
Foundations of Query Answering on Inconsistent

Databases

Jef Wijsen
University of Mons

Mons, Belgium
jef.wijsen@umons.ac.be

ABSTRACT
Notwithstanding the traditional view that database in-
stances must respect all integrity constraints imposed on
them, it is relevant to develop theories about how to han-
dle database instances that violate some integrity con-
straints, and more particularly, how to cope with query
answering in the presence of inconsistency. Such a the-
ory developed over the past twenty years is currently
known as consistent query answering (CQA). The aim
of this article is to summarize and discuss some core
concepts and theoretical developments in CQA.

1. INTRODUCTION
Consistent query answering (CQA) started with

an article at PODS 1999 by Arenas, Bertossi and
Chomicki [2]. Twenty years later, the significance
of their contribution was acknowledged through a
Gems of PODS session, at which occasion Leopoldo
Bertossi flashed back to the origins of CQA [6].
Among these origins is the question about “what
is consistent in an inconsistent database” [6, p. 49].
The next example illustrates this question, as well
as the answer provided by the CQA approach.

Following the well-known running example of C.J.
Date’s textbook [15], we represent suppliers by a
table with name S. Every supplier has a supplier
number, unique to that supplier, a supplier name, a
rating or status value, and a location. The require-
ment that supplier numbers be unique is violated by
the following table; the available information about
the status of S2 happens to be inconsistent.

S S# SNAME STATUS CITY

S1 Smith 20 London

S2 Jones 10 Paris
S2 Jones 15 Paris

We ask the question of what information can and
cannot be inferred from this inconsistent table. A
useful answer to that question should rely on some
paraconsistent inference relation, i.e., one that aban-
dons the principle that “everything follows from

an inconsistency” (ex contradictione quodlibet). In
general terms, the answer provided in [2] goes as
follows. Every inconsistent database instance repre-
sents a set of possible consistent database instances,
which are called repairs. Repairs should be obtained
by fixing inconsistencies in some minimal way. Con-
sistently true information, then, is defined as infor-
mation that holds true in every repair.

We will formalize shortly the idea of minimal fix-
ing. For the example table, minimal fixing could
mean deleting either of the two tuples that agree on
S#. This yields two repairs which di↵er in the sta-
tus of supplier S2. Other repairs could be obtained
by replacing either occurrence of S2 with some fresh
supplier number. This would yield many repairs,
di↵ering only in the choice of the new supplier num-
ber. For the purpose of this example, assume that
there are no other repairs than the ones just de-
scribed. Then, the assertion that “S2 is a supplier
having a lower status than S1” is consistently true,
because it is true in every repair. It is also consis-
tently true that “the number of suppliers is two or
three.” On the other hand, the claim that “supplier
S2 has status 10” is not consistently true.

The aim of this article is to present and discuss
theoretical foundations of CQA, with an emphasis
on results in computational and descriptive com-
plexity. We will not report on the deployment of
CQA in operational systems. We have tried to
be complimenatry to the previously cited Gems of
PODS article of Bertossi [6], which gives a broad
overview, intentionally based on representative ex-
amples rather than formal definitions. The treat-
ment in the current paper is more formal and fo-
cuses on some core concepts and results.

Organization.
Section 2 recalls some standard notions in data-

base theory. Section 3 formalizes the framework of
consistent query answering. The idea of minimal
fixing is introduced there in an original manner es-

6 SIGMOD Record, September 2019 (Vol. 48, No. 3)

pecially developed for the purpose of this article.
Section 4 discusses di↵erent ways for indicating the
complexity of consistent query answering, referring
to both computational and descriptive complexity.
In Section 5, we focus on a fine-grained complexity
classification that has been achieved for consistent
query answering with respect to primary keys, but
which is largely open for other classes of integrity
constraints. The case of primary keys is also inter-
esting because of its connections to two other fields:
constraint satisfaction problems (CSPs) and prob-
abilistic database systems. Section 6 discusses the
complexity of repair checking. Finally, Section 7
concludes the paper.

2. PRELIMINARIES
For every positive integer n, we assume denumer-

ably many relation names of arity n. A database
schema is a finite set of relation names. In the
sequel, we will often assume that some database
schema has been fixed. A database instance is a
finite set of facts R(c1, . . . , cn) where R is an n-
ary relation name of the database schema, and each
ci is a constant. An m-ary query q, with m � 0,
maps every database instance db to an m-ary re-
lation, denoted q(db). A 0-ary query is also called
a Boolean query: a 0-ary relation represents false
if it is empty, otherwise it represents true. In the
complexity study of CQA, much attention has been
paid to Boolean conjunctive queries, i.e., queries de-
fined by first-order logic sentences, possibly with
constants, of the form

9~x (R1(~x1) ^R2(~x2) ^ · · · ^Rn(~xn)) .

Such a query is said to be self-join-free if i 6= j

implies Ri 6= Rj . Each Ri(~xi) is called a relational
atom.

We assume that our database schema is equipped
with a set ⌃ of integrity constraints. All integrity
constraints in this paper can be expressed as sen-
tences in first-order logic. In what follows, by a set
of integrity constraints, we will always mean a fi-
nite set of integrity constraints that can be satisfied
by some database instance. A database instance
is consistent if it satisfies all integrity constraints
in ⌃; otherwise it is inconsistent. Common integrity
constraints, called dependencies, are recalled next.
Readers familiar with common classes of integrity
constraints can skip the remainder of this section.

Inclusion dependencies (IND).
If R and S are relation names, of arities m and n

respectively, then R[i1, . . . , ik] ✓ S[j1, . . . , jk] is an
inclusion dependency, where i1, . . . , ik is a sequence

of distinct integers in {1, . . . ,m}, and j1, . . . , jk is
a sequence of distinct integers in {1, . . . , n}. A
database instance db is said to satisfy this inclu-
sion dependency if for every R(a1, . . . , am) 2 db,
there exists S(b1, . . . , bn) 2 db such that for every
` 2 {1, . . . , k}, ai` = bj` .

Functional dependencies (FD).
IfR is a relation name of arity n, then a functional

dependency is an expression R : X ! Y where
X,Y ✓ {1, . . . , n}. A database instance db satisfies
R : X ! Y if for all R(a1, . . . , an), R(b1, . . . , bn) 2
db, if ai = bi for all i 2 X, then aj = bj for all
j 2 Y . If X [Y = {1, . . . , n}, then R : X ! Y is
called a key dependency.

Tuple-generating dependencies (tgd).
A _-tgd is a constant-free first-order logic sen-

tence of the form

8~x

'(~x) !

n_

i=1

9~yi i(~x, ~yi)

!
, (1)

where ' is a nonempty conjunction of relational
atoms, each i is a conjunction of relational atoms,
and every variable in ~x appears in ' (but not nec-
essarily in

Wn
i=1 9~yi i(~x, ~yi)). _-tgds can be further

restricted as follows:

• a tgd is a _-tgd where n = 1;

• a _-tgd or tgd without existentially-quantified
variables is called full ; and

• a LAV tgd is a tgd of the form

8~x (R(~x) ! 9~y (~x, ~y)) ,

where R(~x) is a relational atom.

For a set of tgds, the notion of being weakly acyclic
is a structural property that guarantees termination
of the chase. The definition of weakly acyclic can
be found in [17].

Universal constraints (UC).
A universal constraint is a constant-free first-order

logic sentence of the form

8~x

'(~x) ^ �(~x) !

n_

i=1

 i(~x)

!
, (2)

where ' and each i are conjunctions of relational
atoms, � is a Boolean combination of equalities, and
every variable in ~x appears in '.

Special cases of UCs are obtained by letting n =
0, and by considering that the empty disjunction is
false:

SIGMOD Record, September 2019 (Vol. 48, No. 3) 7

• a denial constraint is commonly written in the
form 8~x¬ ('(~x) ^ �(~x)), a sentence logically
equivalent to 8~x ('(~x) ^ �(~x) ! false).

• an equality-generating dependency (egd) takes
the form 8~x ('(~x) ! xi = xj), which is equiv-
alent to 8~x ('(~x) ^ ¬ (xi = xj) ! false).

The form (2) was chosen because of its resem-
blance to (1). The disjunction

Wn
i=1 i(~x) in (2)

is equivalent to a formula in CNF, say
Vm

i=1 �i(~x),
where each �i is a disjunction of relational atoms.
The set {8~x ('(~x) ^ �(~x) ! �i(~x))}mi=1 is then equiv-
alent to (2). Since we always consider sets of in-
tegrity constraints, universal constraints can be (and
often are) defined in di↵erent forms [2, 31]:

8~x¬
✓

¬R1(~x1) ^ · · · ^ ¬Rm(~xm)^
Rm+1(~xm+1) ^ · · · ^Rn(~xn) ^ �(~x)

◆
,

8~x
✓

R1(~x1) _ · · · _Rm(~xm)_
¬Rm+1(~xm+1) _ · · · _ ¬Rn(~xn) _ ¬�(~x)

◆
,

8~x
✓

Rm+1(~xm+1) ^ · · · ^Rn(~xn) ^ �(~x) !
R1(~x1) _ · · · _Rm(~xm)

◆
,

where each Ri is a relation name, and each variable
in ~x appears in some ~xi withm+1 i n. The lat-
ter requirement is called safety. Denial constraints,
then, are universal constraints where m = 0.

Figure 1 relates di↵erent classes of integrity con-
straints. An upward line from IC1 to IC2 means that
every set ⌃1 of integrity constraints in the class IC1

is equivalent to some set ⌃2 in IC2. Note, for ex-
ample, that the functional dependency R : {1} !
{2, 3} expresses a pair of egds.

3. CONSISTENT ANSWERS
In Section 1, we have already given a general but

informal introduction to CQA. We will now enter
into more technical details.

3.1 Querying Inconsistent Data
Let q be a query and ⌃ a set of integrity con-

straints. If db is a consistent database instance,
the query answer q(db) can reasonably be called
“consistent” as well. The CQA paradigm was de-
veloped in the first place to define “consistent query
answers” for the case where db is inconsistent.

When db is an inconsistent database instance, it
looks like a good idea to change it, in some minimal
way, such that the new database instance is consis-
tent. Such a consistent database instance obtained
by some minimal change is called a repair. Let us
skip for a moment the details of minimal change,
and denote by repairs(db,⌃) the set of all repairs

of db with respect to ⌃. Then a tuple t belongs to
the consistent answer to q on db if for each repair
r, we have that t belongs to q(r):

cqa(q,db,⌃) ,
\

{q(r) | r 2 repairs(db,⌃)}.

Of course, this definition makes sense only when the
notion of being a repair is well-defined, which is the
topic of the next subsection.

3.2 Fixing Inconsistency
The literature on CQA contains many proposals

for formalizing the idea of minimal change. For the
purpose of this article, we next develop a general-
ization that captures the essence of most proposals.
Our generalization assumes that, for a given data-
base instance db, there is a binary relation db

(which depends on db) on the set of all consistent
database instances. The intended informal mean-
ing is that for all consistent database instances r1

and r2, we have r1 db r2 if transforming db into
r1 requires not more e↵ort than transforming db

into r2. We define the strict version of db, de-
noted <db, as follows: r1 <db r2 , r1 db r2

and not r2 db r1. The principle that repairs must
be obtained by some minimal change can now be
made formal: a repair of db is a consistent data-
base instance r such that there exists no consistent
database instance r

0 satisfying r
0
<db r. Some re-

pairs are of a special sort: a repair of db is called a
subset-repair if it is included in db, and is called a
superset-repair if it includes db.

To guarantee the existence of repairs, some addi-
tional properties should be imposed on db (or on
<db). A very common and su�cient requirement
for the existence of repairs is the acyclicity of <db.

In the CQA literature, the binary relation db

(or <db) is never explicitly given, but instead im-
plicitly specified. Di↵erent specifications of db

now lead to di↵erent repair notions; the two most
common are the following:

• Let� denote the symmetric di↵erence between
sets. When we define r1 db r2 , (r1 � db) ✓
(r2 � db), we obtain symmetric-di↵erence re-
pairs, also called �-repairs. With this defini-
tion, db is a partial order. In terms of mini-
mal change, symmetric-di↵erence repairs min-
imize (with respect to ✓) the set of inserted
and deleted facts.

• When we define r1 db r2 , |r1 � db|
|r2 � db|, we obtain cardinality repairs, also
called C-repairs. With this definition, db is
reflexive and transitive.

8 SIGMOD Record, September 2019 (Vol. 48, No. 3)

FO

LAV tgd
weakly acyclic

tgds

full tgd

UC

key

denialfull _-tgd

_-tgd

tgd

egd

FDIND

Figure 1: Common classes of integrity constraints. Adapted from [4].

In the literature on CQA, the notion of subset-
repair is frequently introduced as an independent
repair notion—one in which deletions are the only
allowed repairing actions. We, instead, have defined
it as a property: a �-repair, cardinality repair, or
any other repair of a database instance db is called
a subset-repair if it is included in db. Clearly, every
maximal (with respect to ✓) consistent subset of a
database instance db is a �-repair of db. A sig-
nificant observation (see [1, Proposition 3]) is that
for sets of denial constraints, every �-repair is a
subset-repair. This observation is no longer true
for universal constraints, as illustrated next.

Example 1. The database instance {R(a)} has
two �-repairs with respect to ⌃ = {R(a) ! S(b)}:
{} and {R(a), S(a)}, which are a subset-repair and
a superset-repair, respectively.

In the definition of �-repairs, the symmetric dif-
ference r1�db treats deletions (i.e., facts in db\r1)
and insertions (i.e., facts in r1 \ db) on equal foot-
ing. Alternatively, it is conceivable, although less
common, to treat deletions and insertions asymmet-
rically. In some situations, for example, inconsis-
tency may be primarily attributed to missing facts
rather than to erroneously stored facts. In such sit-
uations, one may want to keep deletions to a mini-
mum, which can be achieved by defining r1 db r2

, either (r1 \ db)) (r2 \ db) or both (r1 \ db) =
(r2 \ db) and (r1 � db) ✓ (r2 � db). With this
definition, the repair {R(a), S(a)} would become

the only repair in Example 1, because it preserves
the database fact R(a). Many other repair notions
have been proposed and studied over the past twenty
years.

Prioritized repairs.
The framework introduced in [32] and further in-

vestigated in [16, 20, 24] deduces <db from a pref-
erence relation on the set of database facts. For
the sake of simplicity, let ⌃ be a set of functional
dependencies. An inconsistent prioritizing database
instance is a pair (db,�) where db is an inconsis-
tent database instance, and � is an acyclic binary
relation on db such that if f � g, then {f, g} falsi-
fies ⌃. The intended informal meaning of f � g is
that we prefer to keep f rather than g. Note that
in the case of functional dependencies, conflicting
facts always come in pairs. A relation <db can be
defined in terms of �, as follows: for all distinct
consistent subsets r1 and r2 of db, define r1 <db r2

if for every g 2 r2 \ r1, there exists f 2 r1 \ r2 such
that f � g. Informally, r1 <db r2 states that r1

can be obtained from r2 by exchanging facts with
more preferred facts. It can be verified that <db

is acyclic (by using that � is acyclic). With this
definition of <db, we obtain g-repairs: a consistent
subset r of db is called a globally optimal repair (or
g-repair) if there exists no consistent subset r

0 of
db such that r0 <db r.

SIGMOD Record, September 2019 (Vol. 48, No. 3) 9

Example 2. Take the following database instance:

R 1 2
a b (f1)
c b (f2)
c d (f3)

.

Let ⌃ = {R : {1} ! {2}, R : {2} ! {1}}, which ex-
presses that neither column should contain duplicate
values. The �-repairs are:

1 2
a b

c d

and
1 2
c b

.

The left-hand relation is the only C-repair. If we
assume f2 � f1 and f2 � f3, then the right-hand
relation is the only g-repair.

4. COMPLEXITY OF CQA
We will restrict our attention to Boolean queries.

Under this restriction, consistent query answering
becomes a decision problem: given q, ⌃, and db,
does q evaluate to true on every repair of db? The
input to this problem consists of three parts, and in
the study of its complexity zero, one, or two parts
can be fixed. In this paper, we take a data com-
plexity perspective: we will fix both the query and
the set of integrity constraints, and measure com-
plexity with respect to the database instance. Al-
ternative complexity analyses, which consider also
queries and/or integrity constraints as part of the
input, can be found in [4]. Thus, for every Boolean
query q and set ⌃ of integrity constraints, we have
the following problem:

CERTAINTY(q,⌃)

INSTANCE: A database instance db.

QUESTION: Does q evaluate to true on every
repair of db with respect to ⌃?

Of course, this definition is only meaningful when a
repair notion has been established beforehand. We
will write �-CERTAINTY(q,⌃) if �-repairs are in-
tended. Furthermore, it is always understood that
the database schema contains all relation names
used in q or ⌃.

We so far have defined consistent query answer-
ing for every individual pair q,⌃. It is also of inter-
est to measure the complexity of consistent query
answering for classes of queries and classes of in-
tegrity constraints. To this extent, let Q be a class
of queries, and IC a class of integrity constraints.
Let C be a complexity class.

• Consistent query answering for Q and IC is said
to be in C if CERTAINTY(q,⌃) is in C for all
q 2 Q and ⌃ ✓ IC.

• Consistent query answering for Q and IC is said
to be C-complete if it is in C and, moreover,
CERTAINTY(q,⌃) is C-complete for some q 2
Q and ⌃ ✓ IC.

For example, for symmetric-di↵erence repairing, a
correct claim is: “Consistent query answering is
coNP-complete for conjunctive queries and key de-
pendencies.” Indeed, if q is a conjunctive query
and ⌃ a set of key dependencies, then member-
ship of �-CERTAINTY(q,⌃) in coNP is straightfor-
ward: a succinct disqualification for a “no”-instance
is any repair that falsifies q. coNP-completeness
holds since it is known that �-CERTAINTY(q0,⌃0)
is coNP-hard for q0 = 9x9y9z (R(x, y, z) ^ S(z, x))
and ⌃0 = {R : {1, 2} ! {3}, S : {1} ! {2}}. For
a reason that will become apparent in Section 5.2,
note that q0 is self-join-free and that ⌃0 has only
one key dependency per relation.

Arming et al. in [4] have carried out a thorough
study on the complexity of consistent query answer-
ing for conjunctive queries and �-repairs; data com-
plexity results for di↵erent classes of integrity con-
straints are shown in Table 1. Triangles indicate
whether the lower (M) or the upper (O) complex-
ity bound is of interest. For example, for coNP-
completeness, O and M denote, respectively, mem-
bership in coNP and coNP-hardness. If a line con-
tains no reference to the literature, then its com-
plexity result follows from other lines in the table.

Table 1 conveys an unpleasant message: consis-
tent query answering is intractable already for very
common queries and integrity constraints. How-
ever, some nuance is needed: coNP-completeness
of consistent query answering for Q and IC tells us
that the set {CERTAINTY(q,⌃) | q 2 Q,⌃ ✓ IC}
contains at least one intractable problem, but does
not give us any hint about the boundary between
tractable and intractable problems. It may still be
the case that this set contains many tractable prob-
lems of practical interest. We will bring a more
nuanced story in Section 5.

Descriptive Complexity of CQA.
Table 1 uses common computational complexity

classes (P, coNP, ⇧P
2). In the realm of (consistent)

query answering, it may be more relevant to uti-
lize descriptive complexity, which describes the com-
plexity of the problem CERTAINTY(q,⌃) in some
logic formalism, as explained next.

Notice first that every problem CERTAINTY(q,⌃)
is actually a Boolean query (as introduced in the
first paragraph of Section 2), mapping each data-
base instance to either true or false. Let L be some
logic language. We say that CERTAINTY(q,⌃) is

10 SIGMOD Record, September 2019 (Vol. 48, No. 3)

IC �-CERTAINTY(⌃, q) Reference

FO undecidable
_-tgd undecidable
tgd undecidable [33, Theorem 7.2]
egds + weakly acyclic tgds ⇧P

2 -complete O [33, Theorem 6.3]
weakly acyclic tgds ⇧P

2 -complete M [33, Theorem 6.3]
LAV tgd in P [33, Theorem 4.7]
IND in P
UC ⇧P

2 -complete O M [31, Lemma 4,Theorem 6]
full _-tgd ⇧P

2 -complete M Modification of the M proof for UC [4]
full tgd coNP-complete O M [31][33, Theorem 5.5]
denial coNP-complete O [31]
egd coNP-complete
FD coNP-complete
key coNP-complete M [12, Theorem 3.3]

Table 1: Data complexity results for consistent query answering, for conjunctive queries and

�-repairs.

expressible in L if there exists a formula Q in L such
that the following are equivalent for every database
instance db:

1. q is true on every repair of db with respect
to ⌃;

2. Q is true on db.

Such a formula Q, if it exists, is called a consistent
L-rewriting of q (with respect to ⌃). The prac-
tice of constructing Q is often referred to as “query
rewriting.”

From a database perspective, the most attractive
candidate for L is probably first-order predicate cal-
culus, denoted FO. Indeed, if we can construct a
consistent FO-rewriting of q with respect to ⌃, then
the problem CERTAINTY(q,⌃) can be solved by a
single SQL query on existing RDBMS engines. An-
other good candidate for query rewriting is Datalog
with stratified negation, whose data complexity is in
P (and is complete for P). For the higher complex-
ities in Table 1, more expressive logics are needed,
such as variants of disjunctive Datalog [3, 19]. In
general, by studying the descriptive complexity of
problems CERTAINTY(q,⌃), we get a handle on the
database languages that can be used to solve them.

Integrity Constraints from Different Classes.
In database applications, it is normal to have in-

tegrity constraints belonging to di↵erent classes, for
example, a combination of inclusion and functional
dependencies. Table 2 is somewhat unsatisfactory
insofar as it does not consider unions of common
classes of integrity constraints, except for unions of
a set of egds and a weakly acyclic set of tgds. Note

incidentally that in Fig. 1, the smallest class that
includes both inclusion and functional dependencies
is the class of all first-order logic constraints.

5. PRIMARY KEYS
The notion of primary key is fundamental and

ubiquitous in relational database systems. Its study
in the context of CQA has therefore attracted con-
siderable attention and has revealed some interest-
ing connections with other fields. This section shows
that a nuanced complexity landscape hides behind
the last line of Table 1, and discusses connections
to CSP and probabilistic database systems.

5.1 Some Terminology
Recall that a key dependency is a functional de-

pendency R : X ! Y such that X [Y contains
every positive integer up to the arity of R. A data-
base instance satisfies this key dependency if and
only if it does not contain two distinct facts that
agree on all positions in X. By a set of primary
keys, we mean a set of key dependencies contain-
ing exactly one key dependency for each relation
name in the database schema under consideration.
If such a set of primary keys contains R : X ! Y ,
then X is said to be the primary key of R. For the
sake of simplicity, it is commonly assumed that the
primary key X of R is not empty and formed by
the |X| leftmost positions (i.e., X = {1, 2, . . . , |X|}
with |X| � 1).

A natural way for specifying repairs with respect
to primary keys goes as follows. We say that two
database facts are key-equal if they share the same
relation name and agree on the primary key of their
shared relation name. Given a database instance

SIGMOD Record, September 2019 (Vol. 48, No. 3) 11

db, the binary relation “is key-equal to” is obvi-
ously an equivalence relation on db; its equivalence
classes are called the blocks of db. Obviously, db is
consistent if and only if none of its blocks contains
two or more database facts. Every repair of db is
obtained by picking exactly one database fact from
each of its blocks. The repairs defined in this way
are both �-repairs and C-repairs, and moreover are
subset-repairs. In this section, we do not consider
other conceivable ways of fixing primary key vio-
lations, such as replacing a duplicate primary key
value with a fresh value.

The notion of block also occurs in probabilistic
databases for modeling uncertainty: only one data-
base fact of a block can be true, but we do not know
which one holds true.

5.2 A Complexity Trichotomy
In Section 4, we explained what it means that

consistent query answering is coNP-complete for con-
junctive queries and primary keys. This is a rough
result because it does not say anything about the
boundary between tractable and intractable prob-
lems. The following trichotomy theorem from [21,
23] o↵ers a more fine-grained complexity classifica-
tion, albeit only for queries that are self-join-free.

Theorem 1. For every set ⌃ of primary keys
and self-join-free Boolean conjunctive query q, the
problem CERTAINTY(q,⌃) is in FO, L-complete, or
coNP-complete. Moreover, it is decidable which of
the three cases applies.

The proof of Theorem 1 also yields a significant
result in descriptive complexity, because it shows
membership in L by expressing CERTAINTY(q,⌃)
in symmetric stratified Datalog with some aggrega-
tion operator. Another promising observation in [23]
is that tractability in L or FO obtains, roughly speak-
ing, when all joins are foreign-to-primary key joins,
which is undoubtedly the most common kind of join.
In conclusion, for primary keys and self-join-free
conjunctive queries, the most common cases of con-
sistent query answering happen to be tractable, and
all tractable cases can be solved by query rewriting
in stratified Datalog with some aggregation opera-
tor.

For illustration, compare the following queries:

q0 = 9x9y9z
�
S(z, x) ^R(x, y, z)

�
,

q1 = 9x9y9z (S(z, x) ^ T (x, z)) ,

where primary keys are underlined. It is known
that consistent query answering is coNP-complete
for q0 (see Section 4), and in L (but not in FO)
for q1. This di↵erence in complexity between q0

and q1 occurs because S(z, x) uses all primary key
variables of the other atom in q1, but does not so
in q0 (in particular, y does not occur in S(z, x)).
The join in q0 is therefore not a foreign-to-primary
key join.

An obvious open question is how to extend Theo-
rem 1 to conjunctive queries with self-joins; we will
have more to say about this in Section 5.3. A di↵er-
ent partial extension of Theorem 1 appears in [22]:
membership of CERTAINTY(q,⌃) in FO remains de-
cidable if q is a self-join-free Boolean conjunctive
query with clique-guarded negated atoms. Negation
is called clique-guarded if whenever some variables
x and y occur together in a negated atom, they also
occur together in some non-negated atom.

For a reason that will become apparent in the
next subsection, we state a P-coNP-complete di-
chotomy that immediately follows from Theorem 1:

Corollary 1. For every set ⌃ of primary keys
and self-join-free Boolean conjunctive query q, the
problem CERTAINTY(q,⌃) is either in P or coNP-
complete.

5.3 Connections with CSP
A famous open conjecture is the following.

Conjecture 1. For every set ⌃ of primary keys,
for every query q that is a disjunction of Boolean
conjunctive queries, CERTAINTY(q,⌃) is either in
P or coNP-complete.

Conjecture 1 generalizes Corollary 1 to unions of
conjunctive queries, possibly with self-joins. The
proof of Theorem 1 uses a predominantly logic ap-
proach, and it may be tempting to attack Conjec-
ture 1 by the same logic apparatus. However, for
reasons explained in the next paragraph, such a line
of attack is unlikely to lead to success.

In her article with the questioning title “Why Is It
Hard to Obtain a Dichotomy for Consistent Query
Answering?” [18], Fontaine establishes connections
between computational complexities in CQA and
constraint satisfaction problems (CSPs). These con-
nections were further investigated in [26]. One of
Fontaine’s findings is that a proof of Conjecture 1
would imply Bulatov’s dichotomy theorem for con-
servative CSPs. The three published proofs [5, 7,
8] of the latter theorem use an algebraic approach
developed over many years. Therefore, it is hardly
conceivable that Conjecture 1 can be settled by the
logic approach developed for Theorem 1. A di↵erent
way to attack Conjecture 1 would be to show that
it is implied by the recently proved CSP dichotomy
theorem [9, 35].

12 SIGMOD Record, September 2019 (Vol. 48, No. 3)

5.4 Counts and Probabilities
For a set ⌃ of primary keys, the number of repairs

of a given database instance is finite and can easily
be calculated. Rather than asking whether all re-
pairs satisfy a Boolean query q, a computationally
more di�cult problem is to determine how many
repairs satisfy q. It has been shown [28] that for ev-
ery set ⌃ of primary keys and self-join-free Boolean
conjunctive query q, the following problem is either
in FP or]P-complete: given a database instance db,
determine the number of repairs of db that satisfy
q. It is an open conjecture that this dichotomy re-
sult remains true over the class of all Boolean con-
junctive queries. When all primary keys are single-
tons, this conjecture has been shown to be true [29,
34]. In these results,]P-hardness is with respect
to polynomial-time Turing reductions; Calautti et
al. [10] have recently studied the consequences of
using many-one logspace reductions instead, which
are a weaker form of reduction.

We close this section by pointing out an inti-
mate relationship between the counting variant of
CERTAINTY(q,⌃) and query answering in proba-
bilistic databases. Assume a probability distribu-
tion over the set of all repairs of some database in-
stance db. The probability of a Boolean query q,
denoted Pr (q), is then defined to be the sum of the
probabilities of the repairs that satisfy the query. A
common assumption is that facts of distinct blocks
are independent, i.e., if A1, A2, . . . , Ak are facts be-

longing to k distinct blocks, then Pr
⇣Vk

i=1 Ai

⌘
=

Qk
i=1 Pr (Ai). Notice here that (conjunctions of)

atomic facts are Boolean queries, for which we have
defined Pr . If this independence assumption holds
true, then the probability distribution over the set
of all repairs is fully determined if we know the
marginal probability Pr (A) for each fact A in db.
These probabilities can then be listed as illustrated
in the following table; it is also common to under-
line primary keys, and to separate blocks by dashed
lines.

S S# SNAME STATUS CITY Pr

S1 Smith 20 London 1

S2 Jones 10 Paris 0.7
S2 Jones 15 Paris 0.3

Then, for a fixed Boolean query q, there is a natu-
ral shift from counting to calculating probabilities:
given a database instance and the marginal proba-
bilities of its facts, determine Pr (q).

The probabilistic data model just described is
almost the same as the block-independent disjoint
(BID) probabilistic data model [13]. The only dif-
ference is that in BID probabilistic database in-

stances, the marginal probabilities of the facts of
a same block need not sum up to one. This dif-
ference emerges because possible worlds in the BID
probabilistic data model are merely restricted not
to contain two distinct facts from a same block,
which leaves the possibility of selecting no fact from
a block. Repairs, on the other hand, must contain
exactly one fact from each block. A complexity di-
chotomy similar to the one previously cited holds:
for every self-join-free Boolean conjunctive query q,
the data complexity of evaluating q on BID prob-
abilistic database instances is either in FP or]P-
hard [14].

6. REPAIR CHECKING
Assume a repair notion has been fixed, for exam-

ple, symmetric-di↵erence repairing. Repair check-
ing, then, is the following decision problem: given a
set ⌃ of integrity constraints and two database in-
stances db and r, determine whether r is a repair of
db. Since this paper’s focus is on data complexity,
we define this problem for any fixed set ⌃:

REPAIR-CHECKING(⌃)

INSTANCE: Database instances db and r.

QUESTION: Is r a repair of db with respect
to ⌃?

We will write �-REPAIR-CHECKING(⌃) when we
assume �-repairs.

Repair checking is relevant to (the complexity of)
consistent query answering: a method for solving
the complement of CERTAINTY(q,⌃), with db as
input, consists in non-deterministically guessing a
database instance r, and checking whether r falsifies
q and whether the pair db, r is a “yes”-instance of
REPAIR-CHECKING(⌃). This method is e↵ective
when the size of r can be polynomially bounded
in the size of db, as is the case for �-repairs with
respect to denial constraints and full tgds.

The complexity of repair checking for a class IC
of integrity constraints can be expressed in the fol-
lowing terms, where C denotes a complexity class:

• Repair checking for IC is said to be in C if
REPAIR-CHECKING(⌃) is in C for all ⌃ ✓ IC.

• Repair checking for IC is said to be C-complete
if it is in C and, moreover, for some ⌃ ✓ IC,
REPAIR-CHECKING(⌃) is C-complete.

Arming et al. in [4] have carried out a thorough
study on the complexity of �-repair checking; data
complexity results are shown in Table 2. Results on
C-repair checking appear in [1, 25]. A similar caveat

SIGMOD Record, September 2019 (Vol. 48, No. 3) 13

IC �-REPAIR-CHECKING(⌃) Reference

FO coNP-complete O [1, Proposition 4]
_-tgd coNP-complete
tgd coNP-complete
weakly acyclic tgds coNP-complete M [1, Theorem 7]
LAV tgd in P [33, Theorem 4.9]
weakly acyclic LAV tgds in L [1, Theorem 3]
IND in P
UC coNP-complete O M [31, Lemma 4, Corollary 3]
full _-tgd coNP-complete M Modification of the M proof for UC [4]
full tgd P-complete O M [30, Theorem 3.7][1, Theorem 5]
denial in L [1, Proposition 5]
egd in L
FD in L
key in L

Table 2: Data complexity results for �-repair checking.

as in Section 4 is in order here: coNP-completeness
of repair checking for IC tells us nothing about the
boundary between tractable and intractable prob-
lems in the set {REPAIR-CHECKING(⌃) | ⌃ ✓ IC}.

For g-repairs (see Section 3 for the definition of
g-repairs), it follows from Proposition 5 and Theo-
rem 2 in [32] that g-repair checking is coNP-complete
for functional dependencies. Note that in the case of
g-repairs, the input to REPAIR-CHECKING(⌃) also
contains the binary preference relation � on db.
A more fine-grained complexity classification for g-
repair checking appears in [16], where it is shown
that for every set ⌃ of functional dependencies, the
problem REPAIR-CHECKING(⌃) is either in P or
coNP-complete, and it is decidable which of the two
cases applies. More complexity results on variants
of g-repair checking appear in [20].

Repair Counting.
Livshits and Kimelfeld in [24] study the problem

of counting database repairs. They show, among
others, that for every set of functional dependen-
cies, the data complexity of the following problem
is either in FP or]P-complete: given a database
instance db, determine the number of �-repairs of
db. Remind here that for functional dependencies,
all �-repairs are subset-repairs.

Integrity Constraints from Different Classes.
Few complexity studies in CQA consider com-

bining integrity constraints from di↵erent classes,
which is nevertheless most common in practice. The
following two results show that such combinations
can entail an increase in the data complexity of re-
pair checking. First, from Theorem 4.6 in [12], it
follows that �-repair checking for INDs and FDs

taken together is coNP-complete. This is to be con-
trasted with the tractable complexities for IND and
FD in Table 2. Second, by [1, Theorem 8], there are
a weakly acyclic set ⌃1 of LAV tgds and a set ⌃2

of egds such that �-REPAIR-CHECKING(⌃1 [⌃2)
is coNP-complete, whereas Table 2 shows that for
i 2 {1, 2}, �-REPAIR-CHECKING(⌃i) is tractable.

7. CONCLUDING THOUGHTS
Consistent query answering has been studied for

all common classes of integrity constraints. Tables 1
and 2 show some of the rich body of theoretical re-
sults obtained over the past twenty years. These
results, however, are still open to refinement. For
example, it has been known since the early years
that consistent query answering is coNP-complete
for conjunctive queries and key dependencies, as re-
ported by the last line of Table 1. But still today it
remains an open conjecture that for every Boolean
conjunctive query q and set ⌃ of key dependencies,
the problem CERTAINTY(q,⌃) can be classified as
either coNP-complete or in P. It took until recently
to show this conjecture under the serious restric-
tions of self-join-free queries and primary keys. For
more expressive queries and integrity constraints,
such detailed complexity classifications are missing.

We conclude with a reflection on the notion of re-
pairing. In Section 3.2, we have modeled database
repairing by an acyclic binary relation db on the
set of consistent database instances, where the intu-
ition behind r1 db r2 is that r1 is at least as close
to db as r2. The repairs, then, are the consistent
database instances that are most close to db. The
relation db is never explicitly given, but rather
implicitly specified by using some embodiment of
the principle of minimal change, nearly always in

14 SIGMOD Record, September 2019 (Vol. 48, No. 3)

a manner that is agnostic of the meaning of the
data. We believe that it would be worthwhile to ex-
plore capabilities for further restricting “the legal”
repairs—in the same way as integrity constraints
restrict “the legal” databases. Such a capability is
already provided, for example, by the preference re-
lation on database facts in prioritized repairs (see
Section 3). But this preference relation, rather than
being given explicitly, could be specified implicitly
in some declarative fashion, capturing more of the
meaning of the data. Proposals for such formalism
can be found in [11, 27].

8. REFERENCES
[1] F. N. Afrati and P. G. Kolaitis. Repair

checking in inconsistent databases:
Algorithms and complexity. In ICDT, pages
31–41, 2009.

[2] M. Arenas, L. E. Bertossi, and J. Chomicki.
Consistent query answers in inconsistent
databases. In PODS, pages 68–79, 1999.

[3] M. Arenas, L. E. Bertossi, and J. Chomicki.
Answer sets for consistent query answering in
inconsistent databases. TPLP, 3(4-5):393–424,
2003.

[4] S. Arming, R. Pichler, and E. Sallinger.
Complexity of repair checking and consistent
query answering. In ICDT, pages 21:1–21:18,
2016.

[5] L. Barto. The dichotomy for conservative
constraint satisfaction problems revisited. In
LICS, pages 301–310, 2011.

[6] L. E. Bertossi. Database repairs and
consistent query answering: Origins and
further developments. In PODS, pages 48–58,
2019.

[7] A. A. Bulatov. Complexity of conservative
constraint satisfaction problems. ACM Trans.
Comput. Log., 12(4):24:1–24:66, 2011.

[8] A. A. Bulatov. Conservative constraint
satisfaction re-revisited. J. Comput. Syst.
Sci., 82(2):347–356, 2016.

[9] A. A. Bulatov. A dichotomy theorem for
nonuniform CSPs. In FOCS, pages 319–330,
2017.

[10] M. Calautti, M. Console, and A. Pieris.
Counting database repairs under primary keys
revisited. In PODS, pages 104–118, 2019.

[11] L. Caroprese, S. Greco, and E. Zumpano.
Active integrity constraints for database
consistency maintenance. IEEE Trans.
Knowl. Data Eng., 21(7):1042–1058, 2009.

[12] J. Chomicki and J. Marcinkowski.
Minimal-change integrity maintenance using

tuple deletions. Inf. Comput.,
197(1-2):90–121, 2005.

[13] N. N. Dalvi, C. Ré, and D. Suciu.
Probabilistic databases: Diamonds in the dirt.
Commun. ACM, 52(7):86–94, 2009.

[14] N. N. Dalvi, C. Ré, and D. Suciu. Queries and
materialized views on probabilistic databases.
J. Comput. Syst. Sci., 77(3):473–490, 2011.

[15] C. J. Date. An introduction to database
systems (7. ed.). Addison-Wesley-Longman,
2000.

[16] R. Fagin, B. Kimelfeld, and P. G. Kolaitis.
Dichotomies in the complexity of preferred
repairs. In PODS, pages 3–15, 2015.

[17] R. Fagin, P. G. Kolaitis, R. J. Miller, and
L. Popa. Data exchange: Semantics and query
answering. Theor. Comput. Sci.,
336(1):89–124, 2005.

[18] G. Fontaine. Why is it hard to obtain a
dichotomy for consistent query answering?
ACM Trans. Comput. Log., 16(1):7:1–7:24,
2015.

[19] G. Greco, S. Greco, and E. Zumpano. A
logical framework for querying and repairing
inconsistent databases. IEEE Trans. Knowl.
Data Eng., 15(6):1389–1408, 2003.

[20] B. Kimelfeld, E. Livshits, and L. Peterfreund.
Detecting ambiguity in prioritized database
repairing. In ICDT, pages 17:1–17:20, 2017.

[21] P. Koutris and J. Wijsen. Consistent query
answering for self-join-free conjunctive queries
under primary key constraints. ACM Trans.
Database Syst., 42(2):9:1–9:45, 2017.

[22] P. Koutris and J. Wijsen. Consistent query
answering for primary keys and conjunctive
queries with negated atoms. In PODS, pages
209–224, 2018.

[23] P. Koutris and J. Wijsen. Consistent query
answering for primary keys in logspace. In
ICDT, pages 23:1–23:19, 2019.

[24] E. Livshits and B. Kimelfeld. Counting and
enumerating (preferred) database repairs. In
PODS, pages 289–301, 2017.

[25] A. Lopatenko and L. E. Bertossi. Complexity
of consistent query answering in databases
under cardinality-based and incremental
repair semantics. In ICDT, pages 179–193,
2007.

[26] C. Lutz and F. Wolter. On the relationship
between consistent query answering and
constraint satisfaction problems. In ICDT,
pages 363–379, 2015.

[27] M. V. Martinez, F. Parisi, A. Pugliese, G. I.
Simari, and V. S. Subrahmanian. Policy-based

SIGMOD Record, September 2019 (Vol. 48, No. 3) 15

inconsistency management in relational
databases. Int. J. Approx. Reasoning,
55(2):501–528, 2014.

[28] D. Maslowski and J. Wijsen. A dichotomy in
the complexity of counting database repairs.
J. Comput. Syst. Sci., 79(6):958–983, 2013.

[29] D. Maslowski and J. Wijsen. Counting
database repairs that satisfy conjunctive
queries with self-joins. In ICDT, pages
155–164, 2014.

[30] S. Staworko. Declarative Inconsistency
Handling in Relational and Semi-Structured
Databases. PhD thesis, State University of
New York at Bu↵alo, 2007.

[31] S. Staworko and J. Chomicki. Consistent
query answers in the presence of universal

constraints. Inf. Syst., 35(1):1–22, 2010.
[32] S. Staworko, J. Chomicki, and

J. Marcinkowski. Prioritized repairing and
consistent query answering in relational
databases. Ann. Math. Artif. Intell.,
64(2-3):209–246, 2012.

[33] B. ten Cate, G. Fontaine, and P. G. Kolaitis.
On the data complexity of consistent query
answering. Theory Comput. Syst.,
57(4):843–891, 2015.

[34] J. Wijsen. Corrigendum to “Counting
database repairs that satisfy conjunctive
queries with self-joins”. CoRR,
abs/1903.12469, 2019.

[35] D. Zhuk. A proof of CSP dichotomy
conjecture. In FOCS, pages 331–342, 2017.

16 SIGMOD Record, September 2019 (Vol. 48, No. 3)

