
Database Principles and Challenges in Text Analysis

Johannes Doleschal

University of Bayreuth &

Hasselt University

johannes.doleschal@uni-

bayreuth.de

Benny Kimelfeld

Technion, Israel

bennyk@cs.technion.ac.il

Wim Martens

University of Bayreuth

wim.martens@uni-

bayreuth.de

ABSTRACT
A common conceptual view of text analysis is that
of a two-step process, where we first extract relations
from text documents and then apply a relational query
over the result. Hence, text analysis shares technical
challenges with, and can draw ideas from, relational
databases. A framework that formally instantiates this
connection is that of the document spanners. In this
article, we review recent advances in various research
e�orts that adapt fundamental database concepts to text
analysis through the lens of document spanners. Among
others, we discuss aspects of query evaluation, aggregate
queries, provenance, and distributed query planning.

1. INTRODUCTION
Di�erent tools and paradigms have been developed

over the past decades to facilitate the challenge of
extracting structured information from text—a task
generally referred to as Information Extraction (IE).
Common textual sources include natural language
from a variety of sources such as scientific publi-
cations, customer input and social media, as well
as machine-generated activity logs. Instantiations
of IE are central components in text analytics and
include tasks such as segmentation, named-entity
recognition, relation extraction, and coreference reso-
lution [55]. Rules and rule systems have consistently
been key components in such paradigms, yet their
roles have varied and evolved over time. Systems
such as Xlog [59] and IBM SystemT [13] use IE rules
for materializing relations inside relational query lan-
guages. Machine-learning classifiers and probabilistic
graphical models (e.g., Conditional Random Fields)
use rules for feature generation [38, 62]. Rules serve
as weak constraints in Markov Logic Networks [51]
and in the DeepDive system [60]. Rules are also used
for generating noisy training data (“labeling func-
tions”) in the state-of-the-art Snorkel system [54].

Even though there is a fundamental di�erence
in the structure of the underlying data, there is a
tight connection between IE rules and relational
databases: both provide machinery for manipu-
lating base relations, either given explicitly (rela-
tional databases) or extracted from the text (IE).

In the latter case, the base relations are typically
constructed via generic extractors implemented in
a variety of ways, from regular expressions (e.g.,
dictionary lookups) to machine-learned networks.
We refer to these extractors as primitive extractors;
hence, we view IE as a process where relational op-
erators are applied to the relations extracted via
primitive extractors.

Given the conceptual connection between rela-
tional databases and IE, can we leverage the princi-
ples of relational data management, as established
over decades of research and practice, in the world
of IE (and text analytics in general)? Particular
questions include the following.
• What is the expressive power of extraction lan-
guages? What is the contribution of the relational
operators to the expressiveness of the language of the
primitive extractors? Does the relational component
add power or just facilitates query formulation?
• What is the computational complexity of evalu-
ating IE programs? How does it depend on the
query and the textual data (combined/data com-
plexity)? What guarantees can be made by an algo-
rithm for streaming out many answers (enumeration
complexity)? Can we understand their fine-grained
complexity as we do for database algorithms [20]?
Can we evaluate aggregate queries e�ciently without
materializing the aggregated tuples?
• How do we approach query planning for IE? Can
we come up with useful plans that parallelize the
task at hand among many independent computa-
tional units? Can we analyze the query to infer
such independence as done in the context of parallel-
correctness in databases [5]?
• How can we leverage and e�ciently manage the
provenance accumulated in the process of extracting
information from text? Can we use machinery that
is based on firm mathematical foundations such as
the provenance semirings in databases [30]?

The framework of document spanners (spanners
for short) has been established with the aim of pro-
viding the theoretical basis to pursue the above
questions and build the foundations of relational
principles in IE [21]. It has been originally intro-

6 SIGMOD Record, June 2021 (Vol. 50, No. 2)

duced as the theoretical basis underlying IBM Sys-
temT. Formally, in this framework a document is a
string d over a finite alphabet, a span of d represents
a substring of d by its start and end positions, and
a spanner is a function that maps every document
d into a relation over the spans of d [21].

The most studied instantiation of spanners is
the class of regular spanners—the closure of regex-
formulas (regular expressions with capture variables)
under the standard operations of the relational alge-
bra (projection, natural join, union, and di�erence).
Equivalently, the regular spanners are the ones ex-
pressible as variable-set automata (vset-automata for
short)—nondeterministic finite-state automata that
can open and close capture variables. These span-
ners extract from the text relations wherein the cap-
ture variables are the attributes. The vset-automata
are computationally challenging since number of ex-
tracted tuples can be exponential in the size of the
automaton; hence, combined with the input string,
a vset-automaton constitutes a compact represen-
tation of a relation, similarly to the concept of a
Factorized Database (FDB) [44]; and as in FDB, we
aim to evaluate queries over the represented relations
e�ciently, without materializing these relations.

In the remainder of this article, we will describe
some of the research progress that has been made
over recent years in an attempt of addressing the
aforementioned questions. While we skip (for lack
of space) any discussion on aspects of expressive-
ness that have been thoroughly studied [21, 25, 41,
48, 50, 57, 58], we will review recent progress on
the evaluation complexity of spanners [4, 6] (Sec-
tion 3), the incorporation of provenance and aggre-
gate queries [15, 18] (Section 4) and parallel evalua-
tion [16] (Section 5).

We note that much of the content of this article
is based on prior publications of the authors [14,
15, 16, 17, 18, 19], where the reader can find the
technical details that we omit here.

2. SPANNERS IN A NUTSHELL
We view a document (or word) d as a finite se-

quence of symbols from a finite alphabet �. That
is, we have d = ‡1 · · · ‡n where ‡i œ � for every
i œ {1, . . . , n}. We denote the length n of d as |d|.
A span of d is an expression of the form [i, jÍ with
1 Æ i Æ j Æ n + 1, representing the interval of d that
starts with the i-th symbol and ends right before the
j-th symbol. For instance, the span [23, 30Í on the
document in Figure 1 represents the interval that
starts at position 23 and ends right before position
30. For a span [i, jÍ of d, we denote by d[i,jÍ the
word ‡i · · · ‡j≠1. That is, for the document d in
Figure 1, d[23,30Í is the word Belgium.

A document spanner is a function that transforms
documents to span relations, which are database
relations wherein every value is a span [21]. To

a span relation we can associate a string relation,
which is obtained by replacing every span [i, jÍ in
the span relation with the string d[i,jÍ.

Example 2.1. Consider the document in Figure 1.
The table at the bottom left depicts a span relation
over the document. The relation at the bottom right
is the corresponding string relation, from which we
see that the spanner extracts locations along with the
corresponding number of events from the document.

In more formal terms, spanners use span variables
from an infinite set Vars, which is disjoint from the
alphabet �. Let V be a finite subset of Vars. A
document spanner (henceforth spanner) over V is a
function S that maps each document d to a finite
|V |-ary relation where the variables in V serve as
attribute names and all the values are spans of d.
(We denote by |X| the cardinality of a set X.)

Spanners can be specified using a wide range of
formalisms. We focus here on formalisms that are
based on regular languages, but the literature has
examples that go beyond that, such as core span-
ners [21, 57] (that can also be represented also via
SpLog [25]), context-free languages [48], and Datalog
for spanners [50].

2.1 Regular Spanners
The most studied class of spanners is the class

of regular spanners. Such spanners can be defined
using generalized regex formulas, which are regular
expressions with capture variables. Formally, we
define their syntax with the inductive rule
– := Á | ‡ | x„ | ‰x | (– ‚ –) | (– · –) | –

ú
,

where Á denotes the empty word, ‡ œ �, x œ Vars,
‚ denotes disjunction, · denotes concatenation, and
ú denotes Kleene closure. We usually leave the nota-
tion of concatenation implicit. Here x„ and ‰x are
the operations that do not match a symbol in the
input document, but rather “open” and “close” the
variable x, respectively. To each generalized regex
formula –, we can associate a language L(–) over the
set of symbols �‡{x„ | x œ Vars}‡{‰x | x œ Vars}
using the standard semantics of regular expressions.
Furthermore, we denote the set of variables that
occur in – by Vars(–) (similarly for words w). In
order to properly define a spanner, generalized regex
formulas need some syntactic restrictions. In partic-
ular, we need to ensure that
(a) every variable is “opened” before it is “closed”:

for every word w œ L(–) and every x œ Vars(–),
we have that x„ occurs before ‰x in w and

(b) every variable is “opened” and “closed” exactly
once: for every word w in L(–) and every x œ
Vars(–), each of x„ and ‰x appears exactly
once in w.

We call – functional if it meets these two condi-
tions. From now on in the paper, we assume that
all generalized regex formulas are functional.

SIGMOD Record, June 2021 (Vol. 50, No. 2) 7

T h e r e Û a r e Û 7 Û e v e n t s Û i n Û B e l g i u m , Û 9 - 1 5 Û i n Û F r a n c e , Û t h r e e Û i n Û B e r l i n .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

xloc xevents

[23, 30Í [11, 12Í
[40, 46Í [32, 36Í
[57, 63Í [48, 53Í

d fw(d)
7 7
9-15 9
three 3

dxloc dxevents w(d, t)
Belgium 7 7
France 9-15 9
Berlin three 3

Figure 1: A document d (top), a span relation R (bottom left), a partial function fw (bottom
middle), and the corresponding string relation with weights w(d, t) from weight function w :=
(xevents, fw) (bottom right).

Before we explain the semantics of generalized
regexes, we look at an example, in which we use �
as a shorthand for

x
‡œ� ‡.

Example 2.2. Consider again the document in Fig-
ure 1. Extracting the numbers (sequences of digits)
from this document can be done with the regex

�ú(Û ‚ -) x„ (0 ‚ 1 ‚ · · · ‚ 9)ú ‰x (Û ‚ -)�ú
.

Intuitively, the this regex starts by reading an ar-
bitrary prefix, then reads the blank symbol Û or a
dash -, and “opens” the variable x. The variable
x is “closed” after reading an arbitrary number of
digits, followed by a blank symbol or a dash and an
arbitrary postfix. As such, the regex extracts the span
relation containing the spans [11, 12Í, [32, 33Í, and
[34, 36Í from the document in Figure 1.

We define the semantics of a (functional) regu-
lar spanner –. Observe that each word w œ L(–)
encodes two things:

• a document doc(w), which is obtained from w

by deleting the symbols of the form x„ and ‰x

for variables x; and
• a tuple tup(w) of spans that is obtained from

the positions where x„ and ‰x occur in w.
The former is rather clear, but we explain the latter
a bit more precisely. Since – is functional, every
word w œ L(–) can be written as

w = ux x„ vx ‰x wx ,

in a unique manner for each x œ Vars(–). The tuple
tup(w) maps each variable x œ Vars(w) to the span
[ix, jxÍ where ix = | doc(ux)| and jx = ix+| doc(vx)|.
Notice that doc ensures that the indices ix and
jx refer to positions in the document and do not
consider other variable operations.

We can now associate to – a spanner that maps
every document d to

–(d) := {tup(w) | w œ L(–) and doc(w) = d} .

Notice that –(d) is indeed a span relation.
Spanners can be defined using finite automata.

Indeed, since L(–) is just a regular language, we can
just as well use non-deterministic finite automata
over the alphabet � ‡ {x„ | x œ Vars} ‡ {‰x | x œ
Vars} to define it. Such automata, that therefore

also define the class of regular spanners, are called
variable-set automata (vset-automata for short) in
the literature. Just as generalized regexes, they can
open and close variables.

2.2 Regular Spanners Are Robust
Generalized regex formulas can define words of the

form x„ a y„ b ‰x c ‰y, where the opening and clos-
ing operations of variables is not “properly” nested.
The more conventional way of incorporating vari-
ables (e.g., in Perl regular expressions) is via “captur-
ing” (or “capture groups”) where variables take on
complete sub-expressions of the regular expression
and, in particular, feature proper nesting of variable
assignments. In our formalism, such expressions
correspond to a restriction of the generalized regex
formulas, as we do next.

We define the syntax of regex formulas with the
recursive rule

– := ÿ | Á | ‡ | (– ‚ –) | (– · –) | –
ú | x„ – ‰x ,

Although spanners defined by regex formulas are
expressively weaker than those defined by general-
ized regex formulas, their expressiveness becomes the
same again when they are closed under the relational
algebra operators. Since spanners produce span rela-
tions, thus objects that live in relational database
systems, it is natural to ask ourselves whether the
expressiveness of a class spanners increases if we
additionally allow their output span relations to be
manipulated by the relational algebra operations:
select, project, join, union, and di�erence.

Note that the algebraic operators view spans as
atomic values and, in particular, disregard the un-
derlying document. For instance, in the natural
join of two spanners S and S

Õ, the join condition
on two tuples t œ S(d) and t

Õ œ S
Õ(d) is that, for

all x œ Vars(S) fl Vars(SÕ), the spans [ix, jxÍ := t(x)
and [iÕ

x, j
Õ
xÍ := t

Õ(x) are equal: ix = i
Õ
x and jx = j

Õ
x.

Similarly, the atomic predicates of the selection in-
volve equality and disequality of spans (and not their
associated strings). Selection conditions that involve
the equality of the associated substrings give rise to
core spanners that we discuss in the next section.

8 SIGMOD Record, June 2021 (Vol. 50, No. 2)

For any class S of spanners, we write S with RA
to denote the closure of S under these relational
algebra operations.

Theorem 2.3 (Fagin et al. [21, 22]). The following
are equally expressive:
(a) vset-automata
(b) generalized regex formulas
(c) regex formulas with RA
(d) vset-automata with RA
(e) generalized regex formulas with RA

The result shows that regular spanners are a very
robust class. For this reason, we will focus our
attention in this article mostly on regular spanners.

2.3 Extensions of Regular Spanners
Other languages have been studied in connection

to regular spanners. For example, the core spanners
are the closure of the regular spanners under the
positive relational algebra (union, projection and
natural join) along with the selection operator that
is based on the string-equality predicate. Fagin et
al. [21] showed that every core spanner can be rep-
resented as a regular spanner followed by a filtering
based on string equality among variables (namely
the Core Simplification Lemma [21, Lemma 4.19]).
Peterfreund et al. [50] considered the application
of Datalog on top of regular spanners, and showed
that the resulting language has precisely the ex-
pressiveness of the class of spanners computable in
polynomial time.

3. EVALUATION
We are now ready to discuss central problems that

are associated to evaluating spanners.

3.1 Enumerating the Output
Similarly to database queries, complexity analysis

for spanners should account for the fact that they
are required to produce a stream with potentially
many answers. Hence, we adopt complexity notions
of enumeration problems. Moreover, the complexity
of database queries has been studied under various
yardsticks of tractability and hardness, including
data complexity (where the query is fixed and the
data is the input), combined complexity (where both
are the input), course-grained complexity (e.g., poly-
nomial vs. exponential time) and fine-grained com-
plexity (e.g., linear vs. quadratic time). Notably,
past research has established characterizations of
conjunctive queries that admit enumeration with a
constant delay (i.e., time between consecutive an-
swers) after linear-time preprocessing, that is, the
time that is required just to read the input and then
write the answers one by one [7, 11]. The complex-
ity of evaluating regular spanners has been studied
under these complexity concepts, and the strongest
guarantee is by Amarilli et al. [3].

Eval
Input: Spanner S and document d.
Task: Compute S(d).

Theorem 3.1 ([3, Theorem 1.1]). Let – be a gen-
eralized regex formula and d be a document. It is
possible to enumerate the span relation –(d) with
linear preprocessing and constant delay in |d|, and
polynomial preprocessing and delay in |–|.

This result was a culmination of a line of work on
enumeration of the answers of MSO-definable queries
on words and trees [1, 2, 4, 9, 24, 39, 42, 43, 46, 47].
It should be noted that some of this work considers
the underlying word or tree to be static, while others
allow updates [2, 4, 9, 24, 39, 42, 43, 46, 47], which
is technically a very di�erent setting.

3.2 Random Sampling and Counting
The problem of answer enumeration goes hand in

hand with those of counting answers (i.e., calculat-
ing |S(d)|) and sampling answers (i.e., producing a
random tuple t œ S(d) with a uniform probability
1/|S(d)|). When enumerating a large number of an-
swers, one wishes to count the answers, faster than
actually producing all answers, in order to know how
far along she is, and one can sample answers in order
to get insights with statistical significance about the
answer space. The two tasks are related, as sampling
techniques often require counting and (approximate)
counting often requires sampling [6, 32].

We parameterize the counting problem by a class
S of spanners, since the problem is intractable in
general and we are interested in classes that make
the problem e�ciently solvable.

Count for S
Input: Spanner S and document d.
Task: Compute |S(d)|.

This problem has mostly been studied for spanners
that are represented by vset-automata. The reason
is that notions such as unambiguity, which lead
to better complexities, are more established on au-
tomata models. Indeed, the following theorem states
that, Count is tractable if the vset-automaton is
unambiguous, whereas it is intractable for the gen-
eral class of vset-automata. Loosely explained, a
vset-automaton A is said to be unambiguous if, for
every document d, every tuple in A(d) is witnessed
by a single run of A.

Throughout this article, we denote by VSA the
set of all functional vset-automata and by uVSA the
subset thereof that is unambiguous.
Theorem 3.2 ([6, 24]). The following holds for
spanners given as vset-automata:
(a) Count is spanL-complete.
(b) Count is in FP for uVSA.
(c) Count can be approximated by an FPRAS.

SIGMOD Record, June 2021 (Vol. 50, No. 2) 9

Part (a) of the theorem was proved by Floren-
zano et al. [24, Theorem 5.2] and parts (b) and
(c) were proved by Arenas et al. [6, Corollaries 4.1
and 4.2]. The complexity class spanL is generally
considered to be an intractable class. A canonical
problem that is spanL-complete is #NFA: given a
non-deterministic finite automaton A and an integer
n, how many words in L(A) have length n? The
#NFA problem has also been proved to be #P-
complete by Kannan et al. [33]. (Indeed, under
the type of reductions considered by Kannan et al.,
spanL = #P.)

Parts (b) and (c) of Theorem 3.2 are tractability
results. That is, Count can be solved exactly in
polynomial time (FP) if spanners are given by un-
ambiguous vset-automata. Part (c) of Theorem 3.2
states that, even though exactly solving Count is
intractable for VSA, which we know by part (a), it
is possible to approximate the answer with a fully
polynomial-time approximation scheme (FPRAS): a
randomized algorithm that, given S, d and Á > 0,
returns an approximation of |S(d)| within a multi-
plicative factor of 1 ± Á, with high probability (say
3/4) and running time bounded by a polynomial in
|S|, |d| and 1/Á.

Furthermore, the scientific breakthrough of finding
the FPRAS in Theorem 3.2 also led to the discov-
ery of a polynomial-time Las Vegas uniform gener-
ator (PLVUG) for the outputs of vset-automata: a
polynomial-time randomized algorithm that, given
S and d, returns a uniformly sampled t œ S(d) and
is allowed to fail with a small probability (say, 1/4).

Counting the answers, as well as sampling thereof,
is a special form of an aggregation operation over the
answers. In the next section, we look more generally
at aggregate queries with spanners.

4. WEIGHTS AND AGGREGATION
The list of practically relevant computational tasks

for spanners does not end with computing the en-
tire output or counting the size of the output. In
many text analysis tasks, it is desirable to compute
aggregate functions over the output. For example,
Radinsky et al. [52] investigate patterns in textual
news in order to make predictions. In this context,
one may be interested in sequences of events that
are close to each other in the text and compute ag-
gregate functions over values assigned to such events.
Such values can be, for instance, monetary quantities
if we focus on financial events, or casualty counts if
we look for conflicts. Such scenarios are common in
subsequence mining [8, 52].

We now give a drastically simplified scenario where
aggregation plays a central role. Furthermore, the
example illustrates why it may be interesting to
avoid the computation of huge intermediate results.

Example 4.1. Consider the following document d,
describing car configurations.

There are 30 additional options that you
can add to the default configuration of
your car. Option 1) for e140, 2) for
e900, [. . .], and the last option for e405.

Even though there are only 30 options that one
can choose from, they give rise to 230, hence over
one billion possible configurations of cars. Let – be
a spanner with Vars(–) = {x1, . . . , x30}, extracting
all possible car configurations, that is, each tuple
t œ –(d) encodes one configuration. Therefore, the
relation –(d) contains 230 = 1, 073, 741, 824 tuples.
Let w(d, t) be the price of the configuration, encoded
by t. If we would want to do aggregation over these
tuples, like computing the average or median price
of a car configuration, is it possible to avoid materi-
alizing the relation containing the 230 tuples?

The above example is indeed just a toy example,
but in e�ect the question is whether the material-
ization of an intermediate result of size in O(|d||–|)
can be avoided if one is interested in computing an
aggregate value. A scenario where this question may
also arise is in the development phase, where one
wishes to get quick statistics about intermediate IE
functions in a live manner without actually spending
the time computing the entire set of answers.

This setting poses a range of new research ques-
tions. In fact, computing aggregate queries for span-
ners gives rise to at least two research challenges:
(a) Spanners have tuples of spans as output, but

aggregation functions act on numerical values.
So, how do we assign such numerical values,
i.e., weights to the tuples in S(d)?

(b) How do we compute the aggregation over these
weights e�ciently?

In the remainder of this section, we will discuss
initial approaches that we have investigated to tackle
these challenges.

4.1 Aggregation Functions
Before we dive into the two aforementioned re-

search challenges, we give definitions of some com-
monly used aggregation functions in databases. The
definitions assume the existence of a weight function
w that assigns weights to tuples of spans. In fact, we
will formally model weight functions more generally
as functions of the signature

w : �ú ◊ T æ Q ,

where �ú is the set of all documents (that use sym-
bols in �) and T is the set of all tuples of spans.
Using this definition, one can also take the context
of a tuple inside the document into account.

Let d be a document and S be a spanner such that
S(d) ”= ÿ. Let w be a weight function. We define
the following spanner aggregation functions:

Sum(S, d, w) :=
ÿ

tœS(d)
w(d, t)

10 SIGMOD Record, June 2021 (Vol. 50, No. 2)

Avg(S, d, w) := Sum(S, d, w)
Count(S, d)

Median(S, d, w) := median
tœS(d)

w(d, t)

Min(S, d, w) := min
tœS(d)

w(d, t)

Max(S, d, w) := max
tœS(d)

w(d, t)

It remains to discuss the weight functions in more
detail. We will discuss one instantiation here and
discuss less restrictive options in Section 4.3. The
simplest weight functions that we have considered
are single-variable weight functions w, which assign
values based on the strings selected by one variable
in the spanner. Single variable weight functions can
be specified in the input as a pair (x, fw) where x

is a variable and fw is a partial function from the
set of all words to Q. The weight of each tuple t is
then defined as

w(d, t) = fw(dt(x)).

Recall that our tuples of spans are partial functions
t that map variables to spans. Therefore, t(x) is
a span and dt(x) is a subword of d. We note that
this notion can be easily extended to constantly
many variables [14]. We illustrate these notions on
a simple example.

Example 4.2. Consider again the document in Fig-
ure 1 and assume that we wish to calculate the total
number of mentioned events. The table at the bot-
tom left depicts a possible extraction of locations
with their number of evens. The table at the bot-
tom middle depicts the partial function fw and the
table on the bottom right depicts the corresponding
string relation with the associated weights. To get
an understanding of the total number of events, we
may want to take the sum over the weights of the
extracted tuples, namely 7 + 9 + 3 = 19.

4.2 Computational Complexity
A natural question is now in which cases it is

possible to avoid the materialization of the poten-
tially huge output S(d), which can be in the order of
O(|d|2k), where k is the number of variables of the
spanner, and at what computational cost. To this
end, one can study computational problems such as
the following, which are parameterized by a class S
of spanners.

Sum for S
Input: Spanner S œ S, document d œ �ú,

and a weight function w.
Task: Compute Sum(S, d, w).

The problems Average, Median, Min, and Max
for a class S of spanners are defined analogously and
just use a di�erent aggregation function.

Theorem 4.3 ([15]).
(a) Max and Min are in FP for VSA.
(b) Sum, Average, and Median are in FP for

uVSA and are intractable for VSA.

Here, by intractable we mean spanL-hard or #P-
hard. Note that Theorem 4.3 states that Sum,
Average and Median behave similarly to Count.
Furthermore, as long as the weights assigned to tu-
ples are non-negative, we can obtain a similar result
as Theorem 3.2: the output of these problems can
be approximated by an FPRAS. If weight functions
can assign both positive and negative weights (≠1
and +1 su�ce), then the output of these problems
cannot be approximated unless commonly believed
conjectures do not hold.1

4.3 More Powerful Weight Functions
In principle, the framework does not need to limit

itself to single-variable weight functions—the weight
of a tuple could be any function that maps the tuple
(alongside the document) into a number: the prod-
uct of multiple variables, the sum of all numbers in
the tuple, the di�erence between the leftmost and
rightmost, and so on. The di�culty with this formu-
lation is that we need to assume that this function
is given as input, yet its naive representation is a
table with an exponential number of rows (in the
size of the spanner) and it is not realistic to assume
that one can prepare it in advance. Therefore, we
need to consider compact specifications of weights,
and we do so via machine representations.
Polynomial-Time Weight Functions. A polynomial-
time weight functions w is given in the input as a
polynomial-time Turing Machine M that maps (d, t)-
pairs to values in Q and defines w(d, t) = M(d, t).

Not surprisingly, there are multiple drawbacks of
having arbitrary polynomial-time weight functions.
The first is that all considered aggregates become
intractable (i.e., #P-hard or OptP-hard), even if the
vset-automata in the input are already unambiguous.
On the other hand, a “positional” approximation of
the median is possible in the following sense. Given
a vset-automaton, a document, and a parameter
Á > 0, there is a randomized algorithm that runs in
time polynomial in the input and 1/Á and returns
a value in the (0.5 ± Á)-quantile of the data with
probability at least 3/4. (Notice that the median is
the 0.5-quantile of the data.)
Regular Weight Functions. Since single-variable
weight functions are too verbose and polynomial-
time weight functions can be considered as too pow-
erful, the question is which representation of weight
functions strikes a nice balance between complexity
and expressiveness. One candidate is the class of
1That is, depending on the aggregate, the existence of
an FPRAS would either imply that RP = NP or that
the polynomial hierarchy collapses.

SIGMOD Record, June 2021 (Vol. 50, No. 2) 11

regular weight functions that is based on the concept
of a K-Annotator [18].

We consider (unambiguous) functional weighted
vset-automata over the tropical semiring (also called
min/plus semiring)2 and the numerical semiring.

A regular weight function w is represented by
a functional weighted vset-automaton W (over a
semiring K) and defines w(d, t) as the K-sum of the
weights that W assigns to the ref-words w that pro-
duce the tuple t on the document d, that is, the
ref-words w such that doc(w) = d and tup(w) is the
tuple t, restricted to the variables Vars(W).

There is indeed a natural hierarchy in these classes
of weight functions. If we denote by SVar the single-
variable weight functions, Reg the regular weight
functions, UReg the regular weight functions given
by unambiguous weighted spanners, and Poly the
polynomial-time weight functions, then we have the
following.

Theorem 4.4 ([14, 15, 18]). SVar ™ UReg ™
Reg ™ Poly.

We will now give some complexity results for reg-
ular weight funcitons.

Theorem 4.5 ([15]). The following holds for span-
ners given as uVSA-automata and UReg weight
functions over the tropical or numerical semiring:
(a) The problems Min, Max, Sum, and Average

are in FP.
(b) The problem Median is #P-hard.

Recall that, even though Median is #P-hard for
UReg weight functions and uVSA-automata, the
(0.5 ± Á)-quantile can be approximated, even for
Poly weight functions and vset-automata.

The complexity landscape for regular weight func-
tions is a bit more involved and strongly depends
on the semiring of the weight function. For in-
stance, Sum and Average for uVSA and regular
weight functions over the numerical semiring are
tractable, whereas in the same setting Min and
Max are intractable. Orthogonaly, Min is tractable
for VSA and regular weight functions over the tropi-
cal semiring whereas Max, Sum, and Average are
intractable. We refer to Doleschal et al. [15] and
Doleschal [14] for a more complete list of results.

5. PARALLELIZATION
In this section, we discuss the aspect of paralleliza-

tion in query evaluation. When applied to a large
document, an IE function may incur a high computa-
tional cost and, consequently, an impractical execu-
tion time. However, it is frequently the case that the
program, or at least most of it, can be distributed
2One can also consider the tropical semiring with
max/plus, in which case the complexity results are anal-
ogous to the ones we have for the tropical semiring with
min/plus, with Min and Max interchanged.

by separately processing smaller chunks in parallel.
For instance, Named Entity Recognition (NER) is of-
ten applied separately to di�erent sentences [34, 35],
and so are instances of Relation Extraction [40, 63].
Algorithms for coreference resolution (identification
of spans that refer to the same entity) are typically
bounded to limited-size windows; for instance, Stan-
ford’s well known sieve algorithm [53] for coreference
resolution processes separately intervals of three sen-
tences [36]. Sentiment extractors typically process
individual paragraphs or even sentences [45]. It is
also common for extractors to operate on windows
of a bounded number N tokens (a.k.a. N -grams or
local contexts) [12, 29]. Finally, machine logs often
have a natural split into semantic chunks: query logs
into queries, error logs into exceptions, web-server
logs into HTTP messages, and so on.

Tokenization, N -gram extraction, paragraph seg-
mentation (identifying paragraph breaks, whether or
not marked explicitly [31]), sentence boundary detec-
tion, and machine-log itemization are all examples
of what we call splitters. When IE is programmed
in a development framework such as the aforemen-
tioned ones, we aspire to deliver the premise of being
declarative—the developer specifies what end result
is desired, and not how it is accomplished e�ciently.
In particular, we would like the system to automati-
cally detect the ability to split and distribute. This
ability may be crucial for the developer (e.g., data
scientist) who often lacks the expertise in software
and hardware engineering. We recently embarked
on a principled exploration of automated inference
of split-correctness for information extractors [17]:
the ability to detect whether an IE function can be
applied separately to the individual segments of a
given splitter, without changing the semantics.

The basic motivation comes from the scenario
where a long document is pre-split by some con-
ventional splitters (like the aforelisted ones), and
developers provide di�erent IE functions. If the sys-
tem detects that the provided IE function is correctly
splittable, then it can utilize its multi-processor or
distributed hardware to parallelize the computation.
Moreover, the system can detect that IE programs
are frequently splittable, and recommend the sys-
tem administrator to materialize splitters upfront.
Even more, the split guarantee facilitates incremen-
tal maintenance: when a large document undergoes
a minor edit, like in the Wikipedia model, only the
relevant segments (e.g., sentences or paragraphs)
need to be reprocessed.

5.1 Splittability and Split-Correctness
A splitter is just a spanner with one variable. As

such, it always transforms a document into a set
of spans, which means that it can be understood
as a spanner that splits the input document into
pieces of text, hence the name splitter. Typical such
pieces of text in practice are sentences, paragraphs,

12 SIGMOD Record, June 2021 (Vol. 50, No. 2)

N -grams or HTTP requests. Notice that the spans
in the output can overlap, as in N -grams.

In order to define splittability, we need to define
the composition S ¶ P of a spanner S and a splitter
P . Intuitively, S ¶ P is the spanner that results
from evaluating S on every part of the document
extracted by P , with a proper shift of the indices.
More formally we obtain the output of S ¶ P on
a document d as follows. For each span s œ P (d),
we consider the word ds. We then run S on each
such ds and shift the indices of the output so that
the spans refer to the intended place in d instead of
ds. Concretely, this means that, if s = [i, jÍ and if
[is, jsÍ œ S(ds), then we output [i+ is ≠1, i+ js ≠1Í.

Example 5.1. Consider the document in Figure 2
and a splitter P that extracts subsentences. This
can be done, for example, by the following extended
regular expression, where �Õ = � ≠ {, }.

(Á ‚ (�ú,)) x„ �Õú ‰x ((,�ú) ‚ .) .

Figure 2 shows the corresponding span relation. The
composition of the spanner S from our running ex-
ample and P is obtained by executing S on the sub-
documents extracted by P (cf. Figure 3) and taking
the union of the three relations, where every span is
shifted accordingly. That is, the spans of the second
relation – [10, 16Í, [2, 6Í – are shifted by 31 ≠ 1 and
the spans of the last relation – [11, 17Í, [2, 7Í – are
shifted by 48 ≠ 1. Observe that the resulting span
relation is exactly the span relation in Figure 1.

Since executing S on each individual output of P

enables parallelization, it is interesting if there is a
di�erence between the output of S and S¶P on some
document d. This property clearly depends on the
definitions of S and P . We define this formally next.
For the following definitions, recall that a spanner
is a function from documents to span relations. As
such, we consider two spanners to be equal if this
function is the same.

A spanner S is self-splittable by a splitter P if

S = S ¶ P .

If this is the case, then one can always run P over
the input document d, run S over every extracted
subdocument in parallel, and output the union of
the obtained results (with indices properly shifted).
The obtained result is then the same as S(d), for
every document d.

Another interesting scenario is the more general
one where we allow the spanner on the chunks pro-
duced by P to be some spanner SP di�erent from
S. In this case, we say that S is splittable by P via
SP , which is formally defined as

S = SP ¶ P .

If, for given S and P , such a spanner SP exists, we
say that S is splittable by P .

With these definitions, we formally define the fol-
lowing computational problems, which are again
parameterized by a class C of spanners.

Split-Correctness for C
Input: Spanners S, SP œ C and splitter

P œ C.
Question: Is S splittable by P via SP ? In

other words, is S = SP ¶ P?

Splittability for C
Input: Spanner S œ C and splitter P œ C.
Question: Is S splittable by P ? In other words,

is there a spanner SP œ C, such that
S = SP ¶ P?

Self-Splittability for C
Input: Spanner S œ C and splitter P œ C.
Question: Is S self-splittable by P? In other

words, is S = S ¶ P?

Note that the problem Self-Splittability is a
special case of Split-Correctness by choosing
SP = S. It can also be seen as a restriction of
Splittability in the sense that it implies Split-
tability.

We illustrate these notions by a few examples.
Many spanners S that extract person names do not
look beyond the sentence level. This means that,
if P splits to sentences, it is the case that S is
self-splittable by P . Now suppose that S extracts
mentions of email addresses and phone numbers
based on the formats of the tokens, and moreover,
it allows at most three tokens in between; if P is
the N -gram splitter, then S is self-splittable by P

for N Ø 5 but not for N < 5. As another example,
suppose that we analyze financial reports. Assume
that S extracts those paragraphs that contain spe-
cific keywords and that P splits reports into single
paragraphs. Then S is self-splittable by P . It is also
splittable by P via the spanner SP that selects the
entire document if it contains the keywords.

5.2 Splitter Synthesis
When a spanner S is splittable by P , it is natural

to ask whether one can synthesise a spanner SP

such that S = SP ¶ P . It turns out that, in the case
of regular spanners, this is indeed the case. One
can define a canonical spanner S

can
P such that S is

splittable by P via S
can
P if and only if S is splittable

by P at all.

Theorem 5.2 ([17]). Let S be a spanner and P be
a splitter. Then S is splittable by P if and only if S

is splittable by P via S
can
P .

SIGMOD Record, June 2021 (Vol. 50, No. 2) 13

T h e r e Û a r e Û 7 Û e v e n t s Û i n Û B e l g i u m , Û 9 - 1 5 Û i n Û F r a n c e , Û t h r e e Û i n Û B e r l i n .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

x dx

[1, 30Í There are 7 events in Belgium
[31, 46Í 9-15 in France
[47, 63Í three in Berlin

Figure 2: A document d (top) and the span relation (bottom) extracted by a splitter P , which
splits a document into its sub sentences.

T h e r e Û a r e Û 7 Û e v e n t s Û i n Û B e l g i u m Û 9 - 1 5 Û i n Û F r a n c e Û t h r e e Û i n Û B e r l i n
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

xloc xevents

[23, 30Í [11, 12Í
xloc xevents

[10, 16Í [2, 6Í
xloc xevents

[11, 17Í [2, 7Í

Figure 3: The three sub sentences, extracted from the document in Figure 2 and the corre-
sponding span relations.

The definition of S
can
P is the following:

S
can
P (d) :=

)
t | ’d

Õ œ �ú
, ’s œ P (dÕ) such that

d
Õ
s = d, it holds that (t ∫ s) œ S(dÕ)

*
.

Intuitively, S
can
P selects all tuples that are “safe to

select”, since they don’t contradict splittability, in-
dependent of the context.

Here, if s = [i, jÍ, then the tuple (t∫s) denotes the
tuple obtained from t by “shifting it i ≠ 1 positions
to the right,”, that is, adding i ≠ 1 to every index
in t. Interestingly, Theorem 5.2 does not assume
that S or P are regular. But if they are, then the
definition of S

can
P is useful to actually construct SP .

5.3 Complexity of Splitting Problems
We now have a look at the complexity of the

aforementioned splitting problems. It turns out that
they are all decidable and even polynomial-time
solvable if the involved spanners are unambiguous
and they satisfy a condition that we call highlander
condition that we explain next.

We say that [i, jÍ covers [iÕ
, j

ÕÍ if i Æ i
Õ Æ j

Õ Æ j.
Furthermore, if t is a tuple, we say that [i, jÍ covers
t if [i, jÍ covers t(x) for every variable x œ Vars(t).
A spanner S and a splitter P satisfy the highlander
condition if for every document d and every tuple
t œ S(d) there exists at most one span s œ P (d)
which covers t.3

We note that the highlander condition is expected
to be satisfied in many cases in practice. For in-
stance, if the splitter is disjoint (i.e., only outputs
spans [i, jÍ, [iÕ

, j
ÕÍ such that i Æ j Æ i

Õ Æ j
Õ or

i
Õ Æ j

Õ Æ i Æ j) and the spanner is proper (which
is the case if it has at least one variable and does
3This is in acclimation to the tagline “There can be only
one” of the Highlander movie.

not return empty spans) then the highlander con-
dition is satisfied. Typical splitters that are used
in the context of tokenization, sentence boundary
detection, paragraph splitting, and paragraph seg-
mentation are disjoint. Examples of non-disjoint
splitters include N -grams and pairs of consecutive
sentences.

Theorem 5.3 ([17]). The following holds for span-
ners and splitters given as functional vset-automata:
(a) The Split-Correctness problem is complete

for PSPACE, Splittability is PSPACE-hard
and in EXPSPACE, and Self-Splittability
is PSPACE-complete.

(b) Assuming the highlander condition and unambi-
guity of vset-automata, Split-Correctness
is in PTIME while Splittability is PSPACE-
complete and, yet, Self-Splittability is in
PTIME.

Finally, we note that the highlander condition can
be e�ciently tested.

Proposition 5.4 ([17]). Let S be a regular span-
ner and P be a splitter, given as functional vset-
automata. Then it can be checked in polynomial
time whether S and P satisfy the highlander condi-
tion.

5.4 Reasoning with Black-Box Spanners
While we have a good understanding of splitta-

bility in the case of regular spanners, spanners in
practice are often not regular and can be defined by
programs that are way more complex than regular
expressions or automata. It is even possible that
they are just given to us as black-box algorithms
for which we know some properties, such as the fact
that they do not look beyond chunks of consecutive

14 SIGMOD Record, June 2021 (Vol. 50, No. 2)

sentences. In the following examples, we denote by
S(x, y) that spanner S uses the variables x and y.
Example 5.5. Consider the spanner S that seeks
to extract adjectives for Galaxy phones from reports.
We define this spanner by joining three spanners:

The spanner S1(x, y) is given by the regex formula
�ú

x„ Galaxy[A ≠ Z] \ dú ‰x �ú
y„ �ú ‰y �ú

that extracts mentions of Galaxy brands (e.g., Galaxy
A72 and Galaxy S21) followed by substrings y that
occur right before a period.

The spanner S2(x, x
Õ) is a coreference resolver

(e.g., the sieve algorithm [53]) that finds spans x
Õ

that coreference spans x. The spanner S3(xÕ
, y) finds

pairs of noun phrases x
Õ and attached adjectives y

(e.g., based on a Recursive Neural Network [61]).
For example, consider the review “I am happy

with my Galaxy A72. It is stable.” Here, in one
particular match, x will match (the span of) Galaxy
A72, x

Õ will match it (being an anaphora for Galaxy
A72), and y will match stable. (Other matches are
possible too.)

How should a system find an e�cient query plan to
this join on a long report? Naively materializing each
relation might be too costly: S1(x, y) may produce too
many matches, and S2(x, x

Õ) and S3(xÕ
, y) may be

computationally costly. Nevertheless, we may have
the information that S2 is splittable by paragraphs
and that S3 is splittable by sentences (hence, by
paragraphs). This information su�ces to determine
that the entire join S1(x, y) ÛÙ S2(x, x

Õ) ÛÙ S3(xÕ
, y) is

splittable, hence parallelizable, by paragraphs.
Example 5.6. Now consider the spanner that joins
two spanners: S(x) extracts spans x followed by the
phrase “is kind” (e.g., “Barack Obama is kind”).
The spanner S

Õ(x) extracts all spans x that match
person names. Clearly, the spanner S(x) does not
split by a natural splitter, since it includes, for in-
stance, the entire prefix of the document before “is
kind.” However, by knowing that S

Õ(x) splits by sen-
tences, we know that the join S(x) ÛÙ P

Õ(x) splits by
sentences. Moreover, by knowing that S

Õ(x) splits
by 3-grams, we can infer that S(x) ÛÙ S

Õ(x) splits by
5-grams. Here, again, the holistic analysis of the
join infers splittability in cases where intermediate
spanners are not splittable.

It is therefore also important to develop a theory
of splittability in the presence of such black-box
spanners. Next, we mention a few results that do
not assume regularity. The first one states that the
composition operator ¶ is associative and transitive.
Theorem 5.7 ([17]). The spanner/splitter compo-
sition is associative and transitive. That is, for all
spanners S and splitters P1, P2 it holds that
(a) S ¶ (P1 ¶ P2) = (S ¶ P1) ¶ P2,
(b) if S is splittable by P1 and, furthermore, P1 is

splittable by P2, then S is splittable by P2, and

(c) if S is self-splittable by P1 and, furthermore, P1
is self-splittable by P2 then S is self-splittable
by P2.

As we will see in the following example, span-
ner composition does not distribute over the join
operator in general.

Example 5.8. Let
S1 := �ú

x1„ a ‰x1 x2„ b ‰x2 �ú
,

S2 := �ú
x2„ b ‰x2 x3„ a ‰x3 �ú

, and
P := �ú

x„ �� ‰x �ú
.

That is, S1 extracts every “a
ÕÕ in variable x1 which

is followed by a “b
ÕÕ, extracted in variable x2, S2

extracts every “b
ÕÕ in variable x2 which is followed

by an “a
ÕÕ that is extracted in variable x3, and P

extracts all substrings of length two.
Let S := S1 ÛÙ S2 be the join of both spanners and

let d = aba. It follows that P (d) = {[1, 3Í, [2, 4Í}
and S(d) = {t}, where t(x1) = [1, 2Í, t(x2) = [2, 3Í,
and t(x3) = [3, 4Í. As there is no span s œ P (d)
that covers t œ S(d) it follows directly that S is not
splittable by P and therefore S ”= S ¶ P . However,
both spanners, S1 and S2, are self-splittable by P

which implies that
(S1 ¶ P) ÛÙ(S2 ¶ P) = S1 ÛÙ S2 = S .

It follows directly that
(S1 ÛÙ S2) ¶ P ”= (S1 ¶ P) ÛÙ(S2 ¶ P).

Therefore, in general it is not true that spanner
composition does distributes over join.

However, composition distributes over join if the
splitter is disjoint, the spanners share at least one
variable, and the join of both spanners restricted to
the shared variables is proper.

Theorem 5.9 ([17]). Let P be a disjoint splitter and
S1 and S2 be spanners such that X := Vars(S1) fl
Vars(S2) ”= ÿ and the spanner S1 ÛÙ S2 restricted to
the variables in X is proper. Then

(S1 ÛÙ S2) ¶ P = (S1 ¶ P) ÛÙ(S2 ¶ P) .

Hence, Theorem 5.9 illustrates that knowing prop-
erties of spanners allows to establish query plans
that might considerably optimize the computation.

6. CONCLUSIONS AND OUTLOOK
Viewing IE as a relational query over relations

extracted from text allows us to incorporate and
benefit from database paradigms in text process-
ing. We have given an overview of a list of research
e�orts in this general direction, including query eval-
uation and complexity analysis, aggregate queries,
provenance, and parallel-correctness. This list ex-
cludes some other e�orts (due to space limitation).
In particular, other database problems have been

SIGMOD Record, June 2021 (Vol. 50, No. 2) 15

studied in the context of document spanners, includ-
ing recursion and expressiveness aspects [21, 25, 26,
27, 41, 48, 50, 57, 58], extracting incomplete infor-
mation and data cleaning [17, 23, 41, 49], ranked
enumeration [10, 18], queries over dynamic data (in-
cremental maintenance) [28], and ontology mediated
IE [37, 56].

Many directions are left open for future research,
including aspects of system implementation, a the-
ory of spanners based on artificial neural networks,
aspects of explanations to query answers (that has
gained considerable attention by the database com-
munity over the past decade), and so on. Moreover,
some of the past research has only scratched the sur-
face of the studied topics; to highlight a particular
direction, we believe that there is much impactful
investigation to be done on query optimization with
black-box extractors based on known behavior con-
straints (e.g., splittability [17]). Finally, we believe
that understanding queries over non-relational data
using the relational view and its establishment over
decades, as spanners facilitate in the case of text,
could be followed by other modalities of data such
as graphs, images, and voice.
Acknowledgment. This work was supported by the
German-Israeli Foundation for Scientific Research
and Development (GIF), grant I-1502-407.6/2019.

References
[1] A. Amarilli, P. Bourhis, L. Jachiet, and S. Mengel.

A circuit-based approach to e�cient enumeration.
In ICALP, pages 111:1–111:15, 2017.

[2] A. Amarilli, P. Bourhis, and S. Mengel. Enumer-
ation on trees under relabelings. In ICDT, pages
5:1–5:18, 2018.

[3] A. Amarilli, P. Bourhis, S. Mengel, and M. Niewerth.
Constant-delay enumeration for nondeterministic
document spanners. In ICDT, pages 22:1–22:19,
2019.

[4] A. Amarilli, P. Bourhis, S. Mengel, and M. Niewerth.
Constant-delay enumeration for nondeterministic
document spanners. ACM Trans. Database Syst.,
46(1):2:1–2:30, 2021.

[5] T. J. Ameloot, G. Geck, B. Ketsman, F. Neven,
and T. Schwentick. Parallel-correctness and trans-
ferability for conjunctive queries. Journal of the
ACM, 64(5):36:1–36:38, 2017.

[6] M. Arenas, L. A. Croquevielle, R. Jayaram, and
C. Riveros. E�cient logspace classes for enumera-
tion, counting, and uniform generation. In PODS,
pages 59–73, 2019.

[7] G. Bagan, A. Durand, and E. Grandjean. On acyclic
conjunctive queries and constant delay enumeration.
In CSL, pages 208–222, 2007.

[8] K. Beedkar, R. Gemulla, and W. Martens. A unified
framework for frequent sequence mining with sub-
sequence constraints. ACM Trans. Database Syst.,
44(3), 2019.

[9] H. Björklund, W. Gelade, and W. Martens. Incre-
mental XPath evaluation. ACM Trans. Database
Syst., 35(4):29:1–29:43, 2010.

[10] P. Bourhis, A. Grez, L. Jachiet, and C. Riveros.
Ranked enumeration of MSO logic on words. In
ICDT, pages 20:1–20:19, 2021.

[11] N. Carmeli and M. Kröll. Enumeration complexity
of conjunctive queries with functional dependencies.
Theory Comput. Syst., 64(5):828–860, 2020.

[12] J. Chen, D. Ji, C. L. Tan, and Z. Niu. Unsupervised
feature selection for relation extraction. In IJCNLP,
2005.

[13] L. Chiticariu, R. Krishnamurthy, Y. Li, S. Ragha-
van, F. Reiss, and S. Vaithyanathan. SystemT:
An algebraic approach to declarative information
extraction. In ACL, pages 128–137, 2010.

[14] J. Doleschal. Optimization and Parallelization of
RegEx Based Information Extraction. PhD thesis,
University of Bayreuth and Hasselt University, 2021.

[15] J. Doleschal, N. Bratman, B. Kimelfeld, and
W. Martens. The Complexity of Aggregates over Ex-
tractions by Regular Expressions. In ICDT, pages
10:1–10:20, 2021.

[16] J. Doleschal, B. Kimelfeld, W. Martens, Y. Nahshon,
and F. Neven. Split-correctness in information ex-
traction. In PODS, pages 149–163, 2019.

[17] J. Doleschal, B. Kimelfeld, W. Martens, F. Neven,
and M. Niewerth. Split-correctness in information
extraction. CoRR, abs/1810.03367, 2021.

[18] J. Doleschal, B. Kimelfeld, W. Martens, and L. Pe-
terfreund. Weight annotation in information extrac-
tion. In ICDT, pages 8:1–8:18, 2020.

[19] J. Doleschal, B. Kimelfeld, W. Martens, and L. Pe-
terfreund. Weight annotation in information extrac-
tion. CoRR, 2020.

[20] A. Durand. Fine-grained complexity analysis of
queries: From decision to counting and enumeration.
In PODS, pages 331–346. ACM, 2020.

[21] R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansum-
meren. Document spanners: A formal approach
to information extraction. Journal of the ACM,
62(2):12:1–12:51, 2015.

[22] R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansum-
meren. A relational framework for information ex-
traction. SIGMOD Rec., 44(4):5–16, 2015.

[23] R. Fagin, B. Kimelfeld, F. Reiss, and S. Van-
summeren. Declarative cleaning of inconsistencies
in information extraction. ACM Transactions on
Database Systems, 41(1):6:1–6:44, 2016.

[24] F. Florenzano, C. Riveros, M. Ugarte, S. Vansum-
meren, and D. Vrgo�. Constant delay algorithms
for regular document spanners. In PODS, pages
165–177, 2018.

[25] D. D. Freydenberger. A logic for document spanners.
Theory Comput. Syst., 63(7):1679–1754, 2019.

[26] D. D. Freydenberger and M. Holldack. Document
spanners: From expressive power to decision prob-
lems. Theory Comput. Syst., 62(4):854–898, 2018.

[27] D. D. Freydenberger and L. Peterfreund. Finite
models and the theory of concatenation. CoRR,
abs/1912.06110, 2019.

[28] D. D. Freydenberger and S. M. Thompson. Dynamic
complexity of document spanners. In ICDT, pages
11:1–11:21, 2020.

16 SIGMOD Record, June 2021 (Vol. 50, No. 2)

[29] C. Giuliano, A. Lavelli, and L. Romano. Exploiting
shallow linguistic information for relation extraction
from biomedical literature. In EACL, 2006.

[30] T. J. Green, G. Karvounarakis, and V. Tannen.
Provenance semirings. In PODS, pages 31–40, 2007.

[31] M. A. Hearst. Texttiling: Segmenting text into
multi-paragraph subtopic passages. Computational
Linguistics, 23(1):33–64, 1997.

[32] M. R. Jerrum, L. G. Valiant, and V. V. Vazi-
rani. Random generation of combinatorial struc-
tures from a uniform distribution. Theoretical Com-
puter Science, 43:169–188, 1986.

[33] S. Kannan, Z. Sweedyk, and S. Mahaney. Count-
ing and random generation of strings in regular
languages. In SODA, pages 551–557. SIAM, 1995.

[34] G. Lample, M. Ballesteros, S. Subramanian,
K. Kawakami, and C. Dyer. Neural architectures for
named entity recognition. In NAACL-HLT, pages
260–270, 2016.

[35] R. Leaman and G. Gonzalez. BANNER: an exe-
cutable survey of advances in biomedical named
entity recognition. In PSB, pages 652–663, 2008.

[36] H. Lee, Y. Peirsman, A. Chang, N. Chambers,
M. Surdeanu, and D. Jurafsky. Stanford’s multi-pass
sieve coreference resolution system at the conll-2011
shared task. In CoNLL, pages 28–34, 2011.

[37] D. Lembo, Y. Li, L. Popa, and F. M. Scafoglieri. On-
tology mediated information extraction in financial
domain with mastro system-t. In DSMM, 2020.

[38] Y. Li, K. Bontcheva, and H. Cunningham. SVM
based learning system for information extraction.
In DSMML, pages 319–339, 2004.

[39] K. Losemann and W. Martens. MSO queries on
trees: enumerating answers under updates. In LICS,
pages 67:1–67:10, 2014.

[40] A. Madaan, A. Mittal, Mausam, G. Ramakrishnan,
and S. Sarawagi. Numerical relation extraction with
minimal supervision. In AAAI, pages 2764–2771,
2016.

[41] F. Maturana, C. Riveros, and D. Vrgoc. Document
spanners for extracting incomplete information: Ex-
pressiveness and complexity. In PODS, pages 125–
136, 2018.

[42] M. Niewerth. MSO queries on trees: Enumerating
answers under updates using forest algebras. In
LICS, pages 769–778, 2018.

[43] M. Niewerth and L. Segoufin. Enumeration of MSO
queries on strings with constant delay and logarith-
mic updates. In PODS, pages 179–191, 2018.

[44] D. Olteanu and M. Schleich. Factorized databases.
SIGMOD Rec., 45(2):5–16, 2016.

[45] B. Pang and L. Lee. A sentimental education: Sen-
timent analysis using subjectivity summarization
based on minimum cuts. In ACL, pages 271–278,
2004.

[46] Y. Papakonstantinou and V. Vianu. Incremental
validation of XML documents. In ICDT, pages
47–63, 2003.

[47] S. Patnaik and N. Immerman. Dyn-fo: A parallel,
dynamic complexity class. In PODS, pages 210–221,
1994.

[48] L. Peterfreund. Grammars for document spanners.
In ICDT, pages 7:1–7:18, 2021.

[49] L. Peterfreund, D. D. Freydenberger, B. Kimelfeld,
and M. Kröll. Complexity bounds for relational
algebra over document spanners. In PODS, pages
320–334, 2019.

[50] L. Peterfreund, B. ten Cate, R. Fagin, and
B. Kimelfeld. Recursive Programs for Document
Spanners. In ICDT, pages 13:1–13:18, 2019.

[51] H. Poon and P. M. Domingos. Joint inference in
information extraction. In AAAI, pages 913–918,
2007.

[52] K. Radinsky, S. Davidovich, and S. Markovitch.
Learning causality for news events prediction. In
WWW, pages 909–918, 2012.

[53] K. Raghunathan, H. Lee, S. Rangarajan, N. Cham-
bers, M. Surdeanu, D. Jurafsky, and C. D. Manning.
A multi-pass sieve for coreference resolution. In
EMNLP, pages 492–501, 2010.

[54] A. Ratner, S. H. Bach, H. R. Ehrenberg, J. A. Fries,
S. Wu, and C. Ré. Snorkel: Rapid training data
creation with weak supervision. PVLDB, 11(3):269–
282, 2017.

[55] S. Sarawagi. Information extraction. Foundations
and Trends in Databases, 1(3):261–377, 2008.

[56] F. M. Scafoglieri and D. Lembo. A formal framework
for coupling document spanners with ontologies. In
AIKE, pages 155–162, 2019.

[57] M. L. Schmid and N. Schweikardt. A purely regular
approach to non-regular core spanners. In ICDT,
pages 4:1–4:19, 2021.

[58] M. L. Schmid and N. Schweikardt. Spanner evalu-
ation over SLP-compressed documents. In PODS,
2021.

[59] W. Shen, A. Doan, J. F. Naughton, and R. Ramakr-
ishnan. Declarative information extraction using
Datalog with embedded extraction predicates. In
VLDB, pages 1033–1044, 2007.

[60] J. Shin, S. Wu, F. Wang, C. D. Sa, C. Zhang, and
C. Ré. Incremental knowledge base construction
using DeepDive. PVLDB, 8(11):1310–1321, 2015.

[61] R. Socher, C. C. Lin, A. Y. Ng, and C. D. Manning.
Parsing natural scenes and natural language with
recursive neural networks. In ICML, pages 129–136,
2011.

[62] C. A. Sutton and A. McCallum. An introduction to
conditional random fields. Foundations and Trends
in Machine Learning, 4(4):267–373, 2012.

[63] D. Zeng, K. Liu, Y. Chen, and J. Zhao. Distant
supervision for relation extraction via piecewise
convolutional neural networks. In EMNLP, pages
1753–1762, 2015.

SIGMOD Record, June 2021 (Vol. 50, No. 2) 17

