
The Expressive Power of

Graph Neural Networks as a Query Language

Pablo Barceló
⇤

IMC, PUC & IMFD Chile
Egor V. Kostylev
University of Oxford

Mikaël Monet
IMFD Chile

Jorge Pérez
†

DCC, UChile & IMFD Chile
Juan L. Reutter

‡

DCC, PUC & IMFD Chile
Juan-Pablo Silva

DCC, UChile

ABSTRACT
In this paper we survey our recent results characteriz-
ing various graph neural network (GNN) architectures
in terms of their ability to classify nodes over graphs, for
classifiers based on unary logical formulas– or queries.
We focus on the language FOC2, a well-studied frag-
ment of FO. This choice is motivated by the fact that
FOC2 is related to the Weisfeiler-Lehman (WL) test for
checking graph isomorphism, which has the same abil-
ity as GNNs for distinguishing nodes on graphs. We un-
veil the exact relationship between FOC2 and
GNNs in terms of node classification. To tackle this
problem, we start by studying a popular basic class of
GNNs, which we call AC-GNNs, in which the features
of each node in a graph are updated, in successive layers,
according only to the features of its neighbors. We prove
that the unary FOC2 formulas that can be captured by an
AC-GNN are exactly those that can be expressed in its
guarded fragment, which in turn corresponds to graded
modal logic. This result implies in particular that AC-
GNNs are too weak to capture all FOC2 formulas. We
then seek for what needs to be added to AC-GNNs for
capturing all FOC2. We show that it suffices to add
readouts layers, which allow updating the node features
not only in terms of its neighbors, but also in terms of
a global attribute vector. We call GNNs with readouts
ACR-GNNs. We also describe experiments that validate
our findings by showing that, on synthetic data conform-
ing to FOC2 but not to graded modal logic, AC-GNNs
struggle to fit in while ACR-GNNs can generalise even
to graphs of sizes not seen during training.
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1. INTRODUCTION
Graph neural networks (GNNs), which were in-

troduced about a decade ago [21, 29], are a class of
artificial neural network architectures that has re-
cently become popular for a wide range of applica-
tions dealing with structured data, such as molecule
classification, knowledge graph completion, and
Web page ranking [6, 13, 17, 30]. The main idea
behind GNNs is that the connections between neu-
rons are not arbitrary but reflect the structure of the
input data, which is given as a graph. Specifically,
each node in the graph is associated a neuron, and
the forward propagation of the neuron’s data de-
pends on the connections–or neighbors–of this neu-
ron in the graph. This approach is motivated by
convolutional and recurrent neural networks, and
actually generalizes both of them [6].

Despite the fact that GNNs have recently been
proven very efficient in many applications, their the-
oretical properties are not yet well-understood. We
focus on the expressive power of GNNs, and concen-
trate on the ability of GNNs to express node classi-
fiers, that is, functions assigning 1 (true) or 0 (false)
to every node in a graph. More precisely, let us as-
sume we have a GNN whose last layer behaves like
a classifier: for every node v of the graph the last
layer simply outputs a number 0 or 1. We say that
this GNN can express a particular node classifier f ,
if for every graph G we have that the computa-
tion of the GNN assigns to every node v in G the
value f(v). This leads us to the following question:

What type of node classifiers can be ex-
pressed as GNNs?

In the context of databases, one can see a graph
as a graph database [27, 5], and a classifier f as a
query language: On input graph (database) G, the
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query would return all the nodes in G that are clas-
sified as true by f . Thus, answering the question
above implies understanding what type of queries
can be expressed by GNNs.

Our first observation draws from an interesting
result published independently by Morris et al. [23]
and Xu et al. [34] that establishes a connection
between GNNs and the Weisfeiler-Lehman (WL)
test for checking graph isomorphism. The WL test
works by constructing a labeling of the nodes of the
graph, in an incremental fashion, and then decides
whether two graphs are isomorphic by comparing
the labeling of each graph. To state the connection
between GNNs and this test, consider the popu-
lar GNN architecture that updates the feature vec-
tor of each graph node by combining it with the
(aggregation of) the feature vectors of its neigh-
bors. We call such GNNs aggregate-combine GNNs,
or AC-GNNs. The authors of these papers indepen-
dently observe that the node labeling produced by
the WL test always refines the labeling produced by
any GNN. More precisely, if two nodes are labeled
the same by the algorithm underlying the WL test,
then the feature vectors of these nodes produced by
any AC-GNN will always be the same. Moreover,
there are AC-GNNs that can reproduce the WL la-
beling, and hence AC-GNNs can be as powerful as
the WL test for distinguishing nodes.

In terms of queries, these connections give us a
sort of upper bound: we see that AC-GNNs can
only express queries that agree with the WL test,
in the sense that all nodes assigned the same WL la-
bel are either all part of the answer, or none of them
is. However, this gives us little in terms of under-
standing the actual queries that can be expressed
by GNNs.

To pursue further in this topic, we concentrate
on queries expressible in first-order logic. For AC-
GNNs, a meaningful starting point to measure their
expressive power is the logic FOC2, the two-variable
fragment of FO extended with counting quantifiers
of the form 9

�N
x'(x), which state that there are at

least N nodes satisfying formula ' [7].1 This choice
of FOC2 is justified by a classical result establish-
ing a tight connection between FOC2 and WL: two
nodes in a graph are classified the same by the WL
test if and only if they satisfy exactly the same
unary FOC2 formulas [7].

Given the connection between AC-GNNs and WL
on the one hand, and that between WL and FOC2

on the other hand, it is natural to think that the ex-

1
Note that every formula in FOC2 can also be expressed

in FO, albeit with more than just two variables.

pressivity of AC-GNNs coincides with that of FOC2,
at least in terms of classifiers or unary queries. Sur-
prisingly, this is not the case; indeed, we will see
that there are many FOC2 unary formulas that can-
not be expressed by AC-GNNs. This leaves us with
the following natural questions. First, what is the
largest fragment of FOC2 that can be captured by
AC-GNNs? Second, is there an extension of AC-
GNNs that allows to express all FOC2 (unary) for-
mulas? In this paper we provide answers to these
two questions. The following are the main results
outlined in this paper.

First, we characterize exactly the fragment
of FOC2 that can be expressed as AC-GNNs. This
fragment corresponds to graded modal logic [9], or,
equivalently, to the description logic ALCQ, which
has received considerable attention in the knowl-
edge representation community [2, 3]. What is more,
we show that formulas of this kind can be expressed
in terms of a particularly simple class of GNNs,
which we call homogeneous AC-GNNs. We present
these results in Section 4.

Second, we extend the AC-GNN architecture in
a simple way by allowing global readouts, where in
each layer we also compute a feature vector for the
whole graph and combine it with local aggregations;
we call these aggregate-combine-readout GNNs, or
ACR-GNNs. These networks are a special case of
the networks proposed by Battaglia et al. [6] for
relational reasoning over graph representations. In
this setting, we prove that each FOC2 formula can
be captured by an ACR-GNN. In this setting, we
also prove that each FOC2 formula can be captured
by an ACR-GNN using a single readout. These re-
sults are presented in Section 5.

Finally, we experimentally validate our findings
in Section 6, where we show that the theoretical
expressiveness of ACR-GNNs, as well as the differ-
ences between AC-GNNs and ACR-GNNs, can be
observed when we learn from examples. In particu-
lar, we show that on synthetic graph data conform-
ing to FOC2 formulas, AC-GNNs struggle to fit the
training data while ACR-GNNs can generalize even
to graphs of sizes not seen during training.

Remark. This paper summarizes recent results pub-
lished by the same authors in a machine learning
conference paper [4]; however, the presentation is
adapted to a reader in the database community.

2. PRELIMINARIES
In this section we describe the architecture of ba-

sic GNN classifiers, AC-GNNs, and introduce other
related notions. We consider the problem of Boolean
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node classification in graphs, where we wish to clas-
sify each graph node as true or false on the base
of the structure of its neighborhood. We concen-
trate on undirected graphs without self-loops and
multiedges and where each node is assigned with a
unique color from a finite set; however, our results
can be generalised to directed edge-colored multi-
graphs with loops in a straightforward way.

Graph neural networks. The basic architecture for
GNNs, and the one studied in recent articles on
GNN expressibility [23, 34], consists of a sequence
of layers that combine the feature vectors of ev-
ery node with the multiset of feature vectors of its
neighbors, as formalized in the following definition.

Definition 2.1. An aggregate-combine GNN
(AC-GNN) A with L � 1 layers is specified by two
sets of functions, {AGG(i)

}
L
i=1 and {COM(i)

}
L
i=1,

called aggregation and combination functions, re-
spectively, and a classification function CLS. Each
aggregation function AGG(i) takes a multiset of (ra-
tional) vectors and returns one such vector, each
combination function COM(i) takes a pair or vec-
tors and returns one vector, and the classification
function CLS takes a vector and returns a Boolean
value, true or false (the vector dimensions of these
functions are assumed to match the semantics of the
GNN as defined next).

An AC-GNN A takes a graph G as input and
computes feature vectors x(i)

v , for each node v of G
and each layer i = 1, . . . , L, via the recursive for-
mula

x(i)
v =

COM(i)

✓
x(i�1)
v ,AGG(i)

�
{{x(i�1)

u | u 2 NG(v)}}
�◆

,

where NG(v) is the neighborhood of v in G and
the initial vector x(0)

v is the one-hot encoding of
the color of v in G (i.e., the dimension of x(0)

v is
the number of possible colors and x(0)

v has the k-
th component 1 if its color has number k and 0
otherwise). Finally, each node v of G is classified as
true or false according to CLS applied to x(L)

v . We
define A(G, v) := CLS(x(L)

v ), for each node v in G.

Aggregation, combination, classification functions.
Many possible aggregation, combination, and clas-
sification functions exist, which produce different
classes of GNNs [14, 17, 23, 34]. A simple, yet com-
mon choice is to consider the sum of feature vectors
as the aggregation function, the sign of one of the

elements in x(L)
v as the classification function, and

the combination function

COM(i)(x1,x2) = f
�
x1C

(i) + x2A
(i) + b(i)

�
, (1)

where x1 and x2 are row vectors, C(i) and A(i)

are matrices of parameters (of appropriate dimen-
sions), b(i) is a bias row vector of parameters, and f

is a non-linear function, such as (truncated) ReLU
or sigmoid [22]. We call simple an AC-GNN us-
ing these functions. Note that the parameters in
C(i), A(i), and b(i) are usually found during the
training of the GNN (e.g., using standard ML tech-
niques [22]). We say that an AC-GNN is homo-
geneous if all AGG(i) are the same and all COM(i)

are the same (i.e., share the same parameters across
layers). In most of our positive results we construct
simple and homogeneous GNNs, while our negative
results hold in general, i.e., for GNNs with arbitrary
aggregation, combination, and classification func-
tions and that are not necessarily homogeneous.

We note that besides node classification, which
we consider in this paper, one can use GNNs to clas-
sify whole graphs. This can be done, for example,
by considering that the classification function CLS

inputs the multiset {{x(L)
v }} of feature vectors over

all nodes v in the graph and outputs a classification
of the whole graph. In this case the classification
function is often called readout [23, 34]. In this pa-
per, however, we use the term “readout” to refer to
functions applied globally on intermediate layers of
ACR-GNNs (i.e., GNNs that are more expressive
than AC-GNNs, see Section 5).

Weisfeiler-Lehman. The Weisfeiler-Lehman (WL)
test (also called node coloring) is a powerful heuris-
tic used to solve the graph isomorphism problem [7,
32], or, for our purposes, to determine whether the
neighborhoods of two nodes in a graph are struc-
turally close. Formally, the L-round WL algorithm
takes as input a (node-colored) graph G and iter-
atively assigns, for L rounds, a new color to every
node in the graph in such a way that the color of
a node assigned in round i is uniquely and unam-
biguously defined by (i.e., has a one-to-one corre-
spondence with) its own color in round i � 1 and
with the multiset of colors of its neighbors in G in
round i�1. The result of the algorithm is the color-
ing of the nodes after round L; then, the multisets of
the resulting colors in two graphs can be compared
for testing their (non-)isomorphism [7, 32]. An im-
portant observation is that the rounds of the WL
algorithm can be seen as the layers of an AC-GNN
whose aggregation and combination functions are
all injective [23, 34]. Furthermore, as independently
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shown by Morris et al. [23] and Xu et al. [34], an
AC-GNN classification can never contradict the WL
test, in the following sense.

Proposition 2.2. If the L-round WL algorithm
assigns the same color to two nodes in a graph, then
every AC-GNN with L-layers classifies both nodes
the same (i.e., either both as true or both as false).

3. GNNS AND LOGIC
Our study relates the expressive power of GNNs

to that of classifiers formalized as unary formulas
in first order logic with equality (FO) and some of
its fragments. It is well-known that FO logic un-
derlies many standard database query languages,
such as SQL, and thus our work bridges the gap
between structure-aware machine learning architec-
tures on the one side and classic declarative query
formalisms on the other side.

Since we concentrate on undirected node-colored
graphs, we consider the signature consisting of a
single binary predicate Edge and unary predicates
corresponding to the possible node colors, as well as
assume that all the logical structures encode such
graphs (in particular, the interpretation of Edge is
always symmetric). As formalized in the following
definition, we say that a GNN classifier (i.e., an AC-
GNN or a GNN of more expressive architecture as
described later) captures a logical classifier when
both classifiers agree on every node in every graph.

Definition 3.1. A GNN classifier A captures a
logical formula '(x) if for every graph G and node v

in G, it holds that A(G, v) = true if and only
if (G, v) |= '.

3.1 Logic FOC2 and the WL test
As we have outlined in the introduction, we focus

on formulas in FOC2, the fragment of FO logic that
only allows formulas with two variables, but in turn
permits the use of counting quantifiers [7]. Such
quantifiers have the form 9

�N for a positive inte-
ger N , and a formula 9

�N
x'(x) holds if there are

at least N different nodes for which ' holds. For
example, in FOC2 we can express a formula that
checks whether x is a red node, and there is an-
other node that is not connected to x and that has
at least two blue neighbors:

�(x) := Red(x) ^

9y
�
¬Edge(x, y)^9�2

x
⇥
Edge(y, x)^Blue(x)

⇤�
.

Despite that FOC2 is not a syntactic fragment
of FO logic due to the counting quantifiers, it is
a semantic fragment, because these quantifiers can

be expressed via usual existential quantifiers and
disequalities. For example, the formula �(x) above
can be written in FO as

�(x) := Red(x) ^

9y
�
¬Edge(x, y)^9z19z2

⇥
Edge(y, z1)^Edge(y, z2)^

z1 6= z2 ^ Blue(z1) ^ Blue(z2)
⇤�
.

Note, however, that this rewriting is possible only
by means of increasing the number of used vari-
ables, and it is easy to see that this formula can-
not be expressed in FO2, the fragment of FO that
allows only two variables (and no counting quan-
tifiers). On the other hand, FO is strictly more
expressive than FOC2; this is witnessed, for exam-
ple, by a formula checking whether a graph has a
triangle as a subgraph.

The following result, which is due to Cai et al. [7],
establishes a classical connection between FOC2 and
the WL test. Together with Proposition 2.2, it pro-
vides a justification for our choice of the logic FOC2

for measuring the expressiveness of AC-GNNs.

Proposition 3.2. For every graph G and
nodes u, v in G, we have that u and v agree on
every FOC2 unary formula if and only if the WL
algorithm colors v and u the same after arbitrary
many rounds.

3.2 FOC2 and AC-GNN classifiers
Having Propositions 2.2 and 3.2 at hand, one may

be tempted to combine them and claim that ev-
ery FOC2 formula can be captured by an AC-GNN.
Yet this is not the case, as we show in Proposi-
tion 3.3 below. In fact, while it is true that two
nodes are indistinguishable by the WL test if and
only if they are indistinguishable by FOC2

(Proposition 3.2), and if the former holds then such
nodes cannot be distinguished by AC-GNNs (Propo-
sition 2.2), this by no means tells us that every FOC2

formula can be captured by an AC-GNN.

Proposition 3.3. There are FOC2 formulas that
are not captured by any AC-GNN. In fact, this holds
even for FO formulas using only two variables and
no counting quantifiers.

Proof. Consider the formula ↵(v) := Red(v) ^
9x Green(x). We will show by contradiction that
there is no AC-GNN that captures ↵, no matter
which aggregation, combination, and final classifica-
tion functions are allowed. Indeed, assume that A is
an AC-GNN capturing ↵, and let L be its number of
layers. Consider the graph G that is a chain of L+2
nodes colored Red, and consider the first node v0 in
that chain. Since A captures ↵, and since (G, v0) 6|=
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↵, we have that A labels v0 with false, that is,
A(G, v0) = false. Now, consider the graph G

0 ob-
tained from G by coloring the last node in the chain
with Green (instead of Red). Then one can easily
show that A again labels v0 by false in G

0. But we
have (G0

, v0) |= ↵, a contradiction.

The above proof relies on the following weakness
of AC-GNNs: if the number of layers is fixed (i.e.,
does not depend on the input graph), then the in-
formation of the color of a node v cannot travel
further than at distance L from v. Nevertheless, we
can show that the same holds even when we con-
sider AC-GNNs that dispose of an arbitrary num-
ber of layers (for instance, one may want to run a
homogeneous AC-GNN for f(|E|) layers for each
graph G = (V,E), for a fixed function f). As-
sume again by way of contradiction that A is such
an extended AC-GNN capturing ↵. Consider the
graph G consisting of two disconnected nodes v, u,
with v colored Red and y colored Green. Then,
since (G, v) |= ↵, we have A(G, v) = true. Now
consider the graph G

0 obtained from G by chang-
ing the color of u from Green to Red. Observe
that, since the two nodes are not connected, we
will again have A(G0

, v) = true, contradicting the
fact that (G0

, v) 6|= ↵ and that A is supposed to
capture ↵.

From these proofs we get two pieces of intuition.
One problem is that an AC-GNN has only a fixed
number L of layers and hence the information of lo-
cal aggregations cannot travel further than at dis-
tance L of every node along edges in the graph. But
there are times when no number of layer suffices,
simply because two nodes may be disconnected in
the graph. This negative result opens up the fol-
lowing questions.

1. What kind of FOC2 formulas can be captured
by AC-GNNs?

2. Can we capture FOC2 classifiers with GNNs
using a simple extension of AC-GNNs?

We answer these questions in the next two sections.

4. EXPRESSIVE POWER OF AC-GNNS
Towards answering our first question, we recall

that the problem with AC-GNN classifiers is that
they are local, in the sense that they cannot see
across a distance beyond their number of layers.
Thus, if we want to understand which queries this
architecture is capable of expressing, we must con-
sider logics built with similar limitations in mind.
And indeed, in this section we show that AC-GNNs

capture any FOC2 formula as long as they satisfy
such a locality property. This happens to be a
well-known restriction of FOC2 that corresponds to
graded modal logic [9] or, equivalently, to the de-
scription logic ALCQ [2], which is fundamental for
knowledge representation: for instance, the OWL 2
Web Ontology Language [24, 31] relies on ALCQ.

The idea of graded modal logic is to force all sub-
formulas to be guarded by the edge predicate Edge.
This means that one cannot express in graded modal
logic arbitrary formulas of the form  (x) = 9y '(y)
(that is, whether there is some node that satis-
fies property '). Instead, one is allowed to check
whether some neighbor y of the node x where the
formula is being evaluated satisfies '. For instance,
we are allowed to express the formula
 (x) = 9y (Edge(x, y)^ '(y)) in the logic as in this
case '(y) is guarded by Edge(x, y).

We can formally define this logic using FOC2 syn-
tax as follows (note that both graded modal logic
and ALCQ have their own syntaxes, but we stick to
the general FO syntax for uniformity).

Definition 4.1. A graded modal logic formula
is either Col(x), for Col a node color, or one of
the following, where ' and  are graded modal logic
formulas and N is a positive integer:

¬'(x), '(x) ^  (x), 9
�N

y (Edge(x, y) ^ '(y)).

For example, the formula

�(x) := Red(x) ^ 9y
�
Edge(x, y) ^ Blue(y)

�

is in graded modal logic, but the formula

�(x) := Red(x) ^

9y
�
¬Edge(x, y)^9�2

x
⇥
Edge(y, x)^Blue(x)

⇤�
.

of Section 3 is not, because the use of ¬Edge(x, y)
as a guard is disallowed. Observe that all graded
modal logic formulas are unary by definition, so all
of them define unary queries. As promised, we now
show that AC-GNNs can indeed capture all graded
modal logic classifiers.

Proposition 4.2. Each graded modal logic clas-
sifier is captured by a simple homogeneous AC-GNN.

Proof sketch. The key idea of the construc-
tion is that the components of a node’s feature vec-
tor can represent the subformulas of the captured
logical classifier that hold in the node. An AC-GNN
then can implement a standard dynamic program-
ming algorithm over the graph G such that, after k
layers, it declares a feature in a node v to be 1 iff v

satisfies the corresponding subformula ' over G.
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Let '(x) be a formula in graded modal logic.
Let sub(') = ('1,'2, . . . ,'L) be an enumeration
of the sub-formulas of ' such that if 'k is a sub-
formula of '` then k  `. We show how to con-
struct a simple and homogeneous AC-GNN A' cap-
turing '(x). As mentioned, the idea is that A'

uses feature vectors in RL such that every compo-
nent of those vectors represents a different formula
in sub('). Then A' will update the feature vec-
tor x(i)

v of node v ensuring that component ` of x(i)
v

gets a value 1 if and only if the formula '` is satis-
fied in node v, for every i � l. We note that ' = 'L

and thus, the last component of each feature vector
after evaluating L layers in every node gets a value 1
if and only if the node satisfies '. We will then be
able to use a final classification function CLS that
simply extracts that particular component.

The simple homogeneous AC-GNN A' has L lay-
ers and uses aggregation and combine functions

AGG(X) =
X

x2X

x,

COM(x,y) = �
�
xC + yA+ b

�
,

where A,C 2 RL⇥L, and b 2 RL are defined next,
and � is the truncated ReLU activation defined by
�(x) := min(max(0, x), 1). The entries of the `-th
columns of A,C, and b depend on the sub-formulas
of ' as follows:

• if '`(x) = Col(x) with Col one of the (base)
colors, then C`` = 1,

• if '`(x) = 'j(x) ^ 'k(x) then Cj` = Ck` = 1
and b` = �1,

• if '`(x) = ¬'k(x) then Ck` = �1 and b` = 1,

• if '`(x) = 9
�N (E(x, y) ^ 'k(y)) then Ak` = 1

and b` = �N + 1,

and all other values in the `-th columns of A,C,
and b are 0.

To show correctness, let G = (V,E) be a col-
ored graph. For every node v in G we consider
the initial feature vector x(0)

v = (x1, . . . , xL) such
that x` = 1 if sub-formula '` is the initial color as-
signed to v, and x` = 0 otherwise. By definition,
AC-GNN A' will iterate the aggregation and com-
bine functions defined above for L rounds (L layers)
to produce feature vectors x(i)

v for every node v 2 G

and i = 1, . . . , L. All that remains is to show that
for every '` 2 sub('), every i 2 {`, . . . , L}, and
every node v in G it holds that:

(x(i)
v )` = 1 if (G, v) |= '` and (x(i)

v )` = 0 otherwise,

where (x(i)
v )` is the `-th component of x(i)

v . But this
can easily be proved by induction on the number of
sub-formulas of every '`.

An interesting open question is whether the same
kind of construction can be done with AC-GNNs us-
ing different aggregate and combine operators from
the ones we consider here; for instance, using max
instead of sum to aggregate the feature vectors of
the neighbors, or using other non-linearities such as
sigmoid.

Interestingly, the relationship between AC-GNNs
and graded modal logic goes further: we can show
that graded modal logic is the largest class of FO
logical classifiers captured by AC-GNNs—that is,
the only FO formulas that AC-GNNs are able to
learn accurately are those in graded modal logic.

Theorem 4.3. A logical classifier is captured by
AC-GNNs if and only if it can be expressed in graded
modal logic.

The backward direction of this theorem is Propo-
sition 4.2. On the other hand, the proof of the for-
ward direction is based on a van Benthem & Rosen
characterization obtained by Otto [26, Theorem 2.2]
for finite graphs, stating that an FO formula can
be expressed in graded modal logic if and only if
the formula only depends on the unraveling of the
nodes, which in turn correspond to the colors as-
signed by the WL test. While the setting consid-
ered by Otto is slightly different from ours (in par-
ticular, we consider directed graphs, as opposed to
undirected), these differences can be shown to be
inessential, and the proof carries over to this set-
ting. We point out that the forward direction holds
no matter which aggregate and combine operators
are considered—that is, this is a limitation of the
AC-GNN architecture, not of the specific functions
that one chooses to update the features.

5. GNNS FOR CAPTURING FOC2

In this section we tackle our second question:
Which GNN architectures do we need to capture all
FOC2 classifiers? Recall that the main shortcoming
of AC-GNNs for expressing such classifiers is their
local behavior. A natural way to avoid this behavior
is to allow for a global feature computation on each
layer of the GNN. This is called a global attribute
computation in the framework of [6]. Following the
recent GNN literature [13, 23, 34], we refer to this
global operation as a readout. We begin with for-
malizing the GNN architecture with readouts. We
then show how readouts serve in capturing all of
FOC2, and finish with an observation on the num-
ber of readouts needed in these neural networks.
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5.1 GNNs with global readouts
Our definition of GNNs with readouts is a gener-

alization of the Definition 2.1 for AC-GNNs.

Definition 5.1. An aggregate-combine-readout
GNN (ACR-GNN) with L layers extends AC-GNNs
by readout functions {READ(i)

}
L
i=1, which aggre-

gate the (multiset of the) current feature vectors
of all the nodes in a graph to a single vector; ad-
ditionally, the combination functions COM(i) take
three arguments rather than two. Then, the feature
vector x(i)

v of each node v in a graph G on each
layer i is computed by the following recursive for-
mula, where V is the set of all nodes in G:

x(i)
v =

COM(i)

✓
x(i�1)
v ,AGG(i)

�
{{x(i�1)

u | u 2 NG(v)}}
�
,

READ(i)
�
{{x(i�1)

u | u 2 V }}
�◆

.

Intuitively, every layer in an ACR-GNN first com-
putes (i.e., “reads out”) the aggregation over all the
nodes in G; then, for every node v, it computes the
aggregation over the neighbors of v; and finally it
combines the features of v with the two aggregation
vectors.

All the notions about AC-GNNs extend to ACR-
GNNs in a straightforward way; for example, a sim-
ple ACR-GNN uses the sum as the function READ(i)

in each layer, and the following combination func-
tion, generalizing Equation (1):

COM(i)(x1,x2,x3) =

f
�
x1C

(i) + x2A
(i) + x3R

(i) + b(i)
�
,

where R(i) is one more matrix of parameters.

5.2 ACR-GNNs and FOC2

To see how readout functions could help in cap-
turing non-local properties, consider again the for-
mula �(x) from above, that assigns true to every red
node v unless there is another node not connected
with v having at least two blue neighbors. It is easy
to show, by adapting the proof of Proposition 3.3,
that no AC-GNN can capture this classifier. How-
ever, using a single readout and local aggregations,
one can implement this classifier as follows. Let B

be the property “having at least 2 blue neighbors”.
Then an ACR-GNN that implements �(x) can first
use a local aggregation to store in the feature of
every node if the node satisfies B, then use a read-
out function to count the nodes satisfying B in the
whole graph, and finally use another local aggrega-
tion to count neighbors of every node satisfying B.

Then � is obtained by classifying as true every red
node having less neighbors satisfying B than the to-
tal number of nodes satisfying B in the whole graph.
It turns out that the usage of readout functions is
enough to capture all non-local properties of FOC2

classifiers.

Theorem 5.2. Each FOC2 classifier can be cap-
tured by a simple homogeneous ACR-GNN.

Proof sketch. As an intermediate step in the
proof, we use a characterization of FOC2 using an
extended version of graded modal logic, which was
obtained by Lutz et al. [19], and relates FO2 with a
modal logic that can use parameters to navigate to
all nodes not connected, or different to, the current
node. This connection can be extended to FOC2

and the counting version of this modal logic, which
is denoted as EMLC.

Next, we show how to capture any EMLC for-
mula with an ACR-GNN. Since EMLC formulas are
essentially the extension of graded modal logic with
these negated modalities, we can reuse most of the
proof of Proposition 4.2. The novelty is that we use
readouts to take care of subformulas with negated
modalities. Thus, readout functions are only used
to deal with subformulas asserting the existence of
a node that is not connected to the current node in
the graph, just as we did for classifier �(x).

Note that Proposition 4.2 has two directions while
Theorem 5.2 just one; we leave as a challenging open
problem the other direction of Theorem 5.2—that
is, whether the FOC2 classifiers are exactly the log-
ical classifiers (i.e., FO logic unary formulas) cap-
tured by ACR-GNNs.

5.3 The number of layers with readouts
The proof of Theorem 5.2 constructs ACR-GNNs

whose number of layers depends on the size of the
formula being captured; moreover, readouts are used
on unboundedly many (in some cases all) layers of
these GNNs. Given that a global computation can
be costly, one might wonder whether this is really
needed, or if it is possible to cope with all the com-
plexity of such classifiers by performing only a few
readouts. We next show the surprising fact that just
one readout is actually always enough. However,
this reduction in the number of readouts comes at
the cost of severely complicating the resulting GNN.

Definition 5.3. An aggregate-combine GNN
with final readout (AC-FR-GNN) is the same as
an ACR-GNN except that only the final layer uses
a readout function.

The following theorem formalizes the result of
this section.
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Theorem 5.4. Each FOC2 classifier is captured
by an AC-FR-GNN.

The AC-FR-GNN construction in the proof of
this theorem is not based on the idea of evaluat-
ing the formula incrementally along layers, as in
the proofs of Proposition 4.2 and Theorem 5.2, and
it is not simple (note that AC-FR-GNNs are never
homogeneous). Instead, it is based on a refinement
of the GIN architecture proposed by Xu et al. [34]
(which is also used in the proof of the second claim
of Proposition 2.2) to obtain as much information
as possible about the local neighborhood in graphs,
followed by a readout and combination functions
that use this information to deal with non-local con-
structs in formulas. The first component we build
is an AC-GNN that computes an invertible func-
tion mapping each node to a number representing
its neighborhood (how big is this neighborhood de-
pends on the classifier to be captured). This in-
formation is aggregated so that we know for each
different type of a neighborhood how many times it
appears in the graph. We then use the combine
function to evaluate FOC2 formulas by decoding
back the neighborhoods.

6. EXPERIMENTAL RESULTS
In this section we report on our experiments, which

are aimed to empirically validate our theoretical
findings.

6.1 Overview and Set Up
Our main motivation was to show that the theo-

retical expressiveness of ACR-GNNs, as well as the
difference between AC- and ACR-GNNs, can ac-
tually be observed when we learn from examples.
To this end, we performed two sets of experiments
on synthetic data: experiments to show that ACR-
GNNs can learn a very simple FOC2 node classi-
fier that AC-GNNs cannot learn, and experiments
involving complex FOC2 classifiers that need more
intermediate readouts to be learned. Besides testing
simple AC-GNNs, we also tested the GIN network
proposed by Xu et al. [34] (we used the implemen-
tation by Fey and Lenssen [11] and adapted it to
classify nodes).

We performed these two experiments using syn-
thetic graphs with five initial colors; these graphs
are divided in three sets: train set with 5000 graphs
with 50 to 100 nodes, test set with 500 graphs with
a similar number of nodes, and another test set with
500 graphs about twice larger than the train set.

We tried several configurations for the aggrega-
tion, combination and readout functions, but ob-
served a consistent pattern in which the setting of

simple AC(R)-GNNs with ReLU activation as de-
scribed above produced the most accurate results.
Besides this, we did not do any hyperparameter
search and did not use any regularisation. Accuracy
in our experiments is computed as the total number
of nodes correctly classified among all nodes in all
the graphs in the dataset. In addition, we report on
our preliminary experiments on a real-life Protein-
Protein Interaction (PPI ) benchmark [36], where
we did not observe an improvement of ACR-GNNs
over AC-GNNs.

We implemented our experiments using the Py-
Torch Geometric library [11]. In all cases we trained
with a batch-size of 128, and run up to 50 epochs
with the Adam optimizer and default PyTorch pa-
rameters.2

6.2 Separating AC-GNNs and ACR-GNNs
In our first set of experiments we considered a

very simple FOC2 classifier defined by

↵(x) := Red(x) ^ 9y Blue(y),

which is satisfied by every red node in a graph pro-
vided that the graph contains at least one blue node.
This classifier is not expressible in graded modal
logic, so we expected very good performance from
ACR-GNNs but difficulties for AC-GNNs.

We tested the GNN architectures with two classes
of graphs. First, we considered line-shaped graphs,
each of which has 2n nodes v1, . . . , v2n such that
each vi is connected to vi+1, and such that only
nodes v1, . . . , vn can be colored blue and only others
can be colored red. Second, we considered Erdös-
Renyi random graphs of two flavors: the graphs
with the same number of nodes and edges, and the
graphs where the number of edges is twice the num-
ber of nodes. In every set we had 50% of graphs
containing no blue node, and others containing a
fixed small number of blue nodes (typically less than
five). Also, to ensure that there is a significant
number of nodes satisfying the formula, we forced
graphs to have at least 1/4 of its nodes colored red.

The results of these experiments are shown in Ta-
ble 1. As we can see there, already ACR-GNNs with
a single layer showed perfect performance for both
types of graphs (ACR-1 in Table 1). This was what
we expected given the simplicity of the property
being checked. In contrast, AC-GNNs and GINs
(shown in Table 1 as AC-L and GIN-L, represent-
ing AC-GNNs and GINs with L layers) struggle to
fit the data. For the case of the line-shaped graph,
they were not able to fit the train data even by al-
2
All our code and data can be accessed online at https:
//github.com/juanpablos/GNN-logic.
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Line-Shaped Train Line-Shaped Test Erdös-Renyi Train Erdös-Renyi Test

same-size bigger same-size bigger

AC-5 0.887 0.886 0.892 0.951 0.949 0.929
AC-7 0.892 0.892 0.897 0.967 0.965 0.958

GIN-5 0.861 0.861 0.867 0.830 0.831 0.817
GIN-7 0.863 0.864 0.870 0.818 0.819 0.813

ACR-1 1.000 1.000 1.000 1.000 1.000 1.000

Table 1: Results on synthetic data for nodes labeled by classifier ↵(x) := Red(x) ^ 9y Blue(y)

lowing 7 layers. For the case of random graphs, the
performance with 7 layers was considerably better
but still did not fit the data perfectly. We allowed
AC-GNNs with 7 layers to run for more epochs but
the results did not improve.

In a closer look at the performance for different
connectivities of E-R graphs, we found an improve-
ment for AC-GNNs when we train them with more
dense graphs (i.e., when the number of edges in-
creases while the number of nodes stays the same).
This is consistent with the fact that AC-GNNs are
able to move information of local aggregations to
distances up to their number of layers. This com-
bined with the fact that random graphs that are
more dense make the maximum distances between
nodes shorter, may explain the boost in performance
for AC-GNNs.

6.3 Complex FOC2 Properties
In the second experiment we consider classifiers

↵i(x) constructed as

↵0(x) := Blue(x), (2)

↵i(x) := 9
[Ni,Mi]y

�
↵i�1(y) ^ ¬Edge(x, y)

�
, (3)

where 9[N,M ] stands for “there are exactly between N

and M nodes” satisfying a given property. Observe
that each ↵i(x) is in FOC2, as 9

[N,M ] can be ex-
pressed by combining 9

�N and ¬9
�M+1; however,

the classifiers ↵i, for i � 1, are not expressible in
graded modal logic. In particular, we concentrated
on ↵1(x), ↵2(x) and ↵3(x) with [N1,M1], [N2,M2]
and [N3,M3] being [8, 10], [10, 20] and [10, 20] (the
choice of these intervals is technical, it results in
the number of satisfying nodes in the graphs as de-
scribed below).

We considered sets of Erdös-Renyi random graphs
with the number of edges about 7 times greater than
the number of nodes (i.e., more dense that in the
first experiments), and colored to ensure that ap-
proximately one half of all nodes in the graphs in
the set satisfy each of ↵1(x), ↵2(x) and ↵3(x).

Our results, given in Table 2, show that when
increasing i (i.e., the quantifier depth of the clas-

sifiers ↵i) more layers are needed to increase train
and test accuracy. We report ACR-GNNs perfor-
mance up to 3 layers (ACR-L in Table 2) as beyond
that we did not see any significant improvement.
We also note that for the bigger test set, AC-GNNs
and GINs are unable to substantially depart from
a trivial baseline of 50%. We tested these networks
with up to 10 layers but only report the best results
on the bigger test set. We also test AC-FR-GNNs
with two and three layers (AC-FR-L in Table 2).
As we expected, although theoretically using a sin-
gle readout gives the same expressive power as us-
ing several of them (Theorem 5.4), in practice more
than a single readout can actually help the learning
process of complex properties.

6.4 Experiments with PPI benchmark
Finally, we also tested AC- and ACR-GNNs on

the PPI benchmark [36]. We chose PPI since it is a
node classification benchmark with different graphs
in the train set (as opposed to other popular bench-
marks for node classification such as Core or Cite-
seer that have a single graph). Although the best
results we obtained for both classes of GNNs on PPI
were quite high (AC-GNNs: 97.5 F1, ACR-GNNs:
95.4 F1 in the test set), we did not observe an im-
provement of ACR-GNNs over AC-GNNs.

However, Chen et al. have recently observed that
commonly used benchmarks are inadequate for test-
ing advanced GNN variants, and ACR-GNNs might
be suffering from this fact [8]. Thus, the fact that
we do not observe any improvement may be an arte-
fact of the simplicity of the benchmark. We left as
future work a more thorough testing and tuning of
ACR-GNNs for real data.

7. FINAL REMARKS
Our results show the theoretical advantages of

mixing local and global information when classi-
fying nodes in a graph. Recent works have also
observed these advantages in practice; e.g., Deng
et al. used global-context aware local descriptors
to classify objects in 3D point clouds [10], You et
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↵1 Train ↵1 Test ↵2 Train ↵2 Test ↵3 Train ↵3 Test

same-size bigger same-size bigger same-size bigger

AC 0.839 0.826 0.671 0.694 0.695 0.667 0.657 0.636 0.632
GIN 0.567 0.566 0.536 0.689 0.693 0.672 0.656 0.643 0.580

AC-FR-2 1.000 1.000 1.000 0.863 0.860 0.694 0.788 0.775 0.770
AC-FR-3 1.000 1.000 0.825 0.840 0.823 0.604 0.787 0.767 0.771

ACR-1 1.000 1.000 1.000 0.827 0.834 0.726 0.760 0.762 0.773
ACR-2 1.000 1.000 1.000 0.895 0.897 0.770 0.800 0.799 0.771
ACR-3 1.000 1.000 1.000 0.903 0.902 0.836 0.817 0.802 0.748

Table 2: Results on Erdös-Renyi graphs with nodes labeled according to classifiers ↵i

al. construct node features by computing shortest-
path distances to a set of distant anchor nodes [35],
and Haonan et al. introduced the idea of a “star
node” storing global information of the graph [15].

As mentioned before, our work is close in spirit to
that of [34] and [23] establishing the correspondence
between the WL test and GNNs. In contrast to our
work, they focus on graph classification and do not
consider the relationship with logical classifiers.

Regarding our results on the links between AC-
GNNs and graded modal logic (Theorem 4.3), we
point out that very recent work [1] establishes close
relationships between GNNs and certain classes of
distributed local algorithms. These in turn have
been shown to have strong correspondences with
modal logics [16]. Hence, it may be the case that
variants of our Proposition 4.2 could be obtained by
combining these two lines of work (but it is not clear
if this combination would yield AC-GNNs that are
simple), and we believe this is an interesting direc-
tion for future work. Moreover, we also don’t know
how to bridge our work with that of distributed al-
gorithms when we add non-local computations to
GNNs (such as the readouts that we consider).

Morris et al. [23] also studied k-GNNs, which are
inspired by the k-dimensional WL test. In k-GNNs,
graphs are considered as structures connecting k-
tuples of nodes instead of just pairs of nodes. We
plan to study how our results on logical classifiers
relate to k-GNNs, in particular, with respect to the
logic FOCk that extends FOC2 by allowing formu-
las with k variables, for each fixed k > 1. Recent
work has also explored the extraction of finite state
representations from recurrent neural networks as a
way of explaining them [33, 18, 25]. We would like
to study how our results can be applied for extract-
ing logical formulas from GNNs as possible expla-
nations for their computations.

We would like to remark that studying GNNs
continues to be an important topic in the commu-
nity, with new advances reported every year. The
latest results involve the study of more complex

GNN architectures, that take us beyond AC-GNNs
and even k-GNNs. This extra power may come, e.g.,
as a result of allowing random information to be
computed for each node [28], allowing for more com-
plex aggregating functions [20], or different schemes
of port assignments in a distributed setting [12].
Funding All authors but Kostylev are funded the
Millennium Institute for Foundational Research on
Data3. Barceló and Pérez are funded by Fondecyt
grant 1200967.
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