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ABSTRACT
How can the result of a query be updated after changing a
database? This is a fundamental task for database manage-
ment systems which ideally takes previously computed in-
formation into account. In dynamic complexity theory, it
is studied from a theoretical perspective where updates are
specified by rules written in first-order logic.

In this article we sketch recent techniques and results from
dynamic complexity theory with a focus on the reachability
query.

1. INTRODUCTION
Assume you are running a very traditional relational

DBMS that supports all queries that can be expressed
in the relational algebra, but nothing else.1 Then you
precisely understand what kinds of queries you can pose
and which you cannot: you are limited to queries that
are expressible in first-order logic.
You think that it might be helpful that you are inter-

ested in continuously asking the same query. Maybe the
database you maintain is actually a graph database and
you would be interested to evaluate a fixed set of reg-
ular path queries all over again. Maybe you also know
that changes to your database are not very frequent. Is
there a way to cope with your queries without writing
programs or installing that graph database engine?
This is the setting that is assumed in this article and

the setting of dynamic complexity as introduced by Pat-
naik and Immerman [34] and similarly by Dong and Su
[13] in the early nineties: there is an initially empty
database, tuples can be inserted and deleted and af-
ter each change of the database, the answer to some
fixed query needs to be computed with first-order logic
means. Besides the “real” relations, the database can
have additional, auxiliary relations, one of which always
represents the query answer to the standing query. Af-
ter each change step your database can apply first-order
queries to update these auxiliary relations.
This setting is similar to other typical database set-

tings, but it di↵ers from a typical incremental query
1This assumption is not entirely realistic but very common
in foundational database research.

maintenance setting in that it addresses queries that
are not expressible in the relational algebra, and from a
typical view maintenance setting because auxiliary re-
lations are allowed2.
In this article, we want to report on some progress

that dynamic complexity has seen during the last years.
Besides the result that reachability on directed graphs
can be maintained in this framework, much of the re-
search has focussed on new techniques and the extension
of the framework towards bulk changes, as opposed to
single-tuple changes. The ability to maintain regular
path queries is one outcome of this line of work.
We develop the framework incrementally while giving

sketches3 of some recent and some older key results and
techniques. Most of these results concern the reachabil-
ity query Reach on directed or undirected graphs. This
query maps a graph G = (V,E) to the transitive closure
of the edge relation E. In other words, Reach(G) is
the binary relation that contains a pair (u, v) of nodes
if there is a non-empty path from u to v in G. An
immediate consequence of these results for maintaining
reachability is that regular path queries can be main-
tained as well, see Sketch 10.
In this article we borrow from several talks we pre-

sented in the last few years as well as from some of
our articles [8, 11, 10, 9]. For recent, more complete
expositions of the current state of the art of dynamic
complexity we refer to [40, 43].

2. MAINTAINING REACHABILITY
We start with the very simple scenario where only

single edges can be inserted into the graph (database).

Sketch 1:

Single-edge insertions into directed graphs

Since we aim at updating the standing query Reach,
the transitive closure of the edge relation is stored as

2We emphasise that recent higher-order incremental view
maintenance frameworks also use auxiliary views [29, 33].
3As in “brief description”, not as used in, e.g., streaming
algorithms.
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Figure 1: The dynamic scenario. After inserting
edge (2, 3) there is a path from x = 1 to y = 4
thanks to the previously existing paths from 1
to 2 and from 3 to 4.

an auxiliary relation.
How can we update the transitive closure of a graph

after inserting a single edge? After inserting an edge
(u, v), there is a path from a node x to a node y if
there has been a path before the insertion or if there
were paths from x to u and from v to y, cf. Figure 1.
Thus, if T denotes the auxiliary relation that stores
the transitive closure of E, the update that needs to
be applied can be specified as follows.

on insert (u, v) update T as

T
0(x, y)

def
= T (x, y) _

�
T (x, u) ^ T (v, y)

�

The semantics is that, after inserting the edge
(u, v), the relation T is replaced according to the
query T (x, y) _

�
T (x, u) ^ T (v, y)

�
.

We call the above rule an update rule. A dynamic
(first-order) program can use finitely many auxiliary
relations R1, . . . , Rm and provides a (first-order) up-
date rule for each of these relations and each admissible
change operation. In the above case, the only admissi-
ble change operation is insertion of edges.4 Each update
rule can access the edge relation and (the current ver-
sions of the) relations R1, . . . , Rm.
Most often, admissible change operations are inser-

tions or deletions of edges. But the exact form, e.g.,
whether single-tuple or bulk changes are allowed and
how they are specified, depends on the context. When
an actual change occurs, the program updates its auxil-
iary relations by simultaneously applying their respec-
tive update rules for the underlying change operation.
A dynamic program maintains the result of a query

if some designated auxiliary relation stores the result
of the query after all possible sequences of admissible
changes. As an example, the above (single-rule) pro-
gram maintains the query Reach on directed graphs
under single-edge insertions. We emphasise that this
particular rule does not even use quantifiers.
4We note that each change operation can be instantiated by
actual changes, e.g., the insertion of a concrete edge.

The class DynFO consists of all pairs (Q,�) such
that the query Q can be maintained by a dynamic first-
order program under the set � of admissible changes.
For a pair (Q,�) 2 DynFO we usually say that Q is in
DynFO under �-change operations. As we have just
seen, Reach is in DynFO under single-edge insertions.

2.1 Undirected Reachability: from single to
bulk changes

Allowing insertions and deletions o↵ers “full change
power” in the sense that each graph can be transformed
into each other graph (with the same vertex set). The
question whether Reach can be maintained when edges
can be inserted and deleted had been a driving force
for research in dynamic complexity for twenty years.
It turned out that reachability under edge insertions
and deletions cannot be maintained in the same simple
fashion as in the insertion-only case, and we present
some early-known barriers in Section 3.
For now, we concentrate on the easier case of main-

taining reachability for undirected graphs. We show
how this query can be maintained under insertions and
deletions of single edges, and generalise this result to
more complex changes. We will come back to reacha-
bility for directed graphs in Subsection 2.2.
Besides its elementary update rule, reachability under

edge insertions is simple in another sense: it only needs
the query answer relation itself as auxiliary relation,
i.e., the transitive closure of the edge relation. Trying
to maintain a query without any further relations than
the query relation itself is a natural first step in the
search for a dynamic program. Unfortunately this does
not work out for undirected reachability under inser-
tions and deletions [14, Theorem 5.7]. Intuitively, this
is because the transitive closure might not yield much
information. For instance, the transitive closure of a
cycle is a full binary relation which is not helpful for
deriving the new transitive closure after deleting two
edges from the cycle.
If, as in this case, the query relation does not su�ce,

one often sees what kind of information is “missing”
and one can try to maintain the query by adding an-
other auxiliary relation. This approach could be termed
iterated wishing : to maintain a certain query, you might
wish you had a certain auxiliary relation R1 available,
so you assume you have it, and then you check whether
also R1 can be maintained; if you fail, you wish for more
helpful auxiliary relations, and so on.

Sketch 2:

Single-edge insertions and deletions in
undirected graphs

After seeing that the transitive closure itself does not
su�ce, it seems natural to “wish for” a spanning for-
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Figure 2: Deleting a single edge from an undi-
rected graph. A spanning forest is highlighted in
blue. After removal of (3, 8), edges (3, 4) and (7, 8)
are potential new edges for the spanning forest,
of which the lexicographically smallest edge (3, 4)
is chosen by the update rule.

est in order to maintain reachability for undirected
graphs under insertions and deletions. It turns out
that one more wish is helpful: its accompanying in-
between relation.5 More precisely, the following two
auxiliary relations can be used to maintain Reach

on undirected graphs [35, Theorem 4.1]:

• a binary relation F with (a, b) 2 F if (a, b) is an
edge of a (fixed) spanning forest; and

• a ternary relation B with (a, b, c) 2 B if b is in
between a and c in the spanning forest stored
in F , so, if a and c are in the same connected
component and b is part of the unique path from
a to c in the spanning forest.

We now have to verify that F and B can be up-
dated after inserting or deleting an edge, thereby es-
tablishing the following result [35, Theorem 4.1].

Proposition 2.1. Reach on undirected graphs is
in DynFO under single-edge insertions and dele-
tions.

Updating the auxiliary relations after edge inser-
tions is very similar to the approach of Sketch 1: if the
new edge connects two connected components then it
is added to the spanning forest F , otherwise nothing
changes. Likewise, deletions of edges not in F are
easy to handle, as they leave the auxiliary relations
unchanged. We therefore focus on deletions of edges
of the spanning forest, see Figure 2.
The formula

 (x, y, u, v) = E(x, y) ^B(x, u, y) ^B(x, v, y)

expresses that the nodes x and y of the edge (x, y)
are in di↵erent connected components of the span-
ning forest after removing (u, v) and thus (x, y) is a
candidate for “repairing” the spanning forest.
However, only one such edge can be added to

the spanning forest and therefore some tie-breaker is
needed. To this end, it is helpful to maintain a linear

order on the vertices and to add the lexicographi-
cally smallest edge. The linear order is yet another
auxiliary relation one can wish for and which can
be updated easily: since the edge relation is initially
empty, a linear order on the non-isolated nodes can
be built based on the order of edge insertions [17]. In
fact, not only a linear order can be established in this
way, but also 3-ary relations that encode the corre-
sponding addition and multiplication operations.6

So far we only considered simple change operations,
that is, single-tuple changes. This is a typical model,
not only in dynamic complexity, but also in dynamic
algorithms. However, to deal with realistic scenarios
in particular in database contexts, it would be helpful
to maintain queries under more complex change oper-
ations. That is, change operations should be able to
insert or delete sets of tuples.
Obviously, one can not hope for “arbitrary changes”:

if they were allowed, then one could produce any arbi-
trary graph in one step from the empty graph.7 Thus a
query can only be maintainable under arbitrary changes
if it can actually be explicitly expressed, statically.
Therefore, one has to lower expectations and restrict

complex change operations in one way or another. We
will consider size-restricted change operations later on,
but start here with first-order definable change opera-
tions. An insertion query is specified by a first-order
formula '(x, y, z̄) and a tuple c̄ of elements. It defines
the set of edges that are inserted into the edge relation
by the set of all tuples (a, b) that satisfy the formula
'(a, b, c̄). We emphasise that there is no a priori bound
on the number of edges that are inserted in such a step.
From a databases point of view, first-order definable

change operations (in the spirit of SQL updates) are a
very natural kind of complex change operations.

Sketch 3:

Definable insertions into undirected graphs

It turns out that the reachability query on undirected
graphs can be maintained under single-edge deletions
and first-order definable insertions. More precisely,
the result is as follows [39, Theorem 4.2].

Theorem 2.2. For each finite set � of insertion
queries, Reach on undirected graphs is in DynFO

under single-edge deletions and under insertions de-
fined by the queries in �.

5In fact, it can be seen from the proof of [14, Theorem 5.7]
that a spanning forest alone is also not su�cient.
6That is, e.g., if a is the smallest node and b the second
smallest node with respect to this order, then the triple
(a, a, b) is in the ternary relation for the corresponding ad-
dition, basically encoding 1 + 1 = 2.
7We recall that the empty graph has nodes but not edges.
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The dynamic program uses the spanning forest ap-
proach as presented in Sketch 2 and relies on a very
simple observation, illustrated by Figure 3: if there is
a new path between nodes u and v after a first-order
defined insertion, then there is such a path in which
the number of new edges is bounded by a constant m
that only depends on the quantifier depth of the for-
mula defining the insertion. Therefore, for checking
whether there is a path between u and v, a first-order
update rule can guess at most m newly inserted edges
and combine them with previously existing paths.
In general, the constant m can be large, but if the

insertion formula is a union of ` conjunction queries,
it is bounded by 2` [39, Proposition 4.3]. An evalua-
tion of a prototypical implementation [39, Section 5]
shows that dynamic programs for insertions defined
by small unions of conjunctive queries perform well
in some scenarios in comparison with other methods
of answering Reach on undirected graphs.

Another obvious restriction of complex changes is to
bound the number of edges that can be inserted or
deleted in one step. We next consider the insertion
of sets of edges as operation and restrict it to sets of
O(log n) many edges. We assume that a linear order
and its corresponding addition and multiplication rela-
tions are given as “built-in relations”, since they cannot
be computed incrementally as before. We make this as-
sumption transparent and write DynFO(+,⇥) for the
class of queries that are maintained by dynamic pro-
grams with access to built-in , + and ⇥.
The technique used for such operations can be un-

derstood as a simulation of monadic second-order logic.
Monadic second-order logic MSO extends first-order
logic by quantification over sets. The basic idea of the
simulation is that a subset of a set of logarithmically
many nodes can be encoded by one node, since a node
basically corresponds to a bit string of length log n.
Therefore, set quantification over such small sets can
be simulated by node quantification over the full graph.
The connection between node subsets and nodes can
be drawn with the help of the built-in linear order and
the arithmetic relations + and ⇥, as the bit string rep-
resentation of a node can be expressed from them by
first-order formulas, see [26, Theorem 1.17].

Sketch 4:

Log-size insertions to undirected graphs

It turns out that reachability on undirected graphs
can be maintained under single-edge deletions and
insertions of O(log n) edges.

Proposition 2.3. Reach on undirected graphs is
in DynFO(+,⇥) under single-edge deletions and in-
sertions of O(log n) edges, where n is the number of

nodes of the graph.

We use the spanning forest approach as presented
in Sketch 2, and re-use its maintenance rules after
single-edge deletions. We describe how the auxiliary
relations can be updated after log n many edges are
inserted into a graph G. A corresponding update rule
may use first-order quantification on the graph and
set quantification over a subgraph of size O(log n).
As sketched above, this MSO quantification can ac-
tually be simulated by first-order update rules.
As Reach is MSO-expressible, an update rule can

express for each pair a, b of nodes that are a↵ected
by the change (i.e. that are adjacent to a new edge
after the change) whether they are connected via al-
ready existing paths and newly inserted edges. The
spanning forest is then updated as follows: a newly
inserted edge (a, b) becomes a spanning forest edge
if a and b are not connected in the graph which con-
sists of all previously existing edges and all new edges
that are lexicographically smaller than (a, b). The
in-betweenness relation can be updated similarly in
a straightforward fashion, since a node b is between
a and c in the new spanning forest if a and b as well
as b and c are connected, but a and c become discon-
nected without b.
As a matter of fact, reachability on directed graphs

can also be maintained under such insertion opera-
tion, at least in the absence of deletions.

The previous example naturally leads to the question
of which sizes of bulk changes can be handled by a dy-
namic program for reachability. It turns out that the
reachability query cannot be maintained under changes
of more than polylogarithmically many edges.

Sketch 5:

An impossibility result for bulk changes

It turns out that classical lower bound results for the
size of AC

0-circuits almost immediately yield upper
bounds for the sizes of bulk changes that can be han-
dled. Here, an AC

0-circuit for an input of size n may
use polynomially many _-, ^-, and ¬-gates (with pos-
sibly unbounded fan-in) arranged in a circuit of con-
stant depth.
The idea is simple. A classical result by Smolensky

states that for computing the parity of the number of
ones occurring in a bit string of length n, an AC

0 cir-

cuit of depth d requires 2⌦(n1/2d) many gates (see [27,
Theorem 12.27] for a modern exposition). A simple,
well-known reduction yields that deciding reachabil-
ity for graphs with n edges which are disjoint unions
of (undirected) paths also requires AC

0 circuits of

size 2⌦(n1/2d). Indeed, computing the parity of the
number of ones in w = a1 · · · an can be reduced to
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Figure 4: Illustration of the reduction from par-
ity to reachability for the string w = 101011.

reachability as follows. A graph G for w can be con-
structed by converting each bit ai into a small widget
Wi with nodes ei�1, oi�1, ei, oi as follows:

• if ai = 0 then Wi =
ei�1

oi�1

ei

oi

• if ai = 1 then Wi =
ei�1

oi�1

ei

oi

Now, for a bit string w = a1 . . . an there is a path
from e0 to en i↵ w has an even number of ones, see
Figure 4 for an example. Furthermore, graphs ob-
tained in this fashion are disjoint unions of two paths.
This lower bound translates into a lower bound for

first-order formulas via the correspondence of AC
0

and first-order logic due to [2].

Theorem 2.4. Let f(n) 2 log!(1)
n be a function

from N to N. There is no first-order formula with
access to built-in relations that defines reachability
in graphs with at most f(n) edges, even for disjoint
unions of (undirected) paths.

Since from any formula that updates the result of a
query after an insertion of f(n) tuples into an initially
empty input relation one can construct a formula that
defines the query for inputs of size f(n), the following
corollary is immediate [9, Corollary 2].

Corollary 2.5. Let f(n) 2 log!(1)
n be a func-

tion from N to N. Then reachability (even in disjoint
unions of (undirected) paths) cannot be maintained in
DynFO for bulk changes of size up to f(n), even if
the auxiliary relations may be initialised arbitrarily.

We have seen how to maintain reachability under
O(log n) edge insertions, and that dynamic first-order
programs cannot maintain reachability under insertions
of more than a polylogarithmic number of edges. For
reachability on undirected graphs this gap can be closed:
this query can be maintained under insertions and dele-
tions of polylogarithmic size.

Sketch 6:

Polylog-size changes to undirected graphs

To maintain reachability in undirected graphs under
edge changes of polylogarithmic size, the technique of
Sketch 4 can be extended. There, we used simulations
of MSO formulas on subgraphs of logarithmic size.
We do not know whether such simulations are also
possible for subgraphs of polylogarithmic size, but
we observe next that on subgraphs of this size, NL-
computations can be simulated.
First of all, it can be observed that Reach over

subgraphs of polylogarithmic size can be expressed
by a first-order formula over the whole graph. This
follows from the well-known result (see for example
[5, p. 613]) that for every d 2 N there is a uniform
circuit family for computing the transitive closure of
a graph with N nodes using circuits of depth 2d and

size N
O(N1/d). If the subgraph in question has N

def
=

logc n nodes, for some c 2 N, we can choose d
def
= 2c,

and the circuit size

N
O(N1/d) =(logc n)O((logc n)1/d) = (log n)O((logn)c/2c)

=2O(log logn
p
logn)

✓ 2O(logn) = n
O(1)

is polynomial in n. This uniform AC
0 circuit family

computing reachability for subgraphs of size logc n
can be turned into an FO(+,⇥)-formula thanks to
[2]. Since Reach is complete for NL under first-
order reductions, see [26, Theorem 3.16], first-order
logic can thus express all NL-computable queries on
graphs of polylogarithmic size.
Now we can sketch the proof idea of the following

result [9, Theorem 6].

Theorem 2.6. Reach on undirected graphs is
in DynFO(+,⇥) under insertions and deletions of
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logc n many edges, for every fixed c 2 N. Here, n is
the number of nodes of the graph.

Again, we employ the spanning forest approach
from Sketch 2. When a polylogarithmic number of
edges is inserted into a graph, the update rule de-
fines a spanning forest on the at most polylogarithmic
number of connected components that get connected
by this change, which is possible in first-order logic
by NL-simulation as explained above. For each edge
in this spanning forest, the lexicographically smallest
edge between corresponding components is selected
to become part of the spanning forest of the whole
graph. The in-between relation is updated accord-
ingly by combining the auxiliary information with
in-betweenness information for the spanning forest
on the connected components, which again can be
expressed directly in first-order logic.
The update after a deletion of polylogarithmically

many edges is not much harder. In a first step, the
edges are deleted from the spanning forest, and its
in-between information is adjusted. Only a polyloga-
rithmic number of connected components of the span-
ning forest are a↵ected by this step. For them, the
update rule checks in a second step whether they can
be re-connected by existing non-spanning-tree edges
of the graph. This step works exactly as the update
for edge insertions.
Just as for Sketch 4, Reach on directed graphs

can be maintained under insertions of polylogarith-
mically many edges, with similar techniques (but in
the absence of edge deletions).

2.2 Current frontiers of directed reachability
Turning to directed graphs, we first give a glimpse of

an idea how reachability can be maintained under single
edge insertions and deletions.

Sketch 7:

Single-edge insertions and deletions in
directed graphs

The long-standing question [7, 14, 12, 23, 25, 35, 45]
whether reachability on general directed graphs is in
DynFO was settled in [8].

Theorem 2.7. Reach is in DynFO under inser-
tions and deletions of single edges.

The underlying idea is to first reduce the reachabil-
ity query to a linear-algebraic problem, and then to
show that this problem can be maintained with first-
order update rules. This approach works if DynFO

is closed under the applied reductions it uses, which
is guaranteed if they obey two conditions: that they
are definable in first-order logic and that one change

in the source structure only induces O(1) changes in
the target structure. Such bounded first-order (bfo)
reductions were introduced in [35].
Step 1: Reduction to FullRank.

Problem: FullRank

Input: An n⇥ n-matrix C

Question: Is the rank of C equal to n?

This step is very similar to reductions used by
Cook (for studying the NC-hierarchy) and Laubner
(for studying extensions of first-order logic by linear-
algebraic operators) [6, 30]. To facilitate subsequent
generalisations, we describe the reduction to Full-

Rank by two reductions with another intermediate
problem. We defer to [8] for further details.
Suppose that A is the adjacency matrix of a

graph G. The number of paths of length i from s

to t in G corresponds to the value of the s-t-entry
of Ai, the i-th power of the adjacency matrix. The
matrix I �

1
nA is invertible (since diagonally domi-

nant) and its inverse can be written, analogously to
standard geometric series, as:

(I �
1

n
A)�1 =

1X

i=0

1

ni
A

i

Hence, there is a path from s to t if the s-t-entry
of the inverse of C

def
= I �

1
nA is not zero. This

yields a bfo-reduction from Reach to the problem
MatrixInverse

6=0, which we define as:

Problem: MatrixInverse
6=0

Input: Invertible n⇥ n-matrix C; s, t  n

Question: Is the s-t-entry of C�1 not 0?

The problem MatrixInverse
6=0 can then be re-

duced to FullRank: by Cramer’s rule, an entry of a
matrix C

�1 is non-zero if and only if the determinant
of some submatrix of C is non-zero, which is equiva-
lent to the question whether this submatrix has full
rank. We refer to [8] for details and for a verification
that the reductions are actual bfo-reductions.
Step 2: Maintaining FullRank. Now our goal is

to update whether a matrix C has full rank under
changes of one entry. This can be done similarly as
described in [19]: we maintain matrices B,E such
that BC = E, B is invertible, and E is in reduced
row-echelon form. It turns out that, modulo small
primes, the matrices B and E can be updated us-
ing a constant number of simple matrix operations
under changes of single entries of C. Reachability
can then ultimately be maintained by maintaining
the full rank property for a suitable number of such
small primes.

This result has since been simplified and improved.
The following technique for reducing the conceptual re-
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quirements for maintaining a query has been useful for
this purpose, and it has also been applied to show a
number of other maintenance results.

Sketch 8:

The muddling technique

The muddling technique exploits that under certain
conditions it su�ces to maintain the result of a query
for polylogarithmically many change steps, as op-
posed to arbitrarily many. In the following, we only
consider queries that are domain independent in the
sense that the query result does not change for an in-
stance when additional, isolated elements are added
to the domain. A query is (NL, f(n))-maintainable,
if it can be maintained for f(n) change steps start-
ing from an arbitrary database instance and auxiliary
data initialised by an NL computation.

Theorem 2.8 (Muddling Lemma [10, 11, 40]).

Let Q be a domain independent query that is
(NL, log n)-maintainable under some set � of
change operations.8

a) If � is a set of single-tuple change operations then
(Q,�) is in DynFO.

b) If Q 2 NL and � is a set of bulk change operations
of size at most logd n, for an arbitrary d 2 N, then
(Q,�) is in DynFO(+,⇥).

As an example, the Muddling Lemma allows to
prove that a query is in DynFO by showing that it
can be maintained for log n many steps, starting from
an arbitrary graph G with n nodes, with the help of
auxiliary relations that can be obtained from G by
some NL computation.
A result that highlights the power of this technique

is that all queries expressible in monadic second or-
der logic are in DynFO under changes of single tu-
ples, if the database (always) has bounded treewidth
[10]. We do not know how to maintain a tree decom-
position with first-order formulas, yet the muddling
lemma allows to pre-compute a tree decomposition
in LOGSPACE. It can be shown that a query result
can then be maintained for log n steps.9

For the reachability query on undirected graphs, the
maintenance strategy could be lifted from single-edge
changes to changes of polylogarithmic size. It is an

8The result actually even holds for (AC
c, logc n)-

maintainable queries, for an arbitrary c 2 N, and the
proof uses the fact that AC

c-circuits correspond to fixed-
point computations with O(logc n) iterations, cf. Section 5
in [26].
9In fact, for the MSO result an annotated tree decomposi-
tion is needed and therefore a stronger version of the Mud-
dling Lemma is used.

immediate question to what extent this is possible for
directed graphs.
We recall that one can maintain Reach under in-

sertions of polylogarithmic size with the techniques of
Sketch 6, but this result does not allow for any edge
deletions. It turns out that bulk insertions and dele-
tions are indeed possible, but the allowed number of
changed edges so far falls short of log n.

Sketch 9:

Almost log n insertions and deletions into
directed graphs

We now show how the approach of Sketch 7 can be
adapted such that, using the muddling technique,
reachability on directed graphs can be maintained
under a non-constant number of edge insertions and
deletions [11, Theorem 1].

Theorem 2.9. Reach is in DynFO(+,⇥) un-
der insertions and deletions of edges that a↵ect
O( logn

log logn ) nodes, on graphs with n nodes.

In Sketch 7 we explained how Reach can be re-
duced to MatrixInverse

6=0 and to FullRank, and
how to maintain the latter. Here, the idea is to
maintain MatrixInverse

6=0 directly, by maintain-
ing (su�cient information on) the inverse C�1 of the
input matrix C. Therefore, our goal is to update the
inverse C�1 when C changes to some matrix C+�C.
Suppose that �C is a change matrix that encodes

edge insertions and deletions that a↵ect k
def
= logn

log logn
nodes of the graph. Then, �C has at most k non-
zero rows and columns, and can be written as a ma-
trix product �C = UBV where B has dimension
k ⇥ k. The update of C

�1 to (C + �C)�1 with
�C = UBV is described by the Sherman-Morrison-
Woodbury identity (cf. [24]) as

(C +�C)�1 = (C + UBV )�1

= C
�1

� C
�1

U(I +BV C
�1

U)�1
BV C

�1
.

To implement the right-hand-side of this identity
as a dynamic program with first-order update rules,
some obstacles have to be eliminated. First, literally
computing the identity is not possible in first-order
logic, since entries in C

�1 can be exponentially large,
and multiplying such numbers is not possible with
first-order formulas even in the presence of arithmetic
on the domain. A workaround is to compute C

�1

modulo polynomially many, polynomially bounded
primes: an entry of C

�1 is non-zero if and only if
it is non-zero modulo one of the primes.
Since I + BV C

�1
U is a k ⇥ k matrix, its inverse

can be computed in AC
0 over Zp, for every prime p

that is polynomially bounded in n — if it is invert-
ible. However, although the occurring matrices are
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all invertible over Q, they may not be invertible over
Zp for some primes p. If this is the case for a prime,
the auxiliary relations for this prime become invalid
and cannot be used any more. But thanks to the
muddling technique it su�ces to maintain the query
for a polylogarithmic number of change steps, and it
is possible to guarantee that a su�ciently large num-
ber of primes survives for that many rounds, to get
the final result.

It is an open question whether reachability on di-
rected graphs can be maintained under insertions and
deletions of logarithmically or even poly-log many edges
using first-order update rules. By allowing update rules
from stronger logics than first-order logic, this becomes
possible: with additional majority quantifiers one can
maintain reachability on all directed graphs under changes
of poly-log size [11]; for certain classes of directed graphs,
additional parity quantifiers are su�cient [9].

Sketch 10:

Regular path queries

Attentive readers might have observed a gap in our
reasoning, as presented so far: our motivating sce-
nario involved graph databases and regular path
queries but throughout this article, we studied mere
reachability queries on graphs without edge labels.
However, it turns out that the maintainability of the
latter is actually the key for maintaining regular path
queries (and then conjunctive regular path queries
and unions therefore, and so on). This is because the
evaluation of a regular path query can be reduced to
the reachability query in a very simple fashion [28].
Indeed, this is doable by considering the product

of the actual graph with an automaton for a regular
language. More precisely, if A is an NFA that de-
cides the regular language R underlying the regular
path query at hand, and if D is a graph database
with edges labelled by the alphabet used by A, then
the question whether there is an R-path from u to v

boils down to the question whether the node (sf , v)
is reachable from the node (s0, u) in the synchronised
product A⇥D. The nodes of that product are pairs
(s, w) of a state of A and a node from D and there is
an edge from (s1, w1) to (s2, w2) if, for some symbol
a, there is an a-transition from s1 to s2 in A and an
a-labelled edge from w1 to w2 in D. Furthermore, s0
and sf are the unique initial and final states of A,
respectively.
This reduction is actually a bounded-first order re-

duction, since each single change in D only induces
at most size(A) many, first-order definable, changes
in D ⇥ A. Therefore, maintainability of Reach on
directed graphs yields maintainability of the R-path
query on graph databases, for every R. As an exam-

ple, we get the following corollary from Theorem 2.9.

Corollary 2.10. Let Q be a regular path query.
Then Q is in DynFO(+,⇥) under insertions and
deletions of edges that a↵ect O( logn

log logn ) nodes, where
n is the number of nodes of the graph database.

3. QUERY MAINTENANCE BARRIERS
First-order update rules are surprisingly powerful. Above,

we explored the reachability query and saw that it can
be updated with such rules, even in cases, where com-
plex changes are allowed. Also the tree isomorphism
query [17], all MSO queries on bounded tree-width graphs
[10], and all context-free languages [22] can be main-
tained in DynFO.
This leads to the natural question: Is there a barrier

for the power of dynamic programs, besides the easy ob-
servation that all queries in DynFO are computable in
polynomial time? Proving such barriers is a challeng-
ing task already in static settings, and it is therefore
not surprising that so far there are only preliminary
answers. Much of the work on barriers for dynamic
programs was done in the quest of finding out whether
reachability is in DynFO. For this reason we focus on
results that establish barriers for updating reachabil-
ity in scenarios with restricted resources such as small
auxiliary data and restricted updated rules.
While we can rely on several methods for proving

barriers of inexpressibility for first-order logic in static
scenarios, our tool set for dynamic lower bounds is much
less developed. Classical methods for static inexpress-
ibility include Ehrenfeucht-Fräıssé games and locality-
based arguments [16, 31] as well as circuit-based meth-
ods [27] that exploit the connection between first-order
logic and constant-depth circuits. Parity (of a unary
relation) and reachability are standard examples for
queries, that are provably not expressible in first-order
logic. Yet, both queries are contained in DynFO.
In the following, we outline two tools for dynamic

lower bounds: (a) exploitation of static lower bounds
and (b) a locality method for restricted update rules.

3.1 Exploiting static methods
Many non-maintainability results for DynFO were

shown by contradiction with the help of known static
lower bounds. More precisely, it was shown that if there
was a dynamic program for a particular query Qdynamic,
then some Qstatic would be expressible in first-order
logic, maybe in the presence of “helpful relations”, con-
tradicting known inexpressibility results.
After making the notion of helpful relations precise,

we present two instantiations of this technique which
were used to establish that queries cannot be main-
tained by first-order updates when the arity – and there-
fore the size – of auxiliary relations is restricted.
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A query over schema ⌧ is definable with helpful re-
lations over schema ⌧help if there is a formula ' over
⌧ [ ⌧help such that for each database D over ⌧ there is
a database Dhelp over ⌧help such that evaluating ' on
(D,Dhelp) yields the result of the query on D.
A first set of non-maintainability results for DynFO

with unary auxiliary relations can be derived from in-
expressibility results for existential, monadic second-
order logic EMSO. This logic extends first-order logic by
existential quantification of unary relations. Roughly
speaking, inexpressibility results for EMSO often trans-
fer to inexpressibility results for first-order logic with
unary helpful relations, which in turn allow proving bar-
riers for DynFO with unary auxiliary relations.

Sketch 11:

Unary auxiliary relations do not su�ce for
Reach

EMSO formulas can not define the transitive closure
of simple paths (e.g., implicitly in [18]). By basi-
cally the same arguments as in [18] it can be shown
that, for each first-order formula '(x, y) and each
large enough n, there is no tuple H of help relations,
such that ' defines the transitive closure over E on
(G,H), where G is just a simple path [14, Theorem
4.3]. This “static” inexpressibility result implies the
following “dynamic” inexpressibility result.

Theorem 3.1 ([14]). Reach is not in DynFO

with only unary auxiliary relations and one binary
auxiliary relation for storing the transitive closure.

Towards a contradiction, suppose Reach can be
maintained in DynFO under edge deletions with
unary auxiliary relations in addition to the binary
relation T for the transitive closure. Then the first-
order update rule for edge deletions can be used to
construct a formula ' that defines the transitive clo-
sure on simple paths, using unary help relations. In-
deed, let G be a simple path on nodes 1, . . . , n. The
help relations H can simply be chosen as the unary
auxiliary relations used by the dynamic program for
the cycle C that extends E by the edge (n, 1). The
formula ' results from the update rule for deletions,
by replacing every atom T (x, y) by >, since the tran-
sitive closure relation of a cycle is the full binary re-
lation. This yields the desired contradiction.

We next give an example for deriving dynamic inex-
pressibility results from circuit lower bounds.

Sketch 12:

An arity hierarchy for auxiliary relations

It is well-known that the parity of n bits cannot be
computed by constant-depth circuits of polynomial

size [1, 21]. A less known result by Cai [4] extends
this to the presence of “helpful bits”: given n bit
strings of length n

6, a constant-depth circuit of poly-
nomial size cannot compute the parity of each of these
strings even with n� 1 help bits (which may depend
on the bit stings). This result translates to first-order
logic where, roughly speaking, the help bits translate
to helpful relations: there is a query over a 6k-ary
schema which cannot be expressed by a first-order
formula with (k� 1)-ary help relations, for all k 2 N.
Again, a barrier for DynFO follows immediately.

Theorem 3.2 ([14, 15]). Let k � 2. There is a
query over a (3k+1)-ary schema which can be main-
tained in DynFO with k-ary auxiliary relations, but
not with (k�1)-ary auxiliary relations. In particular,
DynFO has a strict arity hierarchy.

It is open whetherDynFO has a strict arity hierarchy
over a fixed schema.10

3.2 Locality methods for restricted update rules
The above techniques work for first-order update rules,

yet only for restricted arities: for queries on graphs, we
currently only know how to prove barriers with respect
to unary auxiliary relations. We now present a tech-
nique that allows proving barriers for high-arity auxil-
iary relations, yet it can only be applied to quantifier-
free update rules and slight extensions thereof.
Quantifier-free update rules might seem unreasonably

weak, but it turns out that they are not entirely power-
less. As an example, in Sketch 1 we showed how reacha-
bility on directed graphs can be maintained under edge
insertions with quantifier-free update rules. Also, mem-
bership of strings in regular language can be maintained
without quantifiers [22].11

The Substructure Method encapsulates the weakness
of quantifier-free update rules as a technical lemma. We
sketch it next and give three applications.

Sketch 13:

Barriers with the Substructure Method

The intuition of the Substructure Method is as fol-
lows: suppose S is the current state of a dynamic
program, i.e., S is a structure consisting of the input
database and the auxiliary database. When updat-
ing an auxiliary tuple ~c after modifying a tuple ~d, a
quantifier-free update rule only has access to ~c and
~d.12 Thus, if a sequence of modifications changes only
tuples from a substructure A of S, then the auxiliary

10Such a strict hierarchy has been established for update
rules without quantifiers [43, 41].

11In fact, the regular languages can be characterised by this
property.
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data of A is not a↵ected by information outside A. In
particular, two isomorphic substructures A and B re-
main isomorphic, when corresponding modifications
are applied to them.

Lemma 3.3 (Substructure lemma [22, 44]).

Let P be a dynamic program with quantifier-free
update rules and let S and T be states of P with
isomorphic substructures A and B, respectively.
Then the substructures A and B are still isomorphic
after applying isomorphism-respecting changes ↵ to
A and � to B. In particular, if P has a Boolean
relation Q for storing a query result, then Q has the
same value in the resulting states.

Now, to prove that a queryQ cannot be maintained
with quantifier-free update rules using the Substruc-
ture Method, one can proceed as follows. Assume,
towards a contradiction, that there is a program for
Q. Then, find two states S and T of a dynamic pro-
gram with two isomorphic substructures A and B,
respectively, such that applying two corresponding
modification sequences ↵ and � to A and B yields
one structure S 0 in Q and one structure T

0 not in Q.
By the Substructure Lemma, this is a contradiction.
The challenge is to find suitable structures S and

T for a query at hand. Several combinatorial tech-
niques have been used for finding such structures for
which we provide examples. The proof of the follow-
ing result combines the Substructure Method with a
simple counting argument [22, Proposition 6.2].

Theorem 3.4. Alternating reachability cannot be
maintained with quantifier-free update rules.

By combining Ramsey’s Theorem and Higman’s
Lemma to find suitable structures with isomorphic
substructures, a barrier for Reach can be shown,
though only for restricted auxiliary relations [45,
Theorem 4.7].

Theorem 3.5. Reach cannot be maintained with
quantifier-free update rules and binary auxiliary rela-
tions.

It is open whether Reach can be maintained
with quantifier-free update rules under single edge
modifications. However, combining the Substructure
Lemma with upper and lower for Ramsey numbers,
a technique introduced in [43], it can be shown that
Reach cannot be maintained without quantifiers un-
der moderate definable changes [39, Theorem 7.3].

Theorem 3.6. Reach cannot be maintained with
quantifier-free update rules under changes defined by
quantifier-free first-order formulas.

4. SUMMARY AND FURTHER WORK
We have presented several DynFO maintainability

results for the reachability query, along with the tech-
niques that are used to construct the corresponding dy-
namic programs. As discussed in Sketch 10, these re-
sults can readily be translated into maintenance results
for regular path queries. Further DynFO maintainabil-
ity results, also for extensions of regular path queries,
are given in [42, 32, 3].
Of course, the lower bounds from Section 3 directly

hold for regular path queries. Apart from the barriers
discussed there, some further challenges become visible
when trying to construct dynamic programs for graph
database queries.
We emphasise that the maintenance results forReach

do not imply that all NL-computable queries are in
DynFO, although Reach is NL-complete. This is be-
causeDynFO is only (known to be) closed under bounded
first-order reductions and Reach is provably not NL-
complete under these reductions [35].
However, relatively easy graph queries can be shown

to be NL-complete under bfo reductions, as for example
the (a[bc])⇤ query that selects all pairs (u, v) of nodes
such that there is an a-labelled path from u to v, and
every intermediate node on this path is the start of a
path of length 2 labelled bc. This query can be defined
via nested regular expressions [36], instead of regular
expressions used to define regular path queries.
If the (a[bc])⇤ query is shown to be in DynFO under

single-edge changes, then so are allNL queries. As there
are queries with much smaller static complexity than
NL which are not known to be in DynFO [41], such a
result seems unlikely. It is not even known whether the
(a[bc])⇤ query can be maintained when only insertions
of single edges are allowed.
On a more technical note, we remark that the settings

of [34] and [13] are slightly di↵erent, in that the latter
allows to change the set of nodes of the graph. It turns
out that this di↵erence hardly matters for single-tuple
changes and only mildly for more complex changes. Main-
tainability of queries usually coincides in both settings.
We stuck here to the setting of [34], mainly because of
its simplicity.

How to approach query maintenance in DynFO?
We have seen some queries that can be maintained in
DynFO and others where this question is open. How
should one try to find out whether a given query Q

is in DynFO? Although there is no truly systematic
approach to showing that a given query is in DynFO,
the following guiding questions can serve as a heuristic
on how to start.

12In general, the database could also have some constants.
But we assume here, that it does not, for simplicity.
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(a) Is the static complexity of Q above NC?

• If this is the case, e.g. if Q is P-hard, the
chances of successfully maintaining it are low.13

(b) Is the query hard under bfo reductions for some
class C above AC

0, e.g. NL or LOGSPACE?

• If that is the case, it will likely still be di�cult
to show that Q is inDynFO, since that would
imply that all queries from C are in DynFO.

(c) Otherwise, the methods described in this article
might be successful. Probably it does not hurt to
try the muddling technique first.

Future work
Some open questions that might be worth tackling are
the following.

Open question 1. Can reachability on directed graphs
be maintained with first-order update rules under changes
of polylogarithmic size?

Open question 2. Can minimal distances and wit-
ness paths between nodes of a graph be maintained with
first-order update rules?

Open question 3. Can reachability be maintained
with quantifier-free update formulas under single-edge
deletions?

Besides maintenance of reachability and related queries,
other aspects of dynamic complexity have been studied
as well. These include static analysis of dynamic pro-
grams [38] as well as connections to information extrac-
tion [20] and parameterised complexity [37].
Another exciting research question is to bridge the

gap between dynamic complexity and dynamic algo-
rithms: most of the above results are pure expressibility
results and the dynamic programs are not very e�cient
with respect to their overall work. In future work we
plan to investigate under which circumstances queries
can be maintained in a work-e�cient fashion.
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