
A Guide to Designing Top-k Indexes

Saladi Rahul
University of Illinois Urbana-Champaign

USA
saladi.rahul@gmail.com

Yufei Tao
Chinese University of Hong Kong

Hong Kong
taoyf@cse.cuhk.edu.hk

ABSTRACT
Top-k search, which reports the k elements of the high-
est importance from all the elements in an underlying
dataset that satisfy a certain predicate, has attracted sig-
nificant attention from the database community. The
search efficiency crucially depends on the quality of an
index structure that can be utilized to filter the under-
lying data by both the user-specified predicate and the
ranking of importance. This article introduces the reader
to a list of techniques for designing such indexes with
strong performance guarantees. Several promising di-
rections for future work are also discussed.

1. INTRODUCTION
Interactive exploration of a database system is often

hampered by the fact that a query may return a set of
records that is excessively large for a user to examine.
On the other hand, a user would rarely be interested in
all the records satisfying her/his query predicate q. In
many situations, what matters most is the subset that con-
tains only the k records — for a small integer k — in the
result with the highest “importance”, where importance
is measured by an appropriate ranking function. For
example, while the query “find all the creditcard trans-
actions of today” can return millions of records, what
a bank manager would actually like to do could be just
to scrutinize the 100 transactions with the largest pay-
ments. Retrieving only the k best records is commonly
known as top-k search, and becomes increasingly useful
as database volumes continue to grow at a rapid pace.

Besides controlling the output size, top-k search also
brings opportunities to boost the efficiency of query pro-
cessing because returning only k records can potentially
be significantly faster than fetching the full result. This
requires a mechanism that can be deployed to avoid ac-
cessing the records that satisfy the search predicate q but
do not have sufficiently high importance to be reported.
Designing such mechanisms has been a major research
topic in the database area during the past two decades
(see, e.g., [1, 7–9, 19, 25–27, 30, 31] and the references
therein). At the core of almost every mechanism is an

index structure — henceforth referred to as a top-k index

— which stores certain information pre-computed from
the underlying data that can lead the query algorithm
to finding the k target records efficiently. Unlike con-
ventional access methods in a database system, a top-k
index must allow a query to filter the data not only by the
predicate q, but also by the ranking of importance.

In this article, we introduce the reader to a suite of
representative techniques that have been proposed in the
literature for designing top-k indexes. Our discussion
will focus on obtaining indexes with strong theoretical
guarantees, and therefore, will not be concerned with
methods that are designed purely for empirical evaluation.
We will also point out some directions that call for further
research efforts on this fascinating topic.

The content of this article has little overlap with Fa-

gin’s algorithm [14] and the threshold algorithm by Fa-
gin, Lotem, and Naor [15] which were developed for a
class of problems on distributed computation which are
sometimes referred to also under the name “top-k”. As
surveyed in [19], there have been multiple attempts to
apply the algorithms of [14, 15] to answer top-k queries
in centralized systems. However, none of those attempts
has succeeded in attaining performance guarantees that
are interesting through the lens of this article. The tech-
niques we will describe all follow ideas different from
those of [14, 15].

2. PROBLEM DEFINITIONS
In Section 2.1, we provide a problem formulation that

encapsulates a broad class of top-k problems. Section 2.2
gives two representative problems that will be utilized to
demonstrate the techniques to be discussed. Section 2.3
clarifies the computation model to be adopted, and the
performance guarantees to be achieved.

2.1 Generic Query Formulation
Let D be an arbitrary set which serves as the data

domain. Denote by Q a set of predicates that can be ap-
plied to the elements of D. Specifically, given a predicate
q 2 Q, we can evaluate q on every element e 2 D to

6 SIGMOD Record, June 2019 (Vol. 48, No. 2)

obtain a boolean value 1 or 0; in the former case e is said
to satisfy q, while in the latter e does not. We assume
that Q has a special predicate true, which evaluates to
1 for all e 2 D.

The input dataset D is a subset of D. For each predi-
cate q 2 Q, define q(D) to be the set of elements in D
satisfying q. Given a predicate q 2 Q, a reporting query

returns q(D) in its entirety.
As mentioned earlier, a user is often interested only in

the most “important” elements of q(D). We formalize
importance by resorting to a weight function w : D ! R,
where R represents the set of real numbers. For each
element e 2 D, we refer to the value w(e) as the weight

of e under w. Denote by W a non-empty set of such
weight functions. Every reporting query has a top-k
counterpart:

Given a predicate q 2 Q, a weight function w 2 W,
and an integer k � 1, a top-k query reports the k
elements in q(D) with the highest weights under
w. Specially, if |q(D)| < k, then the entire q(D) is
reported.

If two elements have the same weight, we assume that
the tie is broken by a consistent policy, e.g., regarding the
element with a larger id to have a greater weight. Note
that a top-1 query, which will be referred to as a max

query, returns the element in q(D) with the maximum
weight.

Our exploration into the theory of top-k queries will
encounter frequently another variant of reporting queries:

Given a predicate q 2 Q, a weight function w 2 W,
and a real value ⌧ , a prioritized query reports all
the elements e 2 q(D) with w(e) � ⌧ .

In general, the set W may contain an arbitrarily large
number of functions. In the other extreme, W may in-
clude only a single function. In that case, obviously, all
the top-k and prioritized queries must choose the same,
unique, function w in W, such that we can as well regard
the weight w(e) directly as an attribute associated with
each element e 2 D. When this happens, we will refer
to D as a weight-augmented dataset.

2.2 Two Specialized Instances
Next, we specialize the above formulation into two

concrete instances that are representative for several rea-
sons. First, the top-k queries in both instances are impor-
tant top-k problems that have been extensively studied.
Second, their specialization is based on drastically dif-
ferent choices of D, Q, and W, thereby demonstrating
the generality of our query formulation. Third, they are
among the simplest instances suitable for illustrating the
techniques to be presented in later sections.
Problem 1: Linear Ranking. In this instance:

• D = Rd, where d is a positive constant integer;

• Q = {true}, namely, Q has only a single predi-
cate that always evaluates to 1;

• W is the set of linear functions which are defined
by d real values c1, ..., cd, and map a point p =
(x1, x2, ..., xd) 2 D to

P
d

i=1 cixi.

Equivalently, a dataset D is a set of points in the d-
dimensional space. Given the coefficients c1, ..., cd, a
top-k query reports the k points p = (x1, ..., xd) 2 D

that maximize
P

d

i=1 cixi. Such queries constitute the
top-k problem that has received by far the most attention
from the system community (see [19] for a survey). As a
classic application, consider that d = 2, and each point
e 2 D captures the price and rating of a hotel as
the x- and y-coordinates, respectively. A top-10 query
finds the 10 best hotels maximizing c1· (� price) +c2·
rating, where c1 and c2 are coefficients chosen by a
user, reflecting her/his personal weighting on the two
attributes.
Problem 2: One-Dimensional Range Searching. This
is an instance on weight-augmented datasets:

• D = R;

• Q consists of all such predicates, each of which
specifies an interval q in R, and evaluates to 1 on
every point e 2 D \ q, and to 0 on every point
e /2 D \ q.

Equivalently, a dataset D is a set of points in R, each
of which is associated with a real-valued weight. Given
an interval q, a top-k query reports the k points in D \ q
with the highest weights. Such queries constitute the
most extensively studied top-k problem in the theory

community [1, 7, 8, 25, 30, 31]. For an example, consider
a TRANSACTION table with attributes id, date and
payment, on which a top-100 query is “find the 100
tuples with the highest payment values among those
with date in [01/2019, 03/2019]”.

2.3 Computation Model and Design Goals
Our discussion will assume the standard word-RAM

model. We further assume that every element in D can
be stored in O(1) words, and so can the encoding of each
predicate in Q (e.g., in 1D range searching, each predi-
cate is specified by an interval, which can be encoded in
two words).

Define n = |D|, i.e., the number of elements in the
input dataset. Our primary objective is to preprocess
D into a top-k index that consumes near-linear space,
and can be used to solve top-k queries efficiently. This
means that the index should use Õ(n) space, and answer
a top-k query in Qtop(n) + Õ(k) time where notation

SIGMOD Record, June 2019 (Vol. 48, No. 2) 7

Õ hides an O(polylog n) factor, and Qtop is a slow-
growing function of n. Ideally, we would also like the
index to be dynamic, namely, updatable in Õ(1) time per
insertion and deletion.

Finally, it is worth mentioning that the result of a top-
k query may return k elements in an arbitrary order. A
sorted order can be generated by trivially sorting those
elements in O(k log k) time. Remember that the value of
k is supplied by a query as a parameter, instead of being
fixed in advance.

3. TOP-K IMPLIES PRIORITIZED
Top-k and prioritized queries represent two similar

ways to trim the result of a reporting query. Recall that,
given a predicate q 2 Q, a reporting query returns |q(D)|
elements. The corresponding top-k query limits the out-
put size to at most k explicitly. The corresponding priori-
tized query, on the other hand, filters out the elements of
q(D) with weights less than ⌧ , after which the number t
of elements reported can be anywhere from 0 to |q(D)|.

There is a subtle but important difference between top-
k and prioritized queries. For a top-k query, whether an
element e 2 q(D) should be reported does not depend
solely on e, because it is also affected by the weights of
the other elements in q(D). In contrast, for a prioritized
query, whether e should be reported can be decided by
looking at e itself. Intuitively, this suggests that top-k
queries ought to be at least as hard as prioritized queries.

This intuition turns out to be correct, namely, if we can
find a top-k index with a certain space-query tradeoff, we
must be able to achieve the same tradeoff asymptotically
for prioritized queries:

THEOREM 1. Fix D, Q, and W, and set n = |D|.
Suppose that there is a top-k index on D that con-

sumes Stop(n) space, and answers a top-k query in

Qtop(n) + O(k) time, where Qtop(n) > 0 for all n.

Then, there is a data structure on D that uses Stop(n)
space, and answers a prioritized query in O(Qtop(n)+t)
time, where t is the number of reported elements.

PROOF. Let T be the top-k index on D as described
in the theorem. Given a prioritized query with parameters
q 2 Q, w 2 W, and ⌧ 2 R, we use T to answer it by
executing multiple rounds as follows. In round j (starting
with j = 1), we issue a top-kj query on T with the same
q and w by setting kj = 2j�1 · Qtop(n). Two cases may
arise:

• If the top-kj query returns exactly kj elements, we
scan them to find the element e with the smallest
weight. If w(e) < ⌧ , we do not go to the next
round; otherwise, round j + 1 is launched.

• If the top-kj query returns less than kj elements,
no more rounds are performed.

Let i be the number of rounds executed. Among the ele-
ments reported by the top-ki query, we remove those with
weights less than ⌧ , and return the rest of the elements as
the output of the prioritized query.

The space consumption of T is clearly Stop(n). Now
we analyze the query time. If only one round is executed,
the time is bounded by Qtop(n)+O(k1) = O(Qtop(n)),
noticing that k1 = Qtop(n). If i � 2 rounds are per-
formed, the time is bounded by

O
⇣ iX

j=1

Qtop(n)+ 2j�1 · Qtop(n)
⌘
= O(2i · Qtop(n)).

By the fact that the execution entered i-th round, we know
that t � 2i�2 · Qtop(n), which gives 2i · Qtop(n) 4t.
It thus follows that the total query time is O(t).

The above result, which was independently observed
by the authors of [24, 25], has an interesting implica-
tion: attempts to design an effective top-k index should
be carried out after one has succeeded in obtaining a
structure capable of resolving a prioritized query with
the desired space-query tradeoff. Indeed, the prioritized
query serves as a good starting point to approach a top-k
problem, which is a pattern that will show up repeatedly
in the rest of this article.

4. A FRAMEWORK FOR DESIGNING
TOP-K INDEXES

In this section, we will establish a powerful framework
for obtaining top-k indexes that enjoy strong theoretical
guarantees in expectation. This framework is remarkably
easy to apply, and works for all top-k queries captured
by the formulation in Section 2.1.

4.1 Equivalence between Top-k and the
Combination of Prioritized and Max

We have seen in Section 3 that, to design a top-k in-
dex with a certain space-query tradeoff, one must be
able to obtain a structure with the same tradeoff for the
corresponding prioritized query. Another similar but
more obvious fact is that any top-k index guaranteeing
Qtop(n) +O(k) time must be able to answer the corre-
sponding max (a.k.a. top-1) query in O(Qtop(n)) time.
In other words, the top-k query is at least as hard as both

of its corresponding prioritized and max queries.
It turns out that, in terms of expected efficiency, the

opposite is also true: the top-k query is no harder than
solving both of the prioritized and max queries. To state
this formally, let us first define a geometrically converg-

ing function to be a function f : R+ ! R+ (where
R+ is the set of positive real numbers) satisfying two
conditions:

• When x 2, f(x) = O(1);

8 SIGMOD Record, June 2019 (Vol. 48, No. 2)

• When x > 2,
hX

i=0

f
⇣ x
ci

⌘
= O(f(x))

holds for any c � 2, where h is the largest integer
i satisfying x/ci � 2.

Note that all polynomial functions are geometrically con-
verging. We are now ready to present the theorem, which
is due to Rahul and Tao [27], for reducing a top-k prob-
lem to its prioritized and max counterparts:

THEOREM 2. Fix D, Q, and W, and set n = |D|.
Suppose that

• there is a structure on D that uses Spri(n) =
O(n2) space, and answers a prioritized query in

Qpri(n) + O(t) time, where t is the number of

elements reported;

• there is a structure on D that uses Smax (n) space,

and answers a max query in Qmax (n) time, where

function Smax (n) is geometrically converging.

Then, there is a structure on D that uses Stop(n) space

in expectation, and answers a top-k query in Qtop(n) +
O(k) expected time, where

Stop(n) = O

✓
Spri(n) + Smax

✓
6n

Qpri(n)

◆◆
(1)

Qtop(n) = O (Qpri(n) +Qmax (n)) . (2)

Furthermore, if the prioritized and max structures

support an update in Upri(n) and Umax (n) time respec-

tively, then the top-k structure supports an update in

O(Upri(n) + Umax (n)) expected time. If any of Upri(n)
and Umax (n) is amortized, the update cost of the top-k
structure is amortized expected.

Several remarks are in order:

• The above reduction is optimal in the sense that
there is no performance degradation (in expecta-
tion): the space, query, and update costs of the top-
k structure are all determined by the worse between
the prioritized and max structures. Theorems 1 and
2 together establish the equivalence (again, in terms
of expected performance) between answering top-k
queries and settling the combination of prioritized
queries and max queries.

• Somewhat surprisingly, Stop(n) may even be
smaller than O(Smax (n)). For instance, plug-
ging in Spri(n) = O(n), Smax (n) = O(n log n),
and any Qpri(n) � log n, we obtain from The-
orem 2 that Stop(n) = O(n). Indeed, the theo-
rem achieves a “bootstrapping” effect such that one
does not need to try very hard to minimize the space
of the max structure.

• The condition Smax (n) = O(n2) essentially cap-
tures all the max structures useful in practice. The
power 2 is not compulsory, and can be replaced by
any constant.

We will prove Theorem 2 in Section 4.3.

4.2 Applications of Theorem 2
Theorem 2 provides a clear direction for designing

top-k indexes with strong performance guarantees. Next,
we demonstrate this on the two problems listed in Sec-
tion 2.2.
Linear Ranking. Let D be the input set of n points in
Rd. Given real-valued coefficients c1, ..., ck and a real
value ⌧ , a prioritized query returns all the points p =
(p1, ..., pd) in D such that

P
d

i=1 ci · pi � ⌧ . Given c1,
..., ck, a max query returns the point p = (p1, ..., pd) 2
D that maximizes

P
d

i=1 ci · pi.
Both types of queries have been well studied in com-

putational geometry. The prioritized query is known as
halfspace reporting, while the max query as the extreme-

point query. When d 3:

• Afshani and Chan [2] described a structure of O(n)
space that can answer a halfspace reporting query
in O(log n + t) time, where t is the number of
points reported;

• A technique of Dobkin and Kirkpatrick [12] yields
a structure of O(n) space that can answer an
extreme-point query in O(log n) time.

Immediately, Theorem 2 guarantees a top-k index that
uses O(n) space and answers a top-k query in O(log n+
k) time, both in expectation.

When d � 4, no known structure is able to answer a
halfspace reporting query in O(polylog n+ t) expected
time under the space budget of Õ(n) expected. In fact,
a lower bound of [13] even rules out the possibility of
such structures for d � 5. Together with Theorem 1,
these facts indicate that it is unrealistic to hope for a
top-k index of near-linear space that can answer a top-k
query in O(polylog n+ k) time. We will continue this
discussion in Section 6, where a more suitable technique
will be applied to design top-k indexes for d � 4.
1D Range Searching. Let D be the input set of n points
in R. Each point e 2 D is associated with a weight w(e).
Given an interval q = [x, y] in R and a real value ⌧ , a
prioritized query returns all the points e 2 D satisfying
x e y and w(e) � ⌧ . Given an interval q = [x, y],
a max query reports the point of the maximum weight
among the points e 2 D satisfying x e y.

It is rudimentary (see, e.g., [11]) to design a structure
of O(n) space which answers a max query in O(log n)
time, and can be updated in O(log n) time. The prior-
itized query is what is called 3-sided range reporting

SIGMOD Record, June 2019 (Vol. 48, No. 2) 9

in computational geometry. Specifically, let us create a
set of 2D points P = {(e, w(e)) | e 2 D}. A priori-
tized query with parameters q = [x, y] and ⌧ essentially
returns all the points in P that fall in the 3-sided rect-
angle [x, y]⇥ [⌧,1). By creating a priority search tree

(PST) [21] on P , we can answer the query in O(log n+t)
time, where t is the number of points reported. The
PST occupies O(n) space, and supports each update in
O(log n) time.

Immediately, Theorem 2 yields a dynamic top-k index
of O(n) space that answers a top-k query in O(log n+k)
time, and can be updated in O(log n) time, where all
complexities hold in expectation.

4.3 Proof of Theorem 2
This subsection serves as a proof of Theorem 2. We

consider that Qmax (n) = O(n) because a max query
can be trivially answered by scanning D once.
Rank Sampling. Given a set S of real values, and a real
value 0 < p 1, we define a p-sample set of S to be a
set R obtained by the following random process. At the
beginning, R = ;; then, each element of S is added to R
with probability p independently. Furthermore, we say
that an element e 2 S has rank i if e is the i-th greatest
in S. The following is a technical lemma that will be
useful later.

LEMMA 1. Let S be a set of n elements, and K a

real value satisfying 2 K n/4. For a (1/K)-
sample set R of S, the following hold simultaneously

with probability at least 0.09:

• |R| � 1

• The largest element in R has rank in S greater than

K but at most 4K.

PROOF. The first bullet fails only if none of the ele-
ments in S was sampled, which occurs with probability

(1� 1/K)n (1� 1/K)4K 1/e4

where the last inequality used the fact that (1� x)1/x <
1/e for all x > 0.

Let x be the largest element in R, and denote by K̂
the rank of x in S. Next, we bound the probability of
the event K̂ > 4K, which occurs only if none of the 4K
largest elements in D were sampled. Hence:

Pr[K̂ > 4K] = (1� 1/K)4K 1/e4.

Finally, we bound the probability of the event K̂ K,
which occurs only if at least one of the K largest elements
in D was sampled. Hence:

Pr[K̂ K] = 1� (1� 1/K)K .

Applying the fact that (1� 1/x)x � 1/e2 for all x � 2,
we know:

Pr[K̂ K] 1� 1/e2.

The union bound now shows that the probability of
violating at least one bullet of Lemma 1 is at most

2/e4 + (1� 1/e2) < 0.91

which completes the proof.

Structure. We now describe how to design a top-k index
using the given prioritized and max structures as black
boxes. First, build a prioritized structure on the input
dataset D. Then, fix a constant � = 1/20, and define for
each integer i � 1:

Ki = Qmax (n) · (1 + �)i�1.

Let h be the largest i such that Ki n/4; clearly, h =
O(log n). For each i 2 [1, h], we take a (1/Ki)-sample
set Ri of D, and create a max structure on Ri. The top-k
index consists of the prioritized structure and the h max
structures constructed.
Query. Suppose that we need to answer a top-k query
that chooses a predicate q 2 Q and a weight function
w 2 W. If k < Qmax (n), we obtain the result S
of a top-Qmax (n) query with the same q and w, and
extract the k elements in S with the largest weights
using the k-selection algorithm of [6] in O(|S|) =
O(Qmax (n)) time. The total cost is therefore the
time of the top-Qmax (n) query, which we will prove
later is O(Qpri(n) + Qmax (n)) in expectation, plus
O(Qmax (n)).

Next, we consider k � Qmax (n). If k Kh, set j⇤
to the smallest integer i satisfying Ki � k; note that
Kj = ⇥(k). Starting with j = j⇤, we perform a round

as follows:

1. Determine whether |q(D)| < 4Kj . This can be
done in Qpri(n)+O(Kj) time by performing a pri-
oritized query in a cost-monitoring manner. Specif-
ically, run a prioritized query with the parameters
q, w, and ⌧ = �1, but terminate the query manu-

ally as soon as 4Kj elements have been reported.
If manual terminate occurs, |q(D)| � 4Kj , and we
proceed to the next step. Otherwise, the prioritized
query finishes normally and must have returned
the entire q(D), implying |q(D)| < 4Kj , in which
case we declare the round successful and terminate
the whole algorithm by returning q(D) as the result
of the original top-k query.

2. Identify the element e in q(Rj) with the maximum
weight by issuing a max query on Rj with the
parameters q and w which takes Qmax (n) time. In
the special case where q(Rj) is empty, treat e as a
dummy element with w(e) = �1.

3. Perform a prioritized query on D with q, w, and
⌧ = w(e) in a cost-monitoring manner:

10 SIGMOD Record, June 2019 (Vol. 48, No. 2)

(a) Either the query terminates by itself, out-
putting a set S of elements,

(b) Or we terminate it as soon as 4Kj+1 elements
have been reported.

In both cases, the cost is Qpri(n) +O(Kj).

4. Declare this round failed if either of the following
is true:

• Case 3(a) occurred, but |S| Kj .

• Case 3(b) occurred.

Otherwise, declare this round successful.

5. If the round is successful, perform k-selection on S
to produce the k elements in q(D) with the largest
weights, and terminate the algorithm by returning
them as the result of the top-k query.

6. Otherwise (i.e., failed), increase j by 1.

(a) If j h, perform the next round from Step 1.

(b) Else (i.e., j = h+ 1), answer the top-k query
naively by reading the whole D in O(n) =
O(Kj) time. The algorithm then terminates.
This is the only scenario where termination
can happen in a failed round.

To analyze the cost of the algorithm, notice that a
round fails only if |q(|D|)| > 4Kj (otherwise, Line 1
terminates the algorithm), and one of the two bullets in
Step 4 is true. Thus, Lemma 1 tells us that failure happens
with probability at most 0.91, noticing that q(Rj) is a
(1/Kj)-sample set of q(D). This implies that round
j, for any j � j⇤, is executed only with probability
0.91j�j

⇤
, namely, only when all the preceding rounds

have failed. Also observe that round j, regardless of
whether it fails, takes Qpri(n)+Qmax (n)+O(Kj) time.
Thus, the expected cost of the algorithm is bounded by

hX

j=j⇤

O
⇣⇣

Qpri(n) +Qmax (n) +Kj

⌘
· 0.91j�j

⇤
⌘

= O
⇣
Qpri(n) +Qmax (n) +

hX

j=j⇤

Kj · 0.91j�j
⇤
⌘

(3)

Note that Kj = Kj⇤ · (1+�)j�j
⇤
= O(k) · (1+�)j�j

⇤
.

Plugging this into (3) shows that the expected cost is
bounded by

O

0

@Qpri(n) +Qmax (n) + k
hX

j=j⇤

((1 + �) · 0.91)j�j
⇤

1

A

which is O(Qpri(n) +Qmax (n) + k) because (1 + �) ·
0.91 < 1.

Space. The prioritized structure on D obviously takes
up Spri(n) space. We claim that all the max structures
occupy o(n) +O(Smax (

6n
Qmax (n)

)) expected space in to-
tal, which implies the space result in Theorem 2 because
Spri(n) = ⌦(n).

The claim is fairly intuitive because E[|Ri|] = n/Ki

geometrically decreases as i increases, which, together
with the fact that Smax (n) is geometrically converging,
seems to yield the claim immediately. The complication,
however, is that Smax (n) may be a convex function, such
that E[Smax (|Ri|)] is not necessarily O(Smax (E[|Ri|])).
Next, we show how to circumvent this obstacle.

We will prove that all the max structures occupy
o(n) + O(Smax (

6n
Qmax (n)

)) space in total with proba-
bility at least 1 � 1/n2. Combining this with the fact
that all those structures obviously demand no more than
O(Smax (n) · h) = O(n2 · log n) space gives the target
claim.

Let i⇤ be the largest i such that Ki n/(3 lnn).
Consider an i 2 [1, i⇤]. Since |Ri| is the sum of n in-
dependent Bernoulli variables each of which equals 1
with probability 1/Ki, a standard application of Cher-
noff bounds1 gives:

Pr[|Ri| � 6 ·E[|Ri|]] exp(�E[|Ri|])
= exp(�n/Ki) 1/n3.

Therefore, with probability at least 1 � h/n3, the max
structures on R1, R2, ..., Ri⇤ use at most

i
⇤X

i=1

O

✓
Smax

✓
6n

Qmax (n) · (1 + �)i�1

◆◆

= O

✓
h+ Smax

✓
6n

Qmax (n)

◆◆

space overall.
Let us now concentrate on i 2 [i⇤ + 1, h]. Notice

that there are only O(log log n) such values of i. Also,
by definition of i⇤, we know that E[|Ri|] = n/Ki is in
the range from 4 to O(log n). Another application of
Chernoff bounds gives:

Pr[|Ri| � (lnn4) ·E[|Ri|]]
 exp(�(lnn4) ·E[|Ri|]/6)
 exp(� lnn4·2/3)

= 1/n8/3.

Hence, with probability at least 1�O(log log n)/n8/3,
it holds that for all i 2 [i⇤ + 1, h]:

|Ri| 4 lnn ·E[|Ri|] = O(log2 n).

1Let X1, ..., Xn be independent Bernoulli variables such that
Pr[Xi = 1] = pi. Let X =

Pn
i=1 Xi and µ = E[X] =

Pn
i=1 pi. For any ↵ 2 (0, 1), Pr[X (1�↵)µ] e�↵2µ/3,

while for any ↵ � 2, Pr[X � ↵µ] e�↵µ/6.

SIGMOD Record, June 2019 (Vol. 48, No. 2) 11

By the fact that Smax (n) = O(1 + n2), the max struc-
tures on Ri⇤ , Ri⇤+1, ..., Rh together consume no more
than O(h + log log n · log4 n) = o(n) space. We thus
conclude that, with probability at least 1 � h/n3 �
O(log log n)/n8/3 > 1 � 1/n2, all the max structures
use o(n) +O(Smax (

6n
Qmax (n)

)) space.

Update. It remains to discuss how to support insertions
and deletions on the input set D. A crucial observation
is that, in expectation, each element of D appears only
in a constant number of max structures, noticing that
the element belongs to Ri with probability 1/Ki, which
geometrically decreases as i increases. We can record
using in expectation O(1) words which max structures
include e. It thus becomes obvious that the insertion
or deletion of an element can be supported in O(Upri +
Umax) expected time. The above argument still works
even if one or both of Upri and Umax are amortized. This
completes the whole proof of Theorem 2.

5. TECHNIQUES FOR PROBLEMS ON
WEIGHT-AUGMENTED DATASETS

This section will focus on top-k problems where
|W| = 1, and hence, the weight w(e) of each element
e 2 D can be taken directly as an extra attribute of e.
We will introduce several techniques that are effective
on such problems, and at the same time amenable to
practical implementation. Our description will be based
on top-k range searching in 1D (see Section 2.2) whose
simplicity will facilitate the understanding of the core
ideas underneath. Unlike the solutions in Section 4 that
are efficient in expectation, we will aim to obtain top-k
indexes whose guarantees hold deterministically.

5.1 High-Level Ideas behind Sections
5.2-5.4

In 1D top-k range searching, the input dataset D is a
set of n points in R. Given an interval q = [x, y], a top-k
query returns the k points e 2 q(D) with the highest
w(e), where q(D) is the set of points in D covered by q.
Conceptually, we will answer the query in three steps:

1. Size checking: Decide whether |q(D)| < k. If so,
simply retrieve the entire q(D), and return it as the
final result. Proceed to Step 2 only if |q(D)| � k.

2. Thresholding: Find a real-valued threshold ⌧ such
that at least k but at most O(k) points e 2 q(D)
satisfy w(e) � ⌧ .

3. Prioritized reporting: Find the set S of points in
q(D) whose weights are at least ⌧ . The definition
of ⌧ makes sure that k |S| = O(k). Collect the
k points in S with the highest weights, and return
them as the result of the top-k query.

It is rudimentary to implement Step 1 in O(log n+ k)
time by resorting to a binary search tree (BST) on D.
In Step 3, S can be found using a PST (priority search
tree) on D in O(log n + |S|) = O(log n + k) time, as
we explained in Section 4.2. Finding the k points of the
largest weights in S can be done with the k-selection
algorithm [6], which takes O(|S|) = O(k) time. Note
that all the data structures needed in Steps 1 and 3 can
be updated in O(log n) time per insertion and deletion.

The challenge is to design a data structure for Step 2,
a phenomenon that is very typical in attacking a top-k
problem through the above 3-step approach. In fact, Step
2 itself makes an interesting stand-alone problem, which
was named the approximate k-threshold problem in [30].
In Sections 5.2-5.4, we will present several techniques to
tackle the challenge

5.2 Technique 1: Binary Search
Let us start with a simple approach to find the target

threshold ⌧ — as in Step 2 of the algorithm in Section 5.1
— in O(log2 n + k log n) time using linear space. In
fact, for a top-k query with search interval q = [x, y],
this approach returns a value of ⌧ such that precisely k
elements e 2 q(D) satisfy w(e) � ⌧ ; furthermore, the ⌧
returned is guaranteed to be the weight of some element
in q(D).2

Imagine that the weights of the points in D have been
sorted in descending order into a list L. We can find the
target ⌧ by performing binary search on L. Specifically,
the search starts by setting z to the median of L. Define
c as the number of points e 2 q(D) with w(e) � z. We
then determine which of the following is true: c < k,
c = k, or c > k. If c = k, the algorithm finishes by
returning ⌧ = z; otherwise, the search continues by
focusing on the first or second half of L recursively.

The comparison between c and k can be resolved
in O(log n + k) time by searching a PST in a cost-
monitoring manner. Specifically, issue a prioritized query
in the way explained in Section 4.2 to find all the points
in q(D) whose weights are at least z, with the difference
that we manually terminate the prioritized query as soon
as k+1 points have been reported. If manual termination
occurs, c must be greater than k. Otherwise, c must be at
most k, and all those c points must have been returned
by the prioritized query. Overall, the binary search at-
tempts O(log n) values of z, and therefore, finishes in
O(log2 n+ k log n) time.

The above strategy actually has a deeper implica-
tion regarding any top-k problem on weight-augmented
datasets. Suppose that there is a structure of Spri(n)
space that can answer the corresponding prioritized query
in Qpri(n) + O(t) time (where t is the number of el-

2The operation finding such a ⌧ is known as the range quantile

query [17]

12 SIGMOD Record, June 2019 (Vol. 48, No. 2)

ements reported). Then, there must exist a top-k in-
dex of O(Spri(n)) space that answers a top-k query in
O(Qpri(n) · log n+ k log n) time. In Section 6, we will
see a stronger result that has a better query bound, and
eliminates the requirement of |W| = 1.

5.3 Technique 2: Resorting to Counting
The query efficiency of the strategy in Section 5.2

can usually be improved, provided that there is a spe-
cialized structure for finding the number c faster. This
is indeed the case for 1D range searching. Recall
that c equals the number of points e 2 D satisfying
x e y and w(e) � z. If we introduce a 2D
dataset P = {(e, w(e)) | e 2 D}, c equals precisely
the number of points in P that are covered by the rect-
angle [x, y]⇥ [z,1). Computing this number is known
as orthogonal range counting, which has been very well
understood. We can preprocess P into a structure of
Chazelle [10] which uses O(n) space, and finds |P \ r|
for any axis-parallel rectangle r in O(log n) time. With
this, the query time of the solution in Section 5.2 is im-
proved to O(log2 n+ k).

For a general top-k problem, a counting structure for
finding c efficiently may not be readily available. The
merit of the technique in Section 5.2 is to assure a rea-
sonably good bound on the query cost using only a prior-
itized structure, which must be available for the reason
explained in Section 3.

5.4 Technique 3: Dyadic Intervals
Assume, for simplicity, that n is a power of 2, and

set � = log2 n. Let us partition R into n/� disjoint
intervals — referred to as slabs henceforth — such that
each slab has exactly � points. Given an arbitrary in-
terval [x, y], we call it aligned if x and y are both slab
boundaries, and define its span as the number of slabs
that are fully contained in [x, y]. A dyadic interval is an
aligned interval whose span is a power of 2. Note that
the total number of dyadic intervals is O((n/�) log n).

LEMMA 2. For any aligned interval q, there exist two

possibly overlapping dyadic intervals I1 and I2 that sat-

isfy I1 [I2 = q.

The proof is simple and omitted from this article.
Structure. For every dyadic interval I , store a sketch

which consists of the 2i-th largest weight of the points
in D \ I , for each i 2 [0, log2 n]. If |D \ I| < 2i, then
the 2i-th largest weight is defined to be �1. All the
O((n/�) log n) sketches constitute our structure, whose
space is O((n/�) log2 n).
Query. Given a top-k query with interval q = [x, y],
we now explain how to find a value ⌧ that satisfies the
requirements in Step 2 of the algorithm in Section 5.1.
Assume, without loss of generality, that k is a power of

q

qleft qright

I1

I2

Figure 1: Partitioning a query interval

2 (otherwise, bump k up to the nearest power of 2). The
base case happens when q is completely within a certain
slab �. In that case, we retrieve the set S0 of points in
q\�, which takes O(log n+�) time by searching a BST
on D. Then, ⌧ can be simply set to the k-th largest weight
of the points in S0, which can be found by performing
k-selection in O(�) time.

Let us now suppose that q intersects at least two slabs.
Define qmid = [x0, y0] to be the longest aligned interval
inside q, which gives rise to qleft = [x, x0] and qright =
[y0, y]. Lemma 2 guarantees the existence of dyadic
intervals I1 and I2 such that I1[I2 = qmid . See Figure 1
for an illustration, where the dashed lines represent slab
boundaries.

Next, we obtain four values:

• ⌧left : the k-th largest weight in D \ qleft , or �1
if |D \ qleft | < k;

• ⌧1 (or ⌧2): the k-th largest weight of the points in
D \ I1 (or D \ I2, resp.);

• ⌧right : the k-th largest weight in D\qright , or �1
if |D \ qright | < k.

The values ⌧left and ⌧right can be obtained in O(�) time
using the strategy illustrated earlier for the base case,
while ⌧1 and ⌧2 can be fetched directly from the sketches
of I1 and I2.

The ⌧ returned is the maximum of the four values. It
is easy to prove that at least k but at most 4k points in
q(D) can have weights at least ⌧ .
Remark. Setting � = log22 n yields a linear space struc-
ture with O(log2 n) query time, while � = log2 n gives
a structure of O(n log n) space but O(log n) query time.
It is possible to achieve linear space and O(log n) query
time by recursively applying the same idea in each slab,
but we will not delve into those details because compet-
ing for efficiency is not the purpose of this section.

5.5 Technique 4: Heap Selection
Let us define a max-heap H to be a tree where

• each internal node has a constant number of chil-
dren, and

• each node u stores a real-valued key that is greater
than all the keys stored in the proper subtree of u.

SIGMOD Record, June 2019 (Vol. 48, No. 2) 13

Note that H does not need to be balanced in any way.
Given any max-heap H , Frederikson [16] described an
algorithm to extract the k largest keys from H in O(k)
time, for any k ranging from 1 to the number of elements
in H .

The above algorithm is useful for designing top-k in-
dexes. Given a top-k query with predicate q, let us imag-
ine that q(D) has been divided into a number of sets
S1, ..., Ss for some s � 1, and that the elements in each
Si (1 i s) have been stored in a max-heap Hi,
using their weights as the keys. In such a scenario, we
can find the top-k result in O(s + k) time as follows.
First coalesce H1, ..., Hs into a single max heap H on
S1 [... [Ss. This can be done in O(s) time, noticing
that we only need to take the root of each Hi, and build
a max-heap on those s roots. Once this is done, Fred-
erikson’s algorithm can be directly applied to find the k
elements with the largest weights from H in O(k) time.

Next, we apply the above idea to obtain an elegant
top-k index for 1D range searching that consumes O(n)
space, guarantees O(log n+ k) query time, and can be
updated in O(log n) time per insertion and deletion.
Structure. Let us consider once again the set of n 2D
points P = {(e, w(e) | e 2 D} constructed from D. It
suffices to build a PST T on P , which can be defined
recursively as follows (this is the first time in this article
that we need to be concerned with the details of a PST):

• If P = ;, T is an empty tree.

• If P contains only a single point p = (px, py), T
has only one node u which stores p, an x-key equal
to px, and a y-key equal to py .

• Otherwise, let xmed be the median of the x-
coordinates of the points in P , and p⇤ = (p⇤

x
, p⇤

y
)

be the highest point in P , i.e., having the greatest
y-coordinate. Create the root u of T , which stores
p⇤, an x-key equal to xmed , and a y-key equal to p⇤

y
.

Define P1 to be the set of points p = (px, py) in P \
{p⇤} satisfying px < xmed , and P2 symmetrically
to be the set of points p = (px, py) in P \ {p⇤}
satisfying px � xmed . Recursively construct BSTs
T1 and T2 on P1 and P2, respectively. Then, T is
the tree obtained by making the root of T1 the left
child of u, and that of T2 the right child of u.

Observe that T is a BST on the x-keys of the nodes, and
simultaneously also a max-heap on the y-keys. It is clear
that T has height O(log n), and occupies O(n) space.
Query. Suppose that we are given a top-k (1D range
searching) query with the search interval q = [x1, x2].
Without loss of generality, let us assume that both x1 and
x2 are x-keys in T . Denote by ⇧1 (or ⇧2) the path from
the root of T to the node with x-key x1 (or x2, resp.).

⇧1 ⇧2

x1 x2

Figure 2: Searching a PST to perform top-k range
searching in 1D space

From ⇧1 and ⇧2, we can obtain s = O(log n) nodes
v1, ..., vs with three properties:

• Property 1: The parent of each vi (1 i s) is
on ⇧1 or ⇧2.

• Property 2: The subtrees of v1, ..., vs, which are
called the canonical subtrees, are mutually disjoint.

• Property 3: Every node, whose x-key is contained
in q, must be either on ⇧1 [⇧2 or in a canonical
subtree.

Figure 2 shows an example where s = 6, and v1, ..., v6
are the nodes colored in gray.

Define q(P) as the set of points p = (px, py) 2 P
such that x1 px x2. Answering the top-k query
is equivalent to finding the k highest points in q(P).
Property 3 ensures that every point in q(P) must be
stored at a node on ⇧1 [⇧2, or a node in one of the
canonical subtrees. Let us divide q(P) into (i) P1 (or
P2), which is the set of points in q(P) stored on ⇧1 (or
P2, resp.), and (ii) P3, which the set of points stored in
the canonical subtrees.

Let Si (1 i s) be the set of y-keys in the canonical
subtree rooted at vi. Note that the canonical subtree is a
max-heap on Si. The k largest y-keys in S1[...[Ss can
therefore be extracted in O(k) time using Frederikson’s
algorithm. The points corresponding to those y-keys
constitute the set S of k highest points in P3. The final
result of the top-k query is the k highest points in S [
P1[P2, which can be found using k-selection in O(|S[
P1 [P2|) = O(log n+ k) time.
Update. In [21], McCreight described a slightly different
PST by allowing xmed to be an “approximate median”.
The benefit is that the resulting PST also supports an
update in O(log n) time. The same query algorithm
applies to that PST as well.

6. PRIORITIZED AS HARD AS TOP-K?
We now turn our attention back to all the top-k prob-

lems capured by our formulation in Section 6, i.e., no

14 SIGMOD Record, June 2019 (Vol. 48, No. 2)

matter whether |W| = 1. We already know from The-
orem 1 that top-k queries are no easier than prioritized
queries, that is, a top-k index implies a prioritized struc-
ture with the same space-query tradeoff.

In this section, we will discuss the question opposite
to the one resolved by Theorem 1. Let us fix D, Q,
and W. Suppose that there is a structure on D that uses
Spri(n) space (recall that n = |D|), and answers any
prioritized query in Qpri(n) + O(t) time (where t is
the number of elements reported). We want to use the
structure as a black box to design a top-k structure. Let
Stop(n) be the space consumption of the top-k structure,
and Qtop(n) + O(k) its query cost. How good can the
functions Stop(n) and Qtop(n) be?

Ideally, we would like to show Stop(n) = O(Spri(n))
and Qtop(n) = O(Qpri(n)). This would imply that the
top-k query was no harder than the corresponding priori-
tized query which, in turn, would conclude that top-k and
prioritized queries in fact had the same computational
hardness! Unfortunately, whether this is true still remains
elusive today.

Nevertheless, decent progress has been made towards
settling this open question. We now know that, when
Qpri(n) = ⌦(n✏) for any constant ✏ > 0, it indeed
holds that Stop(n) = O(Spri(n)) and Qtop(n) =
O(Qpri(n)). In other words, for hard problems whose
prioritized queries demand a polynomial Qpri(n), we
can turn a prioritized structure into a top-k index with no
efficiency loss! For easier problems with Qpri(n) =
⌦(log n), on the other hand, it is possible to show
Stop(n) = O(Spri(n)) and Qtop(n) = O(Qpri(n) ·
log n). In other words, we can still obtain a top-k index
from a prioritized structure by entailing only an O(log n)
deterioration factor in query time.

Next, we introduce the theorem behind the above
claims. Let us start with the notion of polynomial bound-

edness. Fix an integer k 2 [1, n]. Remember that a top-k
query selects a predicate q 2 Q and a weight function
w 2 W. In other words, the query result is a function of
q and w. Since |Q| or |W| may be very large, the number
of possible queries can be unbounded, but even so, it is
possible that the number of distinct top-k results may
be much smaller. In particular, if that number is always
bounded by nO(1) for any input dataset D ✓ D of size
n (regardless of k), we say that the triplet (D,Q,W) is
polynomially bounded.

Rahul and Tao established3 the following in [27]:

THEOREM 3. Fix a polynomially bounded triplet of

(D,Q,W), and a set D ✓ D of size n. Suppose that there

is a structure on D that uses Spri(n) space, and answers

3Strictly speaking, [27] proved the theorem only for problems
with |W| = 1. However, the proof can be adapted to cover
all polynomially bounded problems under the formulation in
Section 2.1.

a prioritized query in Qpri(n) + O(t) time, where t is

the number of reported elements, such that

• Spri(n) is geometrically converging, and

• Qpri(n) = ⌦(log n).

Then, there is a top-k index of space Stop(n) and query

time Qtop(n) +O(k) with

Stop(n) = O(Spri(n))

Qtop(n) = O

Qpri(n) ·

log n

log Qpri (n)
logn

!
.

The proof in [27], which is technically involved and
omitted from this article, shows how to construct a top-k
index in the theorem using nO(1) expected time, where
the constant power depends on the underlying problem.

Note that all complexities in Theorem 3 hold in the
worst case. For Qpri(n) = !(log n), Qtop(n) is actu-
ally o(Qpri(n) · log n), namely, the deterioration fac-
tor with respect to Qpri(n) is o(log n). As an exam-
ple, if Qpri(n) = ⌦(log1+✏ n) for any positive constant
✏ > 0, it holds that Qtop(n) = O(Qpri(n) · logn

log logn
).

For Qpri(n) = ⌦(n✏), the deterioration factor is O(1),
as mentioned earlier.

Polynomial boundedness is a property of many top-k
problems. One example is the linear ranking problem
defined in Section 2.2 under any constant dimensional-
ity d. As explained in Section 4.2, the corresponding
prioritized query of this problem is known as halfspace

reporting. For d � 4, Afshani and Chan [2] described
a structure of O(n) space that answers any halfspace
reporting query in Õ(n1�1/bd/2c)+O(t) time where t is
the number of points reported. Immediately, Theorem 3
guarantees a top-k index of O(n) space that answers a
top-k query in Õ(n1�1/bd/2c) +O(k) time.

7. BEYOND THIS ARTICLE
We have reviewed only a small portion of the existing

work on the class of top-k problems formulated in Sec-
tion 2.1. Efficient indexes have been developed for the
top-k versions of many traditional reporting problems,
e.g., orthogonal range reporting [1, 7, 8, 25, 26, 30, 31],
halfspace reporting [25, 27], rectangle stabbing [9, 27],
and so on. The design of those indexes harbors numerous
inspiring ideas which unfortunately cannot be included
in this article.

Another non-trivial direction that has received signif-
icant development is the theory of top-k indexes in the
external memory (EM) model [1,7,26,27,30,31]. Closely
relevant to database systems, this model is widely used
to study the behavior of I/O-oriented algorithms, whose
performance bottlenecks lie in the data exchanges be-
tween different levels of the memory hierarchy — e.g.,

SIGMOD Record, June 2019 (Vol. 48, No. 2) 15

between the main memory and the disk — rather than
in CPU computation. Specifically, in the EM model, a
machine is equipped with M words of memory, and a
disk that has been formatted into blocks of B words each.
An I/O either reads a disk block into memory, or writes
B words of memory into a disk block. CPU operations
can be performed only on the data in memory. The time

of an algorithm is measured in the number of I/Os per-
formed (CPU computation is for free), while the space

of a structure is measured in the number of disk blocks
occupied. A “good” top-k index on an input dataset of
size n should consume Õ((n/B)) space, and answer a
query in Qtop(n,B) +O(k/B) I/Os, where Qtop(n,B)
is a slow-growing function of n and B. Many of the
techniques discussed in this article can be adapted to
work in EM. In particular, see [26] for the counterpart of
Theorem 1, and [27] for the counterparts of Theorems 2
and 3.

Finally, it is worth pointing out that the theory com-
munity has studied other top-1 or top-k problems that do
not fit directly into the formulation in Section 2.1, e.g.,
problems on text retrieval [5,18,20,22,23,29], uncertain
data [3, 4, 32], colored reporting [28], etc.

8. FUTURE WORK DIRECTIONS
We conclude this article by mentioning four directions

for future research:

• Direction 1: Resolve the conjecture that the prior-

itized query is as hard as the corresponding top-k
query. Currently, there is an O(log n) gap in the
query cost between the two (see Theorem 3). If
this gap could be closed, we would have the sur-
prising fact that every top-k problem in the class
formulated in Section 2.1 is essentially the same
as its prioritized version in terms of space-query
tradeoff.

• Direction 2: Obtain a high-probability version of

Theorem 2. The guarantees in that theorem cur-
rently hold in expectation only. Can we make
them hold with a high probability (e.g., at least
1� 1/n2)?

• Direction 3: Fast construction of a top-k index in

Theorem 3. As mentioned in Section 6, currently
it takes nO(1) expected time to build a top-k index
with the guarantees stated in the theorem, which
limits the theorem’s applicability in practice. Can
we reduce the cost to Õ(n), provided that the given
prioritized structure can be built in Õ(n) time?

• Direction 4: Study individual top-k problems with

significant importance in practice. The top-k per-
spective in Section 2.1 offers motivation for study-
ing prioritized queries some of which otherwise

would not appear sufficiently important to justify
serious research efforts. On good example is top-

k halfspace reporting, whose prioritized query is
the following problem. We are given a set D of
points in Rd, each of which is associated with a
real-valued weight. Given a halfspace q in Rd and
a real value ⌧ , a query returns all the points in D\q
whose weights are at least ⌧ . The challenge is to
preprocess D into a structure that can answer any
such query efficiently. As a particularly interesting
question, for d = 2, can we obtain a structure of
O(n) space that answers a query in O(log n + t)
time, where t is the number of points reported?

9. REFERENCES
[1] Peyman Afshani, Gerth Stolting Brodal, and

Norbert Zeh. Ordered and unordered top-k range
reporting in large data sets. In Proceedings of the

Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 390–400, 2011.
[2] Peyman Afshani and Timothy M. Chan. Optimal

halfspace range reporting in three dimensions. In
Proceedings of the Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 180–186,
2009.

[3] Pankaj K. Agarwal, Boris Aronov, Sariel
Har-Peled, Jeff M. Phillips, Ke Yi, and Wuzhou
Zhang. Nearest-neighbor searching under
uncertainty II. ACM Transactions on Algorithms,
13(1):3:1–3:25, 2016.

[4] Pankaj K. Agarwal, Nirman Kumar, Stavros Sintos,
and Subhash Suri. Range-max queries on uncertain
data. Journal of Computer and System Sciences

(JCSS), 94:118–134, 2018.
[5] Iwona Bialynicka-Birula and Roberto Grossi.

Rank-sensitive data structures. In String

Processing and Information Retrieval (SPIRE),
pages 79–90, 2005.

[6] Manuel Blum, Robert W. Floyd, Vaughan R. Pratt,
Ronald L. Rivest, and Robert Endre Tarjan. Time
bounds for selection. Journal of Computer and

System Sciences (JCSS), 7(4):448–461, 1973.
[7] Gerth Stolting Brodal. External memory

three-sided range reporting and top-k queries with
sublogarithmic updates. In Proceedings of

Symposium on Theoretical Aspects of Computer

Science (STACS), pages 23:1–23:14, 2016.
[8] Gerth Stolting Brodal, Rolf Fagerberg, Mark

Greve, and Alejandro Lopez-Ortiz. Online sorted
range reporting. In International Symposium on

Algorithms and Computation (ISAAC), pages
173–182, 2009.

[9] Timothy Chan, Yakov Nekrich, Saladi Rahul, and
Konstantinos Tsakalidis. Orthogonal point location

16 SIGMOD Record, June 2019 (Vol. 48, No. 2)

and rectangle stabbing queries in 3-d. In
Proceedings of International Colloquium on

Automata, Languages and Programming (ICALP),
pages 31:1–31:14, 2018.

[10] Bernard Chazelle. A functional approach to data
structures and its use in multidimensional
searching. SIAM Journal of Computing,
17(3):427–462, 1988.

[11] Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein. Introduction

to Algorithms, Second Edition. The MIT Press,
2001.

[12] David P. Dobkin and David G. Kirkpatrick. A
linear algorithm for determining the separation of
convex polyhedra. J. Algorithms, 6(3):381–392,
1985.

[13] Jeff Erickson. Better lower bounds for halfspace
emptiness. In Proceedings of Annual IEEE

Symposium on Foundations of Computer Science

(FOCS), pages 472–481, 1996.
[14] Ronald Fagin. Combining fuzzy information from

multiple systems. Journal of Computer and System

Sciences (JCSS), 58(1):83–99, 1999.
[15] Ronald Fagin, Amnon Lotem, and Moni Naor.

Optimal aggregation algorithms for middleware. J.

Comput. Syst. Sci., 66(4):614–656, 2003.
[16] Greg N. Frederickson. An optimal algorithm for

selection in a min-heap. Information and

Computation, 104(2):197–214, 1993.
[17] Travis Gagie, Simon J. Puglisi, and Andrew Turpin.

Range quantile queries: Another virtue of wavelet
trees. In String Processing and Information

Retrieval (SPIRE), pages 1–6, 2009.
[18] Wing-Kai Hon, Rahul Shah, Sharma V.

Thankachan, and Jeffrey Scott Vitter.
Space-efficient frameworks for top-k string
retrieval. Journal of the ACM (JACM),
61(2):9:1–9:36, 2014.

[19] Ihab F. Ilyas, George Beskales, and Mohamed A.
Soliman. A survey of top-k query processing
techniques in relational database systems. ACM

Computing Surveys, 40(4):11:1–11:58, 2008.
[20] Marek Karpinski and Yakov Nekrich. Top-k color

queries for document retrieval. In Proceedings of

the Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 401–411, 2011.
[21] Edward M. McCreight. Priority search trees. SIAM

Journal of Computing, 14(2):257–276, 1985.
[22] S. Muthukrishnan. Efficient algorithms for

document retrieval problems. In Proceedings of the

Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 657–666, 2002.
[23] Gonzalo Navarro and Yakov Nekrich.

Time-optimal top-k document retrieval. SIAM

Journal of Computing, 46(1):80–113, 2017.
[24] Manish Patil, Sharma V. Thankachan, Rahul Shah,

Yakov Nekrich, and Jeffrey Scott Vitter.
Categorical range maxima queries. In Proceedings

of ACM Symposium on Principles of Database

Systems (PODS), pages 266–277, 2014.
[25] Saladi Rahul and Ravi Janardan. A general

technique for top-k geometric intersection query
problems. IEEE Transactions on Knowledge and

Data Engineering (TKDE), 26(12):2859–2871,
2014.

[26] Saladi Rahul and Yufei Tao. On top-k range
reporting in 2d space. In Proceedings of ACM

Symposium on Principles of Database Systems

(PODS), pages 265–275, 2015.
[27] Saladi Rahul and Yufei Tao. Efficient top-k

indexing via general reductions. In Proceedings of

ACM Symposium on Principles of Database

Systems (PODS), pages 277–288, 2016.
[28] Biswajit Sanyal, Prosenjit Gupta, and Subhashis

Majumder. Colored top-k range-aggregate queries.
Information Processing Letters (IPL),
113(19-21):777–784, 2013.

[29] Rahul Shah, Cheng Sheng, Sharma V. Thankachan,
and Jeffrey Scott Vitter. Top-k document retrieval
in external memory. In Proceedings of European

Symposium on Algorithms (ESA), pages 803–814,
2013.

[30] Cheng Sheng and Yufei Tao. Dynamic top-k range
reporting in external memory. In Proceedings of

ACM Symposium on Principles of Database

Systems (PODS), pages 121–130, 2012.
[31] Yufei Tao. A dynamic I/O-efficient structure for

one-dimensional top-k range reporting. In
Proceedings of ACM Symposium on Principles of

Database Systems (PODS), pages 256–265, 2014.
[32] Ke Yi, Feifei Li, George Kollios, and Divesh

Srivastava. Efficient processing of top-k queries in
uncertain databases with x-relations. IEEE

Transactions on Knowledge and Data Engineering

(TKDE), 20(12):1669–1682, 2008.

SIGMOD Record, June 2019 (Vol. 48, No. 2) 17

