
Current Trends in Data Summaries

Graham Cormode⇤

Meta AI

ABSTRACT
The research area of data summarization seeks to find
small data structures that can be updated flexibly, and
answer certain queries on the input accurately. Sum-
maries are widely used across the area of data manage-
ment, and are studied from both theoretical and prac-
tical perspectives. They are the subject of ongoing re-
search to improve their performance and broaden their
applicability. In this column, recent developments in
data summarization are surveyed, with the intent of in-
spiring further advances.

1. INTRODUCTION
The data management community makes exten-

sive use of various kinds of summaries: compact
data structures that represent a large dataset, and
allow queries to be answered with some guarantee
of accuracy. The most common example of sum-
maries come in the form of samples, where evalu-
ating a query on a sample provides an approximate
answer to the query on the full data set. Other pop-
ular summary types are Bloom filters [8], which ap-
proximately represent sets, and sketches [12], which
approximately represent vectors, as well as other
summaries targeting more specific queries. Key ap-
plication areas include approximate query process-
ing (AQP), where sampling is quite ubiquitous [43],
and distributed and stream processing [25].
The design and application of summaries is now

ubiquitous within the research community, and has
been the subject of several tutorials and books, cov-
ering developments from the late 1970s onwards [60,
45, 56, 19]. In this column, I will give a very high-
level survey of current active research directions in
data summarization, with emphasis on results from
the last few years. This is a very subjective and par-
tial view, based on topics that have been the focus
of recent papers in data management venues, or just
ones that have caught the interest of researchers in
this area. The intent is, fittingly, to draw an ap-
proximate summary of e↵orts in this area, rather
than a precise characterization.
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2. SUMMARIES FOR ML
Given the high level of interest in machine learn-

ing (ML) across computer science and beyond, it
should be no surprise that researchers are looking
to use data summaries in order to improve the ML
training process. The primary application of sum-
maries is to try to reduce the size of ML mod-
els without sacrificing their expressivity. The most
natural place to apply data summaries is in com-
pressing the information exchanged between data
owners during the training of networks. In dis-
tributed training of machine learning models (usu-
ally referred to as Federated Learning [37]), each
client holds some labeled examples, and a server
sends out a candidate model. Each client evaluates
the candidate model on their labeled examples, and
determines an update to the model, typically in the
form of a gradient vector to adjust the model pa-
rameters in order to improve the accuracy of the
model on their examples. The server will then up-
date the model based on combining these gradients,
often by moving in the direction of the average gra-
dient. However, the size of the model can be very
large, and sending the full gradient vector can have
high computational cost for each client (in terms
of uplink communication). It is natural to look
to data summaries as a way to reduce the size of
the communication, with the tradeo↵ of potentially
slightly increasing the number of steps before the
model converges, or of slightly reducing the accu-
racy of the final model that is found.
Two recent papers suggest similar approaches to

reducing communication in Federated Learning with
the use of sketches. In FetchSGD [52], the authors
propose the use of the CountSketch summary [12]
as the medium through which to convey the gra-
dient updates. CountSketch has several attractive
features: it promises to preserve the large entries of
the input vector accurately, and so using sketches
captures the most significant parts of the updates.
In addition, it is a linear summary: sketches can be
summed and subtracted, with the resulting sketch
being identical to the one we would obtain if we
had applied these operations to the input vectors
before sketching. This means that we can treat the
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sketches as if they were the full vectors, and ap-
ply various techniques from machine learning, such
as momentum (including updates from previous it-
erations at lower weight) and error compensation.
In addition, it is possible to prove results on the
speed and accuracy of convergence under standard
ML assumptions.
The FedSketch [28] paper follows a similar out-

line, also making use of CountSketch as a compres-
sion operator. It additionally considers the provi-
sion of a di↵erential privacy guarantee, taking ad-
vantage of both linearity and the sparsity of the
CountSketch transformation. Experiments and anal-
ysis demonstrate that this approach converges more
quickly than other previously proposed private fed-
erated approaches. Away from the federated set-
ting, Tai et al. propose the Weight-Median sketch
as a tool for sketching gradients, which is applied to
learn linear classifiers over streams of updates [54].
There are a number of other directions in which

summarization can assist in machine learning. An
orthogonal approach to handling the large size of
ML models in the literature is to apply quantiza-
tion to the model parameters. That is, rather than
representing each parameter with a 32 or 64 bit
floating point representation, they can instead be
represented more crudely by a much fewer number
of bits. Currently popular approaches apply fairly
simple quantization encoding – for example, using 8
bits to represent values divided uniformly between
a minimum and maximum value. This approach is
rather coarse, and can lead to errors accumulating
when multiple quantized update vectors are com-
bined together. A more promising approach might
be to use randomized representations of values, so
that errors tend to cancel out on average as more
vectors are aggregated [58]. Similarly, pruning is a
simple way to reduce the size of an update vector.
Under pruning, values in update vectors with small
magnitude are pruned to zero, and can be omitted
from reporting back to the server. An intriguing
open research direction would be to combine prun-
ing with techniques from data summarization (e.g.,
sketching), to more compactly encode the sparse
pruned updates.

3. ML FOR SUMMARIES
Just as summarization can help with machine learn-

ing, so too can machine learning help summariza-
tion. A highly impactful paper from 2018 argued
that rather than traditional indices (B-trees and the
like), it is valuable to use compact models to access
data [41]. That is, train a model to predict where
to find a piece of data, by minimizing an appropri-
ate loss function, since all indices can be interpreted
as implicit models of the data layout. One way to
“train” a Bloom filter is to optimize the hash func-
tions: to define a hash function via a machine learn-

ing model (a neural network), which is optimized to
reduce the number of false positives for a given set
of data.
This notion has been generalized to a wider range

of summaries. Hsu et al. considered sketches for
frequencies [30]. Similar to the Bloom filter case,
the aim is to choose a hash function that gives bet-
ter results for a data distribution than choosing a
random hash function. The authors show that it is
indeed possible to“learn”a good hash function, and
analyze the resulting error under some assumptions
on this distribution. Jiang et al. [35] expanded the
applicability of this approach to a range of other
summary types, such as distinct counting and fre-
quency moments. In more detail, the approach is to
assume the existence of a “frequency oracle” for the
distribution, so that given an item the oracle accu-
rately predicts the frequency of this item in the full
distribution. By handling items di↵erently based
on their predicted frequency, it is possible to obtain
bounds on the size of summaries better than those
in the general case without such an oracle.
This paradigm has sparked work in other direc-

tions, notably for linear algebra involving large ma-
trices. Indyk et al. [33] consider learning a low-rank
approximation of a matrix, aiming to minimize the
Frobenius norm of the di↵erence between the orig-
inal and approximate matrix. The approach is to
learn a sketch projection matrix through which to
generate the approximation. It is observed that the
error can be reduced by up to an order of magni-
tude compared to a randomly chosen sketch. Li et
al. [44] similarly consider sketches for the Hessian
of matrices, and apply these to ML problems such
as regularized regression (LASSO) and matrix re-
gression. ML techniques have even been applied to
learn how to multiply matrices (Blalock and Gut-
tag [7]): here, the aim is to learn functions that can
be applied to matrices A and B so as to allow a
fast construction of a matrix C that is close to AB

under the Frobenius norm.
It will be interesting to think more generally about

summaries augmented with an oracle that (accu-
rately or perfectly) captures some part of the prob-
lem being studied, to understand the impact of the
hardness of the task. This can be viewed as a dif-
ferent kind of assumption compared to promises on
the arrival order of data items (arbitrary, random
or worst-case) or on the statistical distribution of
data values that have been made in prior work (e.g.,
[27, 17]). Graphs and matrices are natural candi-
dates: how well can we summarize the structures
if we have, for example, a shortest path oracle, or
access to the eigenvalues?

4. SUMMARIES IN PRIVACY
The objective of privacy enhancing technologies

is to limit the amount of information revealed to an
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observer, while the objective of data summarization
is to support answering a particular query while lim-
iting the amount of information retained. There is
su�cient alignment from these two objectives that
it is feasible to use data summaries as part of a
privacy solution to assist with the information lim-
itation. This has led to a number of advances in
privacy technology. The large scale deployments of
private data collection by Google [21] and Apple [2],
which both relied on the use of summaries, meant
that these were some of the most high-profile appli-
cations for data summaries. Specifically, the Rap-
por system from Google was built on Bloom Fil-
ters [8], while the Apple implementation made use
of sketches to bound the dimensionality of the data
gathered [19]. These two examples were both pri-
marily concerned with gathering frequency statis-
tics from high dimensional distributions, to find the
heavy hitters from the input via so-called“frequency
oracles” in the local model of di↵erential privacy.
Bassily et al. formalized this approach in their anal-
ysis [4].
More generally, there has been a growth in inter-

est in the area of Federated Analytics (FA), which
seeks to gather information from multiple distributed
clients in order to provide statistics on the union of
their inputs. Unsurprisingly, data summaries can
be employed in the construction of federated an-
alytics protocols. The demands of FA go beyond
those for summaries that can be constructed inde-
pendently and merged centrally. Typically, we seek
some additional guarantee of privacy. A clear ex-
ample is given by the TrieHH protocol proposed by
researchers at Google [62]. Here, the aim is to find
the set of heavy hitter items from a large collection.
The general approach is to gather information from
distributed clients in order to search for heavy hit-
ters in a hierarchical fashion, similar to approaches
performed in the data streaming setting. However,
the set of candidate items is identified by a sampling
step, with a novel proof that those items whose fre-
quency in the sample exceeds a threshold achieve a
(centralized) di↵erential privacy guarantee, without
the need for explicit noise addition.
Recently, there has also been interest in study-

ing the inherent privacy o↵ered by data summaries.
The intuition is clear: when summaries store very
compact information about their input, it is natu-
ral to imagine that the information retained about
any given input item should be quite small, and
hence private. Formalizing this intuition, and ensu-
ing that it is not possible to“invert” the summariza-
tion process to recover the input items, requires con-
siderable care and e↵ort. Recent results on approxi-
mate counting have shown that the Flajolet-Martin
summary achieves a level of di↵erential privacy –
provided that the observer does not know which
hash functions were used to create the summary
(which is assumed to be a uniform random permu-

tation), and the cardinality of items being summa-
rized is not too small [53, 13]. This refines the work
of Desfontaines et al. [20], which showed that ap-
plied directly, many distinct count sketches do not

provide a privacy guarantee. Most recently, Pagh
and Stausholm give a sketch for this problem with
privacy guarantees where the hash function can be
known to the adversary, and privacy is achieved by
perturbing the stored information, i.e., by applying
randomized response to the stored bits [49]. This
enables private sketches to be shared between mul-
tiple parties in order to approximate the cardinality
of unions of sets.
Two other foundational summarization tasks are

sampling and counting. Work by Cohen et al. [14]
looks at private sampling from weighted inputs, where
the weights can be thought of as the number of in-
dividuals who hold a particular item. The aim is
to produce a compact collection of items and noisy
weights, so that the collection functions as a good
sample of the input (representing the weight distri-
bution), while protecting the privacy of individuals
who contributed the data. This means that partic-
ular care has to be taken to ensure that low weights
do not reveal information about the data of the par-
ticipants. The essence of the approach is to define
inclusion probabilities for elements based on weights
which achieve both sampling accuracy and di↵eren-
tial privacy. In particular, a sampling scheme is
defined such that sampling probabilities for weights
that di↵er by one meet the (approximate) di↵eren-
tial privacy definition. The approach inherits many
of the benefits of (non-private) sampling, such as
accurate estimators for linear statistics, and gives
solution for many private tasks, such as quantiles
and histograms.
Gathering accurate (private) statistics in the dis-

tributed setting while minimizing communication
naturally benefits from data summarization tech-
niques. This gives the multiparty di↵erential pri-
vacy model, which generalizes both the local model
(where each of k users holds a single item) and the
central model (where multiple items are held by a
single entity). Recent work makes use of the Count
Sketch, whose sparsity means that it has low sen-
sitivity under di↵erential privacy [31]. Instead of
merging the sketches as in a standard linear sketch
by using the same set of parameters (sketch size
and hash functions), the construction uses di↵er-
ent parameters for each user based on the size of
their input, and combines the estimates from each
sketch with an additional error bound. This ap-
proach saves a

p
k factor in the multiparty model,

and achieves an optimal error-communication trade-
o↵.
It is natural to ask what other problems with a

privacy requirement can be helped by the use of
summaries, or other ideas inspired by summariza-
tion. A particular challenge in privacy is handling
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longitudinal data, i.e., situations where a user par-
ticipates in the data collection multiple times as
time goes on, but we wish to give an overall guaran-
tee on the privacy despite a potentially unbounded
influence on the data. There have certainly been ef-
forts to address this concern, but the approaches de-
ployed in practice are not entirely satisfying, relying
either on “resetting” the privacy budget on a daily
basis, or using a somewhat heuristic memoization
of random values [2, 21]. The basic idea of keeping
a tree-structure over continually observed to reduce
the noise to logarithmic [11] has been widely used
for similar purposes, most recently in the context of
federated learning [36].

5. NEW MODELS: ROBUST STREAM-
ING

One of the core areas that motivates the develop-
ment of new summary structures is the area of data
stream processing. Here, the aim is to summarize
a large input arriving as a stream of inputs, in or-
der to answer a basic query, such as estimating the
frequency moments of the data distribution. Tra-
ditionally, summaries have been analyzed assuming
that the stream may be arbitrary, but is fixed inde-
pendent of the random choices of the summarization
algorithm. This allows e↵ective randomized algo-
rithms to be proposed with strong space-accuracy
tradeo↵s. However, there are cases where this may
seem overly optimistic: when the data structure is
queried during the arrival of the stream, knowledge
of the approximate answer could be used to influ-
ence the subsequent items in the input, and elicit
an erroneous answer. To ensure the highest level
of reliability, we might ask whether it is possible
to design summary techniques that are robust to
inputs that are chosen adversarially, in reaction to
the actions of the algorithm. A starting point is
deterministic algorithms: any approach which gives
a guarantee that holds over all possible inputs is
necessarily robust to adversarial inputs. However,
for many fundamental problems in streaming, it is
known that there is a large gap between determin-
istic and randomized bounds, where often no deter-
ministic algorithm can do better than storing the
whole input.
A recent line of work has considered this ques-

tion, and shown that it is possible to construct sum-
maries that are indeed robust in this fashion, with
a moderate overhead compared to their non-robust
alternatives. Ben-Eliezer and Yogev [6] first consid-
ered the adversarial robustness of sampling. It is
perhaps not very surprising that drawing a random
sample of a stream of data is fairly robust to an ad-
versary choosing the input items, since the sampling
is performed without close inspection of any item.
However, one could envision an adversary who ob-
serves the current state of the sample, and chooses

input items in order to try to exaggerate any ways in
which the sample is already misrepresentative. The
results of Ben-Eliezer and Yogev prove that nev-
ertheless, to evade any such adversary, the sample
only needs to be a small factor larger than in the
non-adversarial case.
A subsequent work of Ben-Eliezer et al. [5] consid-

ers a broader range of problems, such as frequency
moments, distinct counting and frequency estima-
tion, in the adversarial setting. This work was rec-
ognized as the best paper of PODS 2020. The cen-
tral result is a generic framework which introduces
the parameter of the flip number. This counts how
often the answer of the algorithm must change over
the course of observing its input. Since we typically
consider approximate algorithms, it is often the case
that the summary can give the same output for an
extended period while still meeting the required ap-
proximation bounds. Consider, for example, the
(trivial) streaming algorithm to count the number
of items observed so far, n. We can observe that to
give a 2-factor approximation, the flip number can
be bounded to O(log n) (we only have to change the
output after the input size has doubled). More so-
phisticated arguments serve to bound the flip num-
ber for more challenging functions. The paper then
argues that it su�ces to run multiple copies of a
(non-adversarially robust) streaming summary in
parallel. We can report the output of one summary
while it is an accurate enough approximation of the
true answer, then switch to a ‘fresh’ instance when
this changes. The number of summaries to main-
tain is then linear in the flip number of the problem
considered.
Subsequent work has built on this foundation.

Hassidim et al. make an intriguing connection be-
tween robustness and privacy, by employing di↵er-
ential privacy to thwart the adversary [29]. Specifi-
cally, the technique also runs multiple copies of non-
adversarial streaming algorithms for the problem,
but then aggregates their output in a way that pro-
vides a di↵erential privacy guarantee. The intent
is that the adversary, observing the changing out-
put of the algorithm, is nevertheless unable to draw
strong inferences about the inner state of the various
summaries due to the privacy noise. Significantly,
the cost of the approach also depends on the flip
number, but is now proportional to the square root
of the flip number. Another surprising connection
work that draws a link between adversarial sam-
pling and the theory of online learning [1]. It shows
that the concepts for which there exist e↵ective ad-
versarially robust sampling mechanisms are those
that meet a definition of online learnability. Braver-
man et al. have demonstrated that the commonly
used technique of “merge and reduce” to build sum-
maries over distributed data brings with it a guar-
antee of adversarial robustness, providing strong
guarantees for various clustering problems such as
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k-means, k-median, k-center and more [10]. Mean-
while, Woodru↵ and Zhou showed tighter bounds
for various problems in the sliding window stream-
ing model [59]. A strong separation was shown be-
tween the adversarial and non-adversarial model by
Kaplan et al. [38], by considering the“adaptive data
analysis” problem, which can be shown to require
exponentially more space in the adversarial setting.
There are many open directions in the area of

robust streaming, as evidenced by a recent work-
shop day dedicated to the topic1. Some immediate
directions are to understand the true dependence
on the flip number in the space bounds. Is it too
much to hope for a polylogarithmic bound by keep-
ing this many instances of independent summaries,
and selecting random subsets of these to provide an
estimate? More generally, could the notion of using
di↵erential privacy as a tool to fool adversaries have
wider applicability?

6. PROGRESS IN APPROXIMATE COUNT-
ING

Counting is one of the most basic computational
tasks, so it is hard to imagine that there would be
new progress on it. Nevertheless, in the last few
years there have been some intriguing new steps
made for counting, specifically on various notions of
approximate counting. Approximate counting via
the Morris counter is often used as an example in
a randomized algorithms class [47]. The algorithm
keeps a counter with a small bit depth, and pro-
cesses increment updates. The internal counter is
incremented with probability that decreases expo-
nentially with its value. This can be used to esti-
mate quantities with value up to n using bit depth
of only O(log log n). Recently, Nelson and Yu [48]
revisited this problem, and showed tighter bounds
on the accuracy of such counters. In particular,
they showed a new algorithm with a simple proof
that uses space O(log 1/✏ + log log 1/� + log log n)
in order to approximate a quantity up to n with
1±✏ accuracy with probability 1��. They go on to
show via a more involved proof that the same bound
holds for a lightly modified version of the original
Morris algorithm. This improves the dependency
on � exponentially. O↵ering accurate approximate
counters in small space is of value to data science
applications which maintain a large number of coun-
ters for many di↵erent events in parallel.
In a di↵erent setting, recent work has tried to

reduce the size of counters down to a single bit.
Specifically, we have a number of participants who
each hold a real value x, scaled to the range [0, 1],
and our aim is to gather information from them in
order to estimate the mean of their (scaled) val-
ues. A simple randomized rounding approach is to

1
https://rajeshjayaram.com/

stoc-2021-robust-streaming-workshop.html

round x to 1 with probability x, and 0 otherwise:
the expectation of this rounding is x. Ben Basat et
al. [3] consider a variety of related approaches, and
show that variance of 1

4 of the simple rounding ap-
proach can be improved in situations when shared
randomness is available, or a biased estimator can
be adopted. Note that limiting to a single random
bit alone may not make a big di↵erence to com-
munication cost: the overheads in packet-switched
networks are such that the di↵erence between send-
ing 1 bit vs. 64 bits is small compared to the cost of
packet headers etc. However, this approach o↵ers
clearer benefits when sending larger volumes of data
(say, a vector of values), or when we want to apply
privacy to the transmitted bits, and can randomly
noise the bit that is sent.
The counting problem becomes more challeng-

ing when we have to address the problem of dis-
tinct counting: given an unsorted collection of items
(with some repeated), we seek to estimate the car-
dinality of the support set. This problem appears in
many applications where summaries are desirable,
and many e↵ective algorithms have been proposed.
Perhaps the most famous of these is the Hyper-
LogLog summary presented by Flajolet et al. [23].
A recent advance on this problem is due to Pettie
and Wang, who seek to understand tight bounds for
the space complexity of this problem – again, this is
a pressing concern when maintaining approximate
(distinct) counters for a large number of di↵erent
objects [50]. In particular, they show a new ap-
proach to analyzing the space complexity by fus-
ing the Fisher information with the Shannon en-
tropy of the summary. This enables them to revisit
the exact constants of an algorithm due to Flajolet
and Martin [24], when implemented in a compressed
form. Under some restrictions, they show that this
sketch is optimal (including the constant factor),
which settles a long line of work seeking increas-
ingly tight bounds for this problem. Rather than
being a theoretical observation about an impractical
algorithm, the “compressed probabilistic counting”
technique was already implemented in the Apache
data sketches library2, and has been used inter-
nally within Oath (Yahoo!) for monitoring large
volumes of statistics. The analytical study of Pet-
tie and Wang complemented the numerical study
of Lang, who implemented and evaluated this algo-
rithm [42]. In subsequent work, Pettie et al. went
on to study the space complexity of non-mergable
summaries for distinct counting, and show that sac-
rificing mergability can obtain slightly higher space
e�ciency for summaries [51].
The next step might be to move these advances

in approximate counting closer to applications. As
noted above, the importance of machine learning,
which relies in part on large collections of numeric

2
http://datasketches.apache.org
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values, is a strong candidate to benefit from ap-
proximate counters, either during training, or af-
ter training for e�cient communication and stor-
age on devices. More generally, the proliferation
of data means that it is ever easier to capture and
store large volumes of data should provide an im-
portant use-case for approximate counting in var-
ious forms, particularly to handle counters which
vary frequently over time. It would be particularly
compelling to see empirical evidence of the benefits
of using approximate counting in practice.

7. PROGRESS IN QUANTILES
Given a collection of data items from an ordered

domain, the quantiles characterize the cumulative
distibution function (CDF) of the empirical distri-
bution. In simpler terms, they capture the me-
dian, and more generally the percentiles of the data.
Given a fixed data set, finding the quantiles can be
done easily if it is feasible to sort the data, and
with more e↵ort without sorting by a classical lin-
ear time algorithm [9]. However, in the context of
summarization, we often seek a compact summary
that can be created from a stream of updates, or
by merging summaries of subsets of the dataset to-
gether, without having random access to the dataset
in full. Until recently, the state of the art was gen-
erally considered to be the Greenwald-Khanna sum-
mary (from 2001) [26], and the KLL summary (from
2016) [39]. Both give an additive guarantee as a
function of a parameter ✏: given a target quantile,
they guarantee to return an item whose rank in the
sorted order of n items is at most ✏n from the target.
The GK summary provides a deterministic guaran-
tee with an O( 1✏ log ✏n)-sized summary, while the
KLL summary gives a randomized guarantee with
an O( 1✏ )-sized summary.
A number of recent advances have enhanced our

understanding of this problem. From PODS 2020,
a new result showed that the GK summary is es-
sentially optimal among algorithms which only per-
form comparisons between items to determine what
summary to retain [18]. The main result in the pa-
per is an intricate construction based on white-box
knowledge of the operation of a quantile algorithm,
to construct paired inputs that maximize the error
of a deterministic summary. It proceeds recursively
to obtain the log ✏n factor in the lower bound, im-
proving over both the trivial ⌦(1/✏) lower bound,
and a more involved bound of ⌦( 1✏ log(1/✏)) that is
nevertheless independent of the input size [32]. The
deterministic lower bound can also be applied in
the very low failure probability regime, to provide
a lower bound for randomized algorithms, and so
shows that the KLL summary is similarly optimal
when the error probability is exponentially small.
Other advances on quantiles have considered vari-

ations of the problem and showed new results by

adapting the KLL algorithm. Zhao et al. [61] pro-
pose “KLL ±”, which accepts an input consisting of
a mixture of insertions and deletions. Handling an
arbitrary number of deletions can be hard: consider
an input which deletes all but an arbitrary handful
of items. To give a quantile guarantee on this input,
the algorithm must be able to retrieve exactly the
set of items which survive to the end. Instead, it is
more feasible to consider the case of bounded dele-

tions, where the number of deletions is promised to
be at most 1 � 1/↵, for a parameter ↵. The algo-
rithm applies a variant of the KLL algorithm to the
stream of insertions and deletions, and drops tuples
when an insertion, deletion pair for the same item
are placed together in the data structure. The result
is shown to provide the desired additive ✏ guarantee
with space Õ(↵

1.5

✏ ).
A di↵erent goal is to provide a relative error guar-

antee for quantiles. That is, instead of answering a
query with an item a fixed distance from the tar-
get quantile, we seek an item whose distance is a
small fraction of the true rank of the target. This is
important for cases where we seek to find accurate
answers for items in the tail of the distribution, i.e.,
the 99th, 99.9th and 99.99th percentiles. The prob-
lem is challenging, since if we do not retain accurate
enough information on items that need high preci-
sion, we cannot hope to remedy this deficit. The
“relative error quantiles sketch”, which adapts the
structure of the KLL algorithm to provide this im-
proved accuracy guarantee was given the best pa-
per award in PODS 2021 [15]. The space bound
achieved isO(1/✏ log3/2 ✏n), which improves on prior
bounds of O(1/✏ log3 ✏n), and is close to the trivial
lower bound of ⌦(1/✏ log ✏n).
There are many natural questions for this line

of work. Most obviously would be to understand
whether the log3/2 ✏n can be reduced closer to log ✏n,
or whether this unusual exponent is inherent. It
would also be desirable to streamline and simplify
the construction and its proof. In particular, the
argument that instances of the relative error quan-
tiles sketch can be merged together is very intricate.
This is not to say that the algorithm itself is imprac-
tical: it has been implemented within the Apache
DataSketches library3, and used within Splunk for
tracking distributions to monitor for changes. A
recent empirical study compared the algorithm to
a popular alternative approach, the t-digest, and
showed that while the t-digest does well on “typi-
cal” inputs, there are adversarially crafted inputs on
which the t-digest can be made to give extremely
high error, while the relative error quantiles sketch
maintains the same level of accuracy throughout [16].
Consequently, it would be highly desirable to build
a summary that obtains the best of both worlds:
small space and high accuracy on typical inputs,
3
https://datasketches.apache.org/
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while retaining space and accuracy guarantees even
against worst-case inputs.

8. IMPROVEMENTS WITH EXISTING
SUMMARIES: NEW BOUNDS AND NEW
APPLICATIONS

One reasons for the popularity of summaries in
practice is that they often give accurate results even
with only small amounts of space allocated. This
is in part because they follow the behavior pre-
dicted by their theoretical analysis, and often the
analysis is fairly tight. That is, rather than be-
ing governed by bounds in big-Oh notation with
hidden constants, we often understand their costs
in closed form, with quite small explicit constants.
Still, there is the strong desire to further close the
gap between the good performance seen in practice
and the worst-case bounds from analysis, to allow
even tighter provisioning of resources for the sum-
maries (i.e., allocate the smallest space possible to
achieve the desired level of accuracy).
A good example is the Count-Min sketch, a very

simple randomized summary. The original analysis
uses elementary tools (such as the Markov inequal-
ity) to give a strong accuracy bound on a simple
biased estimator with explicit constants. More re-
cently, Ting [55] revisited this structure and pro-
posed new estimators for the same sketch which
provide more accurate and unbiased estimators for
frequency estimation. The analysis makes use of
statistical tools such as the bootstrap to provide a
data-dependent error guarantee. In particular, it
uses information from the parts of the sketch that
do not directly answer the query in order to build
an improved estimator.
Other works have sought to apply similar tools

from statistics in order to give improved bounds. As
described in Section 6, Nelson and Yu give improved
bounds for the approximate Morris counter [48].
Ertl [22] analyzed distinct counters for the task of
estimating the size of intersections between sets.
This is a problem with strong lower bounds, since
the intersection size can be small while the sets can
be large, and so obtaining relative error is not possi-
ble. While presenting a new sketch for this problem,
Ertl proposed a more general closed-form estima-
tor that can be applied to existing sketches, such
as the popular HyperLogLog summary [23]. Lopes
et al. similarly consider sketches for matrix com-
putations such as least-squares regression, and use
a bootstrap-based approach to provide error esti-
mates for the approximate solution. A key feature
is that bootstrap is used here to understand the
random variation due to a randomization in the al-
gorithm, rather than variation in the data.
Summary techniques are increasingly finding new

applications in other areas to help improve bounds.
A very partial sampling of these includes:

• Sketches to help solve linear programs [57],
making use of the count-sketch summary [12],
taking advantage of its ability to accurately
capture the heavy hitters.

• Sketches for approximate pattern matching un-
der string edit distance [40], by summarizing
strings with low edit distance to the input string.

• Solving regression problems on data that is
represented in a factorized format via sketch-
ing [34].

• Using sketches to understand the trade-o↵ be-
tween distortion and communication in voting
situations [46].

We conclude with some natural (if generic) open
questions: for what other summary techniques can
we obtain improved bounds by exploiting more ad-
vanced analysis techniques? What new applica-
tions of summaries can there be, across the impor-
tant areas of optimization, string processing, and
graph and linear algebra computations? A more
extensive list of open questions, covering a range
of topics in sublinear algorithms, can be found at
sublinear.info.
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