependencies between transactions. That
is, if there exists a schedule s with a dependency
between two transactions Ti and Tj , then Ti → Tj

is an edge in IG(T ). An edge is furthermore re-
ferred to as an exposed edge if the dependency is
a rw-antidependency and the two transactions are
concurrent in s. A pivot is a transaction Ti part
of a chord-free cycle in IG(T ) with two adjacent



Algorithm 1: Deciding robustness against SI.

Input : Set of transactions T
Output : True iff T is robust against SI

def reachable(T2, Tm, T1):
if T2 = Tm then

return True;
for b2 ∈ T2, am ∈ Tm do

if b2 conflicts with am then
return True;

G := si-graph(T1, T \ {T1, T2, Tm});
TC := reflexive-transitive-closure of G;
for (T3, Tm−1) in TC do

for b2 ∈ T2, a3 ∈ T3, bm−1 ∈ Tm−1,
am ∈ Tm do

if (b2 conflicts with a3 and bm−1

conflicts with am) then
return True;

return False;

for T1 ∈ T , T2 ∈ T \ {T1}, Tm ∈ T \ {T1} do
if reachable(T2, Tm, T1) then

for b1 ∈ T1 do
if T1, T2, and Tm have no
ww-conflicting operations then

for a1 ∈ T1, a2 ∈ T2, bm ∈ Tm

do
if bm conflicts with a1 and
b1 is rw-conflicting with a2
and bm is rw-conflicting
with a1 then

return False;
return True

exposed edges Ti−1 → Ti and Ti → Ti+1. It can
be shown that every pivot implies a multiversion
split schedule satisfying the SI requirements and vice
versa. Intuitively, the rw-antidependencies bm →s a1
and b1 →s a2 in such a multiversion split schedule s
correspond to exposed edges Tm → T1 and T1 → T2

in IG(T ), thereby witnessing that T1 is a pivot.

5.2 Read Committed
We say that a multiversion split schedule s for some
set T of transactions satisfies the RC requirements
if either bm is rw-conflicting with a1 or b1 <T1 a1.

Proposition 5.2. [18] For a set of transactions
T , the following are equivalent:

1. T is not robust against RC;

2. there is a multiversion split schedule s for T
based on some C that satisfies the RC require-
ments.

Proof Sketch. (2→ 1) This direction is straight-
forward, as it can be verified that such a schedule is
allowed under RC and is not conflict-serializable.
(1 → 2) The proof strategy is analogous to the

proof of Proposition 5.1. In particular, let Γ and
C be as in the proof of Proposition 5.1. We now
argue that the multiversion split schedule based on
C is valid and satisfies the RC requirements. Con-
dition 1 of Definition 5.2 is again immediate by our
assumption that Γ is a minimal cycle in SeG(s).
Towards Condition 3 of Definition 5.2, note that if
b1 →s a2 is a ww-dependency or a wr-dependency,
then by definition of RC, we have C1 <s a2, thereby
contradicting our assumption that T2 commits first.
Furthermore, this rw-antidependency b1 →s a2 im-
plies that b1 <s C2, as otherwise these operations
would imply a wr-dependency in the opposite di-
rection instead. Because of this, there can not be
a write operation in prefixb1(T1) conflicting with a
write operation in T2, as this would create a dirty
write in s. If Tm = T2, the result is immediate for
Tm as well. Otherwise, if Tm ̸= T2, such a pair of
ww-conflicting operations in T1 and Tm would imply
a ww-dependency from Tm to T1 (as the opposite
direction contradicts our assumption that Γ is a mini-
mal cycle), and hence Cm <s b1 <s C2, again leading
to the desired contradiction and thereby proving
Condition 2 of Definition 5.2.
It remains to argue that the multiversion split

schedule satisfies the RC requirements. Towards a
contradiction, assume bm is wr- or ww-conflicting
with a1 and a1 ≤T1

b1. Then, by the definition of
RC, we have Cm <s a1, and hence Cm <s b1 <s C2,
which contradicts our assumption that T2 commits
first.

Algorithm 1 can easily be adapted for RC, leading
to the following result:

Theorem 5.2. [18] Deciding whether a set of
transactions is robust against RC is in ptime.

Ketsman et al. [14] provide full characterizations
for robustness against read committed and read
uncommitted under lock-based semantics as op-
posed to the multiversion semantics that is used here.
In addition, it is shown that the corresponding deci-
sion problems are complete for conp and logspace,
respectively. The conp-hardness stems from the fact
that counterexample schedules no longer take the
simple form of a split schedule.

5.3 Robust allocations
In practice, an isolation level is not set uniformly
on the level of the database or even on the level of



the application but can be specified on the level of
an individual transaction. Let I ⊆ {RC,SI,SSI}.
An I-allocation A for a set of transactions T is a
function mapping each transaction T ∈ T onto an
isolation level A(T) ∈ I.

A schedule s over a set of transactions T is allowed
under an I-allocation A over T if:

• for every transaction Ti ∈ T with A(Ti) = RC,
Ti is allowed under RC;

• for every transaction Ti ∈ T with A(Ti) ∈
{SI,SSI}, Ti is allowed under SI; and

• there is no dangerous structure Ti → Tj → Tk

in s formed by three (not necessarily different)
transactions Ti, Tj , Tk ∈ {T ∈ T | A(T) =
SSI}.

We say that a set of transactions T is robust
against an allocation A when every schedule that
is allowed under A is conflict-serializable. The allo-
cation problem then consists of deciding whether a
robust allocation exists and if so to find an optimal
one.

In [21] it is shown that it can be decided in poly-
nomial time whether a set of transactions is robust
against a given {RC,SI,SSI}-allocation. That result
is based on a notion of split schedules for allocations.
Furthermore, it is shown that a unique optimal3 allo-
cation always exists and can be found in polynomial
time as well. Fekete [12] provided a characteriza-
tion for robust allocations when every transaction
runs under either snapshot isolation or strict two-
phase locking (S2PL). He also obtained a polynomial
time algorithm to compute the optimal allocation.

6 Transaction programs and templates
Transaction programs Previous work on static ro-
bustness testing [13, 2] for transaction programs is
based on the following key insight: when a sched-
ule is not serializable, then the dependency graph
constructed from that schedule contains a cycle sat-
isfying a condition specific to the isolation level at
hand (dangerous structure for snapshot isolation
and the presence of a counterflow edge for RC).
That insight is extended to a workload of transac-
tion programs through the construction of a so-called
static dependency graph where each program is rep-
resented by a node, and there is a conflict edge from
one program to another if there can be a schedule
that gives rise to that conflict. The absence of a cy-
cle satisfying the condition specific to that isolation

3Informally, optimal means favoring RC over SI, and
favoring SI over SSI.

DepositChecking:

R[X : Account{N, C}]
U[Z : Checking{C, B}{B}]

Figure 4: Transaction template for DepositChecking.

level then guarantees robustness while the presence
of a cycle does not necessarily imply non-robustness.

Other work studies robustness within a framework
for uniformly specifying different isolation levels in
a declarative way [8, 4, 9]. A key assumption here
is atomic visibility requiring that either all or none
of the updates of each transaction are visible to
other transactions. These approaches aim at higher
isolation levels and cannot be used for RC, as RC
does not admit atomic visibility.

Transaction Templates The static robustness ap-
proach based on transaction templates [18] differs in
two ways. First, it makes more underlying assump-
tions explicit within the formalism of transaction
templates (whereas previous work departs from the
static dependency graph that should be constructed
in some way by the dba). Second, it allows for a
decision procedure that is sound and complete for
robustness testing against RC, allowing to detect
larger subsets of transactions to be robust [18].

Example 6.1. Figure 4 shows the transaction tem-
plate for DepositChecking, which is a part of the
SmallBank benchmark. The template consists of
two operations. The first operation is a read opera-
tion over variable X of type Account. In particular,
the attributes Name (N) and CustomerID (C) are
read. The second operation is an update operation
over variable Z of type Checking. Such an update
operation should be interpreted as a read immedi-
ately followed by a write that cannot be interleaved
with other operations. In particular, the attributes
CustomerID (C) and Balance (B) are read, immedi-
ately followed by a write to attribute Balance. We
can now instantiate transactions from these tem-
plates by assigning tuples of the corresponding type
to variables. For example, transaction R[t]U[v]C is a
valid instantiation, but R[t]U[t]C is not, since object
t cannot be of type Account and Checking at the
same time.

The formalization of transactions and conflict se-
rializability in [18] and this paper is based on [12],
generalized to operations over attributes of tuples
and extended with U-operations that combine R-
and W-operations into one atomic operation. These
definitions are closely related to the formalization
presented by Adya et al. [1], but we assume a total



rather than a partial order over the operations in
a schedule. There are also a few restrictions to the
model: there needs to be a fixed set of read-only
attributes that cannot be updated and which are
used to select tuples for update. The most typical
example of this are primary key values passed to
transaction templates as parameters. The inability
to update primary keys is not an important restric-
tion in many workloads, where keys, once assigned,
never get changed, for regulatory or data integrity
reasons.
In [18], a ptime decision procedure is obtained

for robustness against RC for templates without
functional constraints and [20] improves that result
to nlogspace. In addition, an experimental study
was performed showing how an approach based on
robustness and making transactions robust through
promotion can improve transaction throughput. In
particular, we show on the SmallBank and TPC-Ckv
(based on TPC-C) benchmarks that in case of in-
creasing contention our approach leads to practical
performance improvements compared to when exe-
cuted under SI or SSI. It should be noted that both
benchmarks in their original form are not identified
as robust. By promoting a small number of read
operations such that they write the observed value
back to the database, robustness is obtained without
altering the semantics of these benchmark programs.
In [20], the modeling power of transaction templates
is extended with functional constraints, which are
useful for capturing data dependencies like foreign
keys. By more accurately modeling transaction pro-
grams, it becomes possible to recognize larger sets
of workloads as robust.

7 Conclusion
Despite its practical relevance and challenging prob-
lems, concurrency control has only attracted limited
attention from the database theory community. We
hope that the present paper eases the barrier of
entrance to this exciting topic. To spark further
interest, we mention some open problems that we
consider interesting.
Research on robustness for example has mostly

focused on guaranteeing conflict-serializability. But
as we explained in Section 3, there exist alterna-
tive definitions of serializability that can be used for
a robustness analysis, like view-serializability and
final-state serializability. It would be interesting
to see if the robustness problem cast with one of
the alternative definitions has similar characteriza-
tions as the ones obtained for conflict-serializability.
Furthermore, while in theory one could expect that
a more liberal definition of serializability leads to

larger classes of transactions and templates that are
robust, it is not clear if such a difference can be
observed in practice.
Another direction for further research lies in the

consideration of systems with a higher-degree of
parallelism. The considered isolation levels, RC,
SI, are mostly designed for conventional database
systems utilizing a limited degree of parallelization.
High isolation levels in many-core systems are known
to be particularly challenging and therefore robust-
ness analysis against lower-isolation levels that are
meaningful in a highly parallel context would be
particularly relevant.

Acknowledgments
This work is partly funded by FWO-grant G019921N.

8 References

[1] Atul Adya, Barbara Liskov, and Patrick E.
O’Neil. Generalized isolation level definitions.
In ICDE, pages 67–78, 2000.

[2] Mohammad Alomari and Alan Fekete.
Serializable use of read committed isolation
level. In AICCSA, pages 1–8, 2015.

[3] Hal Berenson, Philip A. Bernstein, Jim Gray,
Jim Melton, Elizabeth J. O’Neil, and
Patrick E. O’Neil. A critique of ANSI SQL
isolation levels. In SIGMOD, pages 1–10, 1995.

[4] Giovanni Bernardi and Alexey Gotsman.
Robustness against consistency models with
atomic visibility. In CONCUR, pages 7:1–7:15,
2016.

[5] Philip A. Bernstein, Vassos Hadzilacos, and
Nathan Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley,
1987.

[6] Philip A. Bernstein and Eric Newcomer.
Principles of Transaction Processing for
Systems Professionals. Morgan Kaufmann,
1996.

[7] Michael J. Cahill, Uwe Röhm, and Alan D.
Fekete. Serializable isolation for snapshot
databases. In SIGMOD, pages 729–738. ACM,
2008.

[8] Andrea Cerone, Giovanni Bernardi, and Alexey
Gotsman. A framework for transactional
consistency models with atomic visibility. In
CONCUR, pages 58–71, 2015.

[9] Andrea Cerone and Alexey Gotsman.
Analysing snapshot isolation. J.ACM,
65(2):1–41, 2018.

[10] Andrea Cerone, Alexey Gotsman, and
Hongseok Yang. Algebraic Laws for Weak



Consistency. In CONCUR, pages 26:1–26:18,
2017.

[11] Bailu Ding, Lucja Kot, and Johannes Gehrke.
Improving optimistic concurrency control
through transaction batching and operation
reordering. PVLDB, 12(2):169–182, 2018.

[12] Alan Fekete. Allocating isolation levels to
transactions. In PODS, pages 206–215, 2005.

[13] Alan Fekete, Dimitrios Liarokapis, Elizabeth J.
O’Neil, Patrick E. O’Neil, and Dennis E.
Shasha. Making snapshot isolation serializable.
ACM Trans. Database Syst., 30(2):492–528,
2005.

[14] Bas Ketsman, Christoph Koch, Frank Neven,
and Brecht Vandevoort. Deciding robustness
for lower SQL isolation levels. In PODS, pages
315–330, 2020.

[15] Christos H. Papadimitriou. The Theory of
Database Concurrency Control. Computer
Science Press, 1986.

[16] TPC-C. On-line transaction processing
benchmark. http://www.tpc.org/tpcc/.

[17] Brecht Vandevoort. Optimizing Concurrency
Control: Robustness Against Read Committed
Revisited. PhD thesis, Hasselt University, 2021.

[18] Brecht Vandevoort, Bas Ketsman, Christoph
Koch, and Frank Neven. Robustness against
read committed for transaction templates.
PVLDB, 14(11):2141–2153, 2021.

[19] Brecht Vandevoort, Bas Ketsman, Christoph
Koch, and Frank Neven. Robustness against
read committed: A free transactional lunch. In
PODS, pages 1–14. ACM, 2022.

[20] Brecht Vandevoort, Bas Ketsman, Christoph
Koch, and Frank Neven. Robustness against
read committed for transaction templates with
functional constraints. In ICDT, volume 220 of
LIPIcs, pages 16:1–16:17, 2022.

[21] Brecht Vandevoort, Bas Ketsman, and Frank
Neven. Allocating isolation levels to
transactions in a multiversion setting.
Manuscript, 2022.

[22] Gerhard Weikum and Gottfried Vossen.
Transactional Information Systems: Theory,
Algorithms, and the Practice of Concurrency
Control and Recovery. Morgan Kaufmann,
2002.

http://www.tpc.org/tpcc/

	Introduction
	Definitions
	Transactions
	Schedules

	Serializability
	View and final-state serializability
	Conflict Serializability

	Isolation Levels
	Robustness
	Snapshot Isolation
	Read Committed
	Robust allocations

	Transaction programs and templates
	Conclusion
	References

